Prova scritta del 22.02.2008

Compito A

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano S la sfera di equazione $x^2+y^2+z^2-2x-4y+2z+5=0$, π il piano di equazione 2x+y+2z-1=0, $P\in Q$ i punti di coordinate rispettivamente (0,-1,1) e (-2,-1,0) e v il vettore $^t(1,1,3)$.

- 1. Determinare il centro C e il raggio R di S e un'equazione cartesiana per la retta r passante per P e la cui giacitura è generata da v;
- 2. determinare le posizioni relative di $S \in r$, di $\pi \in S$ e di $r \in \pi$;
- 3. trovare equazioni cartesiane per i piani (se esistono) ortogonali a π , passanti per Q e tangenti a S.

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$,

$$F_t: \mathbb{R}^3 \to \mathbb{R}^3$$

tale che:

$$F_t(1,2,t) = (3+t,3+t,1+3t), F_t(1,1,1) = (3,3,2+t), F_t(2,2,5) = (9,9,7+2t),$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare al variare di $a \in \mathbb{R}$ la segnatura di $A_1 + A_1 + aI$, I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia M lo spazio vettoriale delle matrici reali di ordine 2. Date $A \in M$ e $B \in M$

Vero o Falso:

- 1. Se $A \in B$ sono nilpotenti allora A + B è nilpotente;
- 2. Se A e B sono diagonalizzabili allora AB è diagonalizzabile;
- 3. Se A, B e A + B sono nilpotenti allora A B è nilpotente.

Prova scritta del 29.01.2008

Compito **B**

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano S la sfera di equazione $x^2 + y^2 + z^2 - 2x - 2y + 1 = 0$, π il piano di equazione 2x + y + 2z - 2 = 0, P e Q i punti di coordinate rispettivamente (0,0,2) e (-2,0,1) e v il vettore $^t(1,2,1)$.

- 1. Determinare il centro C e il raggio R di S e un'equazione cartesiana per la retta r passante per P e la cui giacitura è generata da v;
- 2. determinare le posizioni relative di $S \in r$, di $\pi \in S$ e di $r \in \pi$;
- 3. trovare equazioni cartesiane per i piani (se esistono) ortogonali a π , passanti per Q e tangenti a S.

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$,

$$F_t: \mathbb{R}^3 \to \mathbb{R}^3$$

tale che

$$F_t(t, 1, 2) = (3 + 2t, 3 + 2t, 2 + 2t), F_t(1, 1, 1) = (3, 3, 2 + t), F_t(5, 2, 2) = (9, 9, 7 + 2t),$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare al variare di $a \in \mathbb{R}$ la segnatura di $A_1 + A_1 + aI$, I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia M lo spazio vettoriale delle matrici reali di ordine 2. Date $A \in M$ e $B \in M$

 $Vero\ o\ Falso:$

- 1. Se A, B e A + B sono diagonalizzabili allora A B è diagonalizzabile;
- 2. Se $A \in B$ sono nilpotenti allora A + B è nilpotente;
- 3. Se A, B e A B sono nilpotenti allora AB = 0.

Prova scritta del 22.02.2008

Compito C

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano S la sfera di equazione $x^2 + y^2 + z^2 - 4y - 4z + 7 = 0$, π il piano di equazione 2x + y + 2z - 3 = 0, $P \in Q$ i punti di coordinate rispettivamente (1,1,0) e (-3,-1,-1) e v il vettore $^t(1,2,-2)$.

- 1. Determinare il centro C e il raggio R di S e un'equazione cartesiana per la retta r passante per P e la cui giacitura è generata da v;
- 2. determinare le posizioni relative di $S \in r$, di $\pi \in S$ e di $r \in \pi$;
- 3. trovare equazioni cartesiane per i piani (se esistono) ortogonali a π , passanti per Q e tangenti a S.

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$,

$$F_t: \mathbb{R}^3 \to \mathbb{R}^3$$

tale che

$$F_t(-t, 1, 2) = (3 - 2t, 3 - 2t, 2 - 2t), F_t(1, 1, 1) = (3, 3, 2 - t), F_t(5, 2, 2) = (9, 9, 7 - 2t),$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare al variare di $a \in \mathbb{R}$ la segnatura di $A_{-1} + A_{-1} + aI$, I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia M lo spazio vettoriale delle matrici reali di ordine 2. Date $A \in M$ e $B \in M$

Vero o Falso:

- 1. Se $A \in B$ sono nilpotenti allora A + B è nilpotente;
- 2. Se $A \in B$ sono diagonalizzabili allora A + BA è diagonalizzabile;
- 3. Se A, B e A + B sono nilpotenti allora AB + A è nilpotente.

Prova scritta del 22.02.2008

Compito **D**

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano S la sfera di equazione $x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$, π il piano di equazione 2x + y + 2z + 1 = 0, $P \in Q$ i punti di coordinate rispettivamente (0,1,1) e (-2,-3,0) e v il vettore $^t(1,-2,0)$.

- 1. Determinare il centro C e il raggio R di S e un'equazione cartesiana per la retta r passante per P e la cui giacitura è generata da v;
- 2. determinare le posizioni relative di $S \in r$, di $\pi \in S$ e di $r \in \pi$;
- 3. trovare equazioni cartesiane per i piani (se esistono) ortogonali a π , passanti per Q e tangenti a S.

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$,

$$F_t: \mathbb{R}^3 \to \mathbb{R}^3$$

tale che:

$$F_t(1,2,-t) = (3-t,3-t,1-3t), F_t(1,1,1) = (3,3,2-t), F_t(2,2,5) = (9,9,7-2t),$$

- a) Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- b) Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- c) Calcolare autovalori e autovettori di A_1 .
- d) Calcolare al variare di $a \in \mathbb{R}$ la segnatura di $A_{-1} + A_{-1} + aI$, I matrice identità.

Punti (4+5+3+3)

Esercizio 3. Sia M lo spazio vettoriale delle matrici reali di ordine 2. Date $A \in M$ e $B \in M$

Vero o Falso:

- 1. Se A, B e A + B sono diagonalizzabili allora A B è diagonalizzabile;
- 2. Se $A \in B$ sono nilpotenti allora A + B è nilpotente;
- 3. Se A, B e A + B sono nilpotenti allora AB = BA.

Prova scritta del 22.2.2008 Risultati

Nome:	Cognome:			Data nascita:		
Anno di corso:		M	Mat.		(crocettare)	
Programma (p	er studenti d	i matematic	ca anni p	orecedenti)	Nuovo	Precedente
Compito	A	ВС		D	(crocettare)	
ESERCIZ	IO 1					
1)						
2)						
3)						
ESERCIZ	IO 2					
a)						
b)						
c)						
d)						
ESERCIZ	IO 3 (croce	ettare V=	vero o I	F= falso)		
1. V	${f F}$					
2. V	\mathbf{F}					
3.] V	${f F}$					

La mancata restituzione o compilazione del modulo nei suoi dati generali (nome cognome etc.) comporta l'esclusione dall'esame. La mancata compilazione dei valori di risposta comporta penalizzazione di voto. L'elaborato deve essere consegnato insieme a questo modulo e deve contenere nome e cognome dello studente. Il procedimento non deve essere riportato su questo modulo. Il foglio del testo degli esercizi non deve essere consegnato.

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & t & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -t & 1 \end{pmatrix}$$