Nome e Cognome:

GALENO O IPPOCRATE O

VECCHI ORDINAMENTI

Scrivere le risposte di ciascun quesito negli appositi spazi.

Esercizio 1. (Punti 5) Una certa famiglia di dati segue una distribuzione gaussiana di media $\mu = 0$ e deviazione standard $\sigma = 3$. Servendosi della tabella allegata, calcolare (esprimendo i risultati con due cifre decimali):

- la percentuale di dati nell'intervallo [0, 3]: 34.13%
- la percentuale di dati al di fuori dell'intervallo [6, 9]: 97.85%
- la percentuale di dati maggiori di −3: 84.13%

valori di u	$\begin{array}{c} \text{Nell'intervallo} \\ [\mu - u\sigma, \mu + u\sigma] \end{array}$	Fuori dell'intervallo $[\mu - u\sigma, \mu + u\sigma]$	Nell'intervallo $[\mu + u\sigma, +\infty)$
0	0	1	0,5
0, 2	0,1586	0,8414	0,4207
0,4	0,3108	0,6892	0,3446
0,6	0,4514	0,5486	0,2743
0,8	0,5762	0,4238	0,2119
1	0,6826	0,3174	0,1587
1,2	0,7698	0,2302	0,1151
1,4	0,8384	0, 1616	0,0808
1,6	0,8904	0, 1096	0,0548
1,8	0,9282	0,0718	0,0359
2	0,9544	0,0456	0,0228
2, 2	0,9722	0,0278	0,0139
2,4	0,9836	0,0164	0,0082
2,6	0,9906	0,0094	0,0047
2,8	0,9950	0,0050	0,0025
3	0,9974	0,0026	0,0013
3, 2	0, 9986	0,0014	0,0007

Esercizio 2. (Punti 5) Si considerino i seguenti dati:

1 6 1 1 -10 8.

Calcolarne la media aritmetica, la mediana, la varianza, la deviazione standard e la deviazione standard campionaria. Scrivere i risultati arrotondati alla seconda cifra decimale.

 $media\ aritmetica = 4.5$

mediana = 3.5

varianza = 81.5/6 = 13.58

 $deviazione \ standard = 3.68$

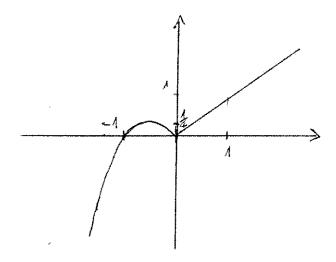
deviazione standard campionaria = $\sqrt{81.5/5} = 4.04$

Esercizio 3. (Punti 5) i) Data la funzione $y = \left(\frac{2}{x^4}\right)^{1/3}$, definita per x > 0, scegliere le coordinate logaritmiche (log-log o semi-log) in cui tale funzione viene rappresentata da una retta. Scrivere l'equazione di tale retta.

coordinate: log-log

equazione della retta: $Y = 1/3 \log 2 - 4/3X$

ii) Data le retta di equazione Y = 2X - 5 scrivere la funzione che rappresenta in coordinate semilogaritmiche.


funzione:

 $y = 10^{-5}(10^2)^x$

Esercizio 4. (Punti 7) È data la funzione

$$f(x) = \begin{cases} -x^2 - x & \text{se } x \le 0, \\ x & \text{per } x > 0. \end{cases}$$

ullet Disegnare un grafico qualitativo di f.

ullet Determinare gli eventuali punti in cui f non è continua.

f non è continua in: alcun punto

 \bullet Determinare gli eventuali punti in cui f non è derivabile.

f non è derivabile in: x = 0

• Determinare i punti di massimo e minimo assoluto di f nell'intervallo [-1,1].

ascisse dei punti di minimo assoluto:x=-1, x=0ascisse dei punti di massimo assoluto:x=1

Esercizio 5. (Punti 6) Sono date le funzioni $f(x) = \ln(1-x^2)$ e g(x) = 1-2x.

- Determinare il campo di esistenza di f.
 campo di esistenza di f.(-1,1)
- Determinare il campo di esistenza di $f \circ g$. campo di esistenza di $f \circ g$:(0,1)
- Scrivere la formula esplicita di $f \circ g$. $f \circ g(x) = \ln(4x - 4x^2) = \ln(4x(1-x))$
- Calcolare la derivata di f. $f'(x) = \frac{-2x}{1-x^2}$
- Scrivere l'equazione della retta tangente al grafico di f nel punto (1/2, f(1/2)). equazione della retta: $y = \ln \frac{3}{4} \frac{4}{3}(x 1/2)$