Prova scritta del 29.01.2008

Compito A

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P_1, Q_1 e Q_2 i punti di coordinate rispettivamente (1,0,2), (-1,2,1) e (-1,1,2).

- 1. Scrivere equazioni cartesiane per la sfera S_1 con centro in Q_1 e passante per P_1 , per la retta r passante per P_1 e Q_1 e per il piano π passante per P_1 , Q_1 e Q_2 ;
- 2. trovare un vettore che generi la giacitura della retta r e scrivere equazioni cartesiane per i due piani π_2, π_3 ortogonali a π e tangenti a S_1 ;
- 3. trovare le coordinate dei punti P_2 e P_3 più vicini a Q_2 e appartenenti rispettivamente a π_2 e a π_3 ed equazioni cartesiane per le sfere S_2 e S_3 con centro in Q_2 e tangenti rispettivamente a π_2 e π_3

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$, $F_t : \mathbb{R}^4 \to \mathbb{R}^4$ tale che

$$F_t(0,1,0,0) = (3,3,2,2), F_t(1,t,1,1) = (7+4t,7+4t,8+3t,8+3t), F_t(1,1,-1,0) = (4,4,1,1), F_t(0,1,0,1) = (5+t,5+t,5+t,5+t).$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare la segnatura di ${}^t\!A_0 + A_0 5I,$ I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia S lo spazio vettoriale delle matrici simmetriche reali di ordine 2. Date $A \in S$ e $B \in S$ diremo che A > B se A - B è matrice definita positiva.

Vero o Falso:

- 1. Se A > B e C > D allora A + C > B + D.
- 2. Se tracciaA > tracciaB e detA > detB allora A > B.
- 3. Se A > B > 0 allora $B^{-1} > A^{-1}$.

Prova scritta del 29.01.2008

Compito ${f B}$

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P_1, Q_1 e Q_2 i punti di coordinate rispettivamente (2, 1, 2), (0, 3, 1) e (0, 2, 2).

- 1. Scrivere equazioni cartesiane per la sfera S_1 con centro in Q_1 e passante per P_1 , per la retta r passante per P_1 e Q_1 e per il piano π passante per P_1 , Q_1 e Q_2 ;
- 2. trovare un vettore che generi la giacitura della retta r e scrivere equazioni cartesiane per i due piani π_2, π_3 ortogonali a π e tangenti a S_1 ;
- 3. trovare le coordinate dei punti P_2 e P_3 più vicini a Q_2 e appartenenti rispettivamente a π_2 e a π_3 ed equazioni cartesiane per le sfere S_2 e S_3 con centro in Q_2 e tangenti rispettivamente a π_2 e π_3

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$, $F_t : \mathbb{R}^4 \to \mathbb{R}^4$ tale che

$$F_t(1,0,0,0) = (3,3,2,2), F_t(t,1,1,1) = (7+4t,7+4t,8+3t,8+3t), F_t(1,1,-1,0) = (4,4,1,1), F_t(1,0,0,1) = (5+t,5+t,5+t,5+t).$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare la segnatura di ${}^t\!A_0 + A_0 8I,$ I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia S lo spazio vettoriale delle matrici simmetriche reali di ordine 2. Date $A \in S$ e $B \in S$ diremo che A > B se A - B è matrice definita positiva.

Vero o Falso:

- 1. Se A > B e C > B allora A + C > 2B.
- 2. Se A > B > 0 allora $tracciaA^2 > tracciaB^2$.
- 3. Se A > B > 0 allora $B^{-1} > A^{-1}$.

Prova scritta del 29.01.2008

Compito C

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P_1, Q_1 e Q_2 i punti di coordinate rispettivamente (1, 1, 3), (-1, 3, 2) e (-1, 2, 3).

- 1. Scrivere equazioni cartesiane per la sfera S_1 con centro in Q_1 e passante per P_1 , per la retta r passante per P_1 e Q_1 e per il piano π passante per P_1 , Q_1 e Q_2 ;
- 2. trovare un vettore che generi la giacitura della retta r e scrivere equazioni cartesiane per i due piani π_2, π_3 ortogonali a π e tangenti a S_1 ;
- 3. trovare le coordinate dei punti P_2 e P_3 più vicini a Q_2 e appartenenti rispettivamente a π_2 e a π_3 ed equazioni cartesiane per le sfere S_2 e S_3 con centro in Q_2 e tangenti rispettivamente a π_2 e π_3

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$, $F_t : \mathbb{R}^4 \to \mathbb{R}^4$ tale che

$$F_t(0,0,1,0) = (2,2,3,3), F_t(1,1,t,1) = (8+3t,8+3t,7+4t,7+4t), F_t(1,-1,-1,0) = (-2,-2,-3,-3), F_t(0,0,-1,1) = (t,t,t,t).$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare la segnatura di ${}^t\!A_0+A_0-3I,$ I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia S lo spazio vettoriale delle matrici simmetriche reali di ordine 2. Date $A \in S$ e $B \in S$ diremo che A > B se A - B è matrice definita positiva.

Vero o Falso:

- 1. Se A > B allora $A^2 > B^2$.
- 2. Se A > -B allora tracciaA + tracciaB può essere negativa .
- 3. Se A > B > 0 allora $B^{-1} > A^{-1}$.

Prova scritta del 29.01.2008

Compito **D**

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P_1, Q_1 e Q_2 i punti di coordinate rispettivamente (0, 1, 1), (-2, 3, 0) e (-2, 2, 1).

- 1. Scrivere equazioni cartesiane per la sfera S_1 con centro in Q_1 e passante per P_1 , per la retta r passante per P_1 e Q_1 e per il piano π passante per P_1 , Q_1 e Q_2 ;
- 2. trovare un vettore che generi la giacitura della retta r e scrivere equazioni cartesiane per i due piani π_2, π_3 ortogonali a π e tangenti a S_1 ;
- 3. trovare le coordinate dei punti P_2 e P_3 più vicini a Q_2 e appartenenti rispettivamente a π_2 e a π_3 ed equazioni cartesiane per le sfere S_2 e S_3 con centro in Q_2 e tangenti rispettivamente a π_2 e π_3

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$, $F_t : \mathbb{R}^4 \to \mathbb{R}^4$ tale che

$$F_t(0,0,0,1) = (2+t,2+t,3+t,3+t), F_t(1,t,1,1) = (7+4t,7+4t,8+3t,8+3t), F_t(0,1,0,2) = (7+2t,7+2t,8+2t,8+2t), F_t(0,1,1,1) = (7+t,7+t,8+t,8+t).$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare la segnatura di ${}^t\!A_0+A_0-2I,$ I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia S lo spazio vettoriale delle matrici simmetriche reali di ordine 2. Date $A \in S$ e $B \in S$ diremo che A > B se A - B è matrice definita positiva.

Vero o Falso:

- 1. Se A > B e C > D allora 2A D > 2B C.
- 2. Se A > B allora det A > det B.
- 3. Se A > B > 0 allora $B^{-1} > A^{-1}$.

Prova scritta del 29.1.2008 Risultati

Nome: Anno di corso:		Cognome:			Data nascita:	
		Mat.		Fis.	(crocettare)	
Programma (pe	r studenti di	matematic	ca anni p	orecedenti)	Nuovo	Precedente
Compito	A	ВС		D	(crocettare)	
ESERCIZI	O 1					
1)						
2)						
3)						
ESERCIZI	O 2					
a)						
b)						
c)						
d)						
ESERCIZI	O 3 (croce	ttare V=v	vero o I	F= falso)		
1) V	\mathbf{F}					
2) V	\mathbf{F}					
3) V	\mathbf{F}					

La mancata restituzione o compilazione del modulo nei suoi dati generali (nome cognome etc.) comporta l'esclusione dall'esame. La mancata compilazione dei valori di risposta comporta penalizzazione di voto. L'elaborato deve essere consegnato insieme a questo modulo e deve contenere nome e cognome dello studente. Il procedimento non deve essere riportato su questo modulo. Il foglio del testo degli esercizi non deve essere consegnato.

$$\begin{pmatrix}
3 & 3 & 2 & 2+t \\
3 & 3 & 2 & 2+t \\
2 & 2 & 3 & 3+t \\
2 & 2 & 3 & 3+t
\end{pmatrix}$$