Corso di Algebra lineare - a.a. 2002-2003

Prova scritta del 31.1.2003

Compito A

Esercizio 1. In uno spazio euclideo tridimensionale è fissato un riferimento ortonormale Oxyz.

- 1. Scrivere un'equazione cartesiana del piano mediano π del segmento di estremi $P_1(1,2,3)$ e $P_2(-1,2,-1)$.
- 2. Scrivere equazioni cartesiane per la retta r passante per $P_3(2,-1,0)$ e $P_4(3,2,2)$.
- 3. Scrivere un'equazione della sfera S di centro nel punto $P_5=\pi\cap r$ e tangente al piano x+y+z=2.
- 4. L'intersezione tra S e π è una circonferenza C. Dire se il punto $P_6(4,-1,-1)$ è situato all'interno del cerchio delimitato da C nel piano π , all'esterno di esso o sulla stessa circonferenza C.

Punti (2+1+2+2)

Esercizio 2. Si consideri la seguente matrice X_t dipendente da un parametro reale t:

$$X_t = \begin{pmatrix} -t & 1 & 1 \\ t & t & -t^2 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) Dire per quali valori del parametro reale X_t è diagonalizzabile sui reali.
- b) Calcolare autovalori e autovettori di X_1 .

Punti (5+5)

Esercizio 3. Siano A e B matrici reali di ordine 3 di rango 1 indipendenti: $A \neq c \cdot B$, $c \in \mathbb{R}$.. Vero o Falso:

- a) A B può essere invertibile ;
- b) A B ha sempre rango 2;
- c) se B è diagonalizzabile allora la sua traccia non è nulla;
- d) per qualche costante $c \in \mathbb{R}$ $A c \cdot B$ la matrice può avere come autovalore (complesso) 1 i.

Punti (2+2+2+2)

Esercizio 4. Si consideri l'applicazione lineare $F : \mathbb{R}^3 \to \mathbb{R}^4$ tale che F(1,1,0) = (2,0,2,0), F(5,3,1) = (10,0,6,2) e F(0,1,1) = (0,0,2,2).

- a) Trovare la matrice A associata ad F nelle basi canoniche di \mathbb{R}^3 ed \mathbb{R}^4 .
- b) Calcolare la dimensione del nucleo e dell'immagine di F.

Punti (3+2)

Corso di Algebra lineare - a.a. 2002-2003 Seconda prova scritta del 31.1.2003

Compito A

Esercizio 1. In uno spazio euclideo tridimensionale è fissato un riferimento ortonormale Oxyz.

- 1. Scrivere un'equazione cartesiana del piano mediano π del segmento di estremi $P_1(1,2,3)$ e $P_2(-1,2,-1)$.
- 2. Scrivere equazioni cartesiane per la retta r passante per $P_3(2,-1,0)$ e $P_4(3,2,2)$.
- 3. Scrivere un'equazione della sfera S di centro nel punto $P_5 = \pi \cap r$ e tangente al piano x + y + z = 2.
- 4. L'intersezione tra S e π è una circonferenza C. Dire se il punto $P_6(4,-1,-1)$ è situato all'interno del cerchio delimitato da C nel piano π , all'esterno di esso o sulla stessa circonferenza C.

Punti (3+1+3+3)

Esercizio 2. Si consideri la seguente matrice X_t dipendente da un parametro reale t:

$$X_t = \begin{pmatrix} -t & 1 & 1 \\ t & t & -t^2 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) Dire per quali valori del parametro reale X_t è diagonalizzabile sui reali.
- b) Calcolare autovalori e autovettori di X_1 .

Punti (6+6)

Esercizio 3. Siano A e B matrici reali di ordine 3 di rango 1 indipendenti: $A \neq c \cdot B$, $c \in \mathbb{R}$.. Vero o Falso:

- a) A B può essere invertibile ;
- b) A B ha sempre rango 2;
- c) se B è diagonalizzabile allora la sua traccia non è nulla;
- d) per qualche costante $c \in \mathbb{R}$ $A c \cdot B$ la matrice può avere come autovalore (complesso) 1 i.

Punti (2+2+2+2)

Corso di Algebra lineare - a.a. 2002-2003

Prova scritta del 31.1.2003

Compito B

Esercizio 1. In uno spazio euclideo tridimensionale è fissato un riferimento ortonormale Oxyz.

- 1. Scrivere un'equazione cartesiana del piano mediano π del segmento di estremi $P_1(2,1,1)$ e $P_2(4,-3,1)$.
- 2. Scrivere equazioni cartesiane per la retta r passante per $P_3(1, -2, 1)$ e $P_4(3, 0, 2)$.
- 3. Scrivere un'equazione della sfera S di centro nel punto $P_5 = \pi \cap r$ e tangente al piano x y z = 0.
- 4. L'intersezione tra S e π è una circonferenza C. Dire se il punto $P_6(2, -2, 1)$ è situato all'interno del cerchio delimitato da C nel piano π , all'esterno di esso o sulla stessa circonferenza C.

Punti (2+1+2+2)

Esercizio 2. Si consideri la seguente matrice X_t dipendente da un parametro reale t:

$$X_t = \begin{pmatrix} -t & 1 & 1\\ 0 & 0 & 0\\ t & -t^2 & t \end{pmatrix}.$$

- a) Dire per quali valori del parametro reale X_t è diagonalizzabile sui reali.
- b) Calcolare autovalori e autovettori di X_1 .

Punti (5+5)

Esercizio 3. Siano A e B matrici reali di ordine 3 di rango 1 indipendenti: $A \neq c \cdot B$, $c \in \mathbb{R}$.. Vero o Falso:

- a) A + B può essere invertibile;
- b) A + B ha sempre rango 2;
- c) se A è diagonalizzabile allora la sua traccia non è nulla;
- d) per qualche costante $c \in \mathbb{R}$ $A c \cdot B$ la matrice può avere come autovalore (complesso) 1 + i.

Punti (2+2+2+2)

Esercizio 4. Si consideri l'applicazione lineare $F : \mathbb{R}^3 \to \mathbb{R}^4$ tale che F(1,1,0) = (2,0,2,0), F(5,3,1) = (10,0,6,2) e F(0,1,1) = (0,0,2,2).

- a) Trovare la matrice A associata ad F nelle basi canoniche di \mathbb{R}^3 ed \mathbb{R}^4 .
- b) Calcolare la dimensione del nucleo e dell'immagine di F.

Punti (3+2)

Corso di Algebra lineare - a.a. 2002-2003 Seconda prova scritta del 31.1.2003

Compito B

Esercizio 1. In uno spazio euclideo tridimensionale è fissato un riferimento ortonormale Oxyz.

- 1. Scrivere un'equazione cartesiana del piano mediano π del segmento di estremi $P_1(2,1,1)$ e $P_2(4,-3,1)$.
- 2. Scrivere equazioni cartesiane per la retta r passante per $P_3(1,-2,1)$ e $P_4(3,0,2)$.
- 3. Scrivere un'equazione della sfera S di centro nel punto $P_5=\pi\cap r$ e tangente al piano x-y-z=0.
- 4. L'intersezione tra S e π è una circonferenza C. Dire se il punto $P_6(2, -2, 1)$ è situato all'interno del cerchio delimitato da C nel piano π , all'esterno di esso o sulla stessa circonferenza C.

Punti (3+1+3+3)

Esercizio 2. Si consideri la seguente matrice X_t dipendente da un parametro reale t:

$$X_t = \begin{pmatrix} -t & 1 & 1\\ 0 & 0 & 0\\ t & -t^2 & t \end{pmatrix}.$$

- a) Dire per quali valori del parametro reale X_t è diagonalizzabile sui reali.
- b) Calcolare autovalori e autovettori di X_1 .

Punti (6+6)

Esercizio 3. Siano A e B matrici reali di ordine 3 di rango 1 indipendenti: $A \neq c \cdot B$, $c \in \mathbb{R}$.. Vero o Falso:

- a) A B può essere invertibile;
- b) A B ha sempre rango 2;
- c) se A è diagonalizzabile allora la sua traccia non è nulla;
- d) per qualche costante $c \in \mathbb{R}$ $A c \cdot B$ la matrice può avere come autovalore (complesso) 1 + i.

Punti (2+2+2+2)

Corso di Geometria 1 -a. a. 2002-03 Prova scritta 31.1.2003 Risultati

Cognome:

Nome:

a) A =

SINuovo ordinamento NO COMPITO \mathbf{B} \mathbf{A} prova completa II prova. **ESERCIZIO 1** a) equazione π : b) equazione di r: c) S =d) (crocettare) Interno Esterno quad su C **ESERCIZIO 2** a) valori di $t: X_t$ è diagonalizzabile: b) autovalori autovettori ESERCIZIO 3 (crocettare V=vero o F= falso) a) V F b) V \mathbf{F} c) V F d) V F ESERCIZIO 4

b) $\dim Ker =$

La mancata restituzione o compilazione del modulo nei suoi dati generali (nome cognome etc.) comporta l'esclusione dall'esame. La mancata compilazione dei valori di risposta comporta penalizzazione di 7 punti. L'elaborato deve essere consegnato insieme a questo modulo e deve contenere nome e cognome dello studente. Il foglio del testo degli esercizi non deve essere consegnato.

 $\dim Im =$

Chi ha superato lo scritto di novembre può svolgere solo i primi 3 esercizi cioè la parte contenuta nelle pagine 2 per il compito A e 4 per il compito B (la scala dei punti è modificata).

Il compito si ritiene sufficiente se si ottengono 18/30.