Analisi Funzionale -6+3 CFU -1 Semestre

- Richiami ai concetti di spazio vettoriale, normato, prehilbertiano. Seminorme e forme sesquilineari hermitiane. Disuguaglianza di Cauchy-Schwarz. Spazi metrici e funzioni continue. Regola del parallelogramma e norme hilbertiane. Esempi. Norme equivalenti. Operatori lineari tra spazi vettoriali. Isometrie, isomorfismi algebrici, isomorfismi e isomorfismi isometrici. Completezza: spazi di Banach e di Hilbert.
- Esempi di spazi di Banach: fra altri, gli spazi $L^p(\Omega)$ con $1 \le p \le \infty$. Richiami e dimostrazione delle disuguaglianze di Young, Hölder, Minkowski. Disuguaglianza di Hölder generalizzata e disuguaglianza di interpolazione. Inclusioni tra spazi $L^p(\Omega)$, in particolare per insiemi Ω di misura finita. $\|\cdot\|_p \to \|\cdot\|_\infty$ se $p \to \infty$. Spazi ℓ^p ; definizioni e interpretazione con misura del contare; completezza con dimostrazione. Spazi c, c_0, c_{00} ; operatori di immersione; sottospazi chiusi e densi.
- Completamenti di spazi metrici e normati: idee. Operatori lineari limitati tra spazi normati. Norme di operatori lineari e continui, spazio $\mathcal{L}(V,W)$, che è completo se W è completo. Prodotti di operatori lineari e limitati; un esempio di serie di operatori. Insieme degli isomorfismi di $\mathcal{L}(V,V)$ è aperto. Esempi di operatori lineari e limitati tra spazi $L^p(\Omega)$ o ℓ^p . Funzionali lineari e continui. Spazio duale V' di uno spazio normato V. Dualità fra V' e V, antiduale, norme equivalenti inducono lo stesso spazio duale. Esempi: \mathbb{C}^N , duale di un prehilbertiano. Duale di ℓ^p per 1 : caratterizzazione completa.
- Introduzione al teorema di Hahn-Banach, osservazioni. Lemma di Zorn, commenti. Teorema di Hahn-Banach in forma analitica, dimostrazione nel caso reale ed estensione al caso complesso. Corollari per spazi normati e sottospazi densi. Applicazioni: $(\ell^{\infty})'$ include strettamente ℓ^1 , con esempio di funzionale che estende $\lim_{n\to\infty} x_n$ per elementi $x=(x_n)$ del sottospazio c. Funzionale nullo su c_0 ma non nullo in c. Duale di ℓ^1 è isometricamente isomorfo a ℓ^{∞} .
- Spazi $L^1_{\text{loc}}(\Omega)$ e $C_c^{\infty}(\Omega)$ con Ω aperto di \mathbb{R}^N . Densità di $C_c^{\infty}(\Omega)$ in $L^1(\Omega)$. Se $u \in L^1_{\text{loc}}(\Omega)$ si annulla su $C_c^{\infty}(\Omega)$, allora u = 0 quasi ovunque. Se x_0 è un punto di Ω , non esiste alcuna $u \in L^1_{\text{loc}}(\Omega)$ tale che $\int_{\Omega} u\varphi d\mu = \varphi(x_0)$ per ogni $\varphi \in C_c^{\infty}(\Omega)$. Per $1 \leq p \leq \infty$ l'operatore $\mathcal{R}_p : L^{p'}(\Omega) \to (L^p(\Omega))'$ definito da $\langle \mathcal{R}_p u, v \rangle = \int_{\Omega} uv d\mu$ è lineare, continuo, isometrico e, se $p \neq \infty$, è anche suriettivo (solo enunciato). Densità di $C_c^{\infty}(\Omega)$ in $L^p(\Omega)$ se $p \neq \infty$, non densità in $L^{\infty}(\Omega)$.
- Altri corollari di Hahn-Banach: per $x \in V$ esiste $f \in V'$ con $||f||_* = ||x||$ e $\langle f, x \rangle = ||x||^2$; $||x|| = \max |\langle f, x \rangle|$ al variare di $f \in V'$ con norma unitaria. Convergenze deboli e semicontinuità inferiore della norma. Isomorfismo canonico J e definizione di spazio riflessivo. Spazi strettamente convessi: esempi ed enunciato del teorema di Asplund. Applicazione di dualità \mathcal{F} . Se V' e V sono strettamente convessi, \mathcal{F} è ad un solo valore ed è iniettiva. $J = \mathcal{F}^*\mathcal{F}$ con dimostrazione e osservazioni. Convergenza debole* e proprietà. Significato di convergenza debole in $L^p(\Omega)$ per $p \neq \infty$ e di convergenza debole* in $L^\infty(\Omega)$. Convergenze deboli su sottoinsiemi densi per successioni limitate. Esempi con $\sin(nx)$ e $\sin^2(nx)$. Funzionali di Minkovski e proprietà; lemma relativo per convesso aperto che contiene lo 0. Teorema di Hahn-Banach prima forma geometrica. Esempi di separazione e osservazioni. Teorema di Hahn-Banach seconda forma geometrica.
- Spazi separabili e prime proprietà. Separabilità di $L^p(\Omega)$ per $p \neq \infty$; $L^{\infty}(\Omega)$ non è separabile se Ω ha punti interni. Se V' è separabile, anche V è separabile. Se V è riflessivo, V è

separabile se e solo se V' è separabile. Compattezza debole sequenziale: successioni limitate e sottoinsieme denso. Teorema di compattezza debole* sequenziale. Convergenza delle traslate. Ogni sottospazio chiuso di spazio riflessivo è esso stesso riflessivo. Teorema di compattezza debole sequenziale. Compattezza debole: enunciato del teorema di Eberlein-Šmulian.

- Operatori aggiunti: definizione, linearità, continuità, esempi.
- Richiami di topologia generale, in particolare basi numerabili di intorni. Compattezza. Spazi vettoriali topologici. Funzioni semicontinue inferiormente, proprietà, esistenza del minimo. Introduzione alle funzioni convesse proprie, caratterizzazioni e proprietà, funzione indicatrice, prolungamenti a $+\infty$. Insiemi convessi chiusi sono intersezione dei semispazi chiusi che li contengono. I convessi chiusi sono anche sequenzialmente chiusi rispetto alla convergenza debole. Funzioni convesse proprie semicontinue inferiormente: proprietà ed esempi, teorema di esistenza del minimo. Quando il minimo è unico? Esistenza della proiezione su convesso chiuso non vuoto in uno spazio di Banach riflessivo. Funzioni convesse coniugate, definizione e prime proprietà. Esempi, calcolo di funzioni coniugate in \mathbb{R} , coniugata della funzione norma in un generico spazio V. Bi-coniugata e teorema di Fenchel-Moreau.
- Lemma di Baire. Esempio di applicazione. Teorema di Banach-Steinhaus e corollari. Esempio di successione debole* convergente e non limitata nel duale di uno spazio normato non completo. Definizione di applicazione aperta, suriettività e caratterizzazione con palle di centro l'origine. Dimostrazione teorema applicazione aperta e primi corollari. Teorema del grafico chiuso. Relazioni fra equivalenza di norme e completezza, esempi. Chiusura di una somma di sottospazi chiusi: condizione necessaria e sufficiente. Casi di spazi di Hilbert e di somme dirette. Supplementare topologico: esempi e casi in cui esiste.
- Richiami su isomorfismo canonico e riflessività. Sono riflessivi gli spazi a dimensione finita, gli spazi di Hilbert, $L^p(\Omega)$ con Ω aperto e $1 . Non riflessività di <math>L^1(\Omega)$ e $L^\infty(\Omega)$ se Ω è aperto. Costruzione di spazi riflessivi a partire da spazi riflessivi. Spazi uniformemente convessi, convergenza debole più convergenza delle norme implicano convergenza forte. Uno spazio di Banach è riflessivo se e solo se lo è il suo duale. Derivate deboli e spazi di Sobolev: problematica, derivata debole, spazi $W^{k,p}(\Omega)$, completezza e riflessività.
- Seminorme e topologia generata da una famiglia di seminorme. Separazione di Hausdorff, caratterizzazione degli operatori lineari e continui, convergenze di successioni. $C^0(\Omega)$ e $L^p_{loc}(\Omega)$ come esempi. Spazi localmente convessi e teorema centrale: localmente convessi se e solo se esiste una famiglia di seminorme. Metrizzabilità, costruzione della metrica, coincidenza delle topologie. $C^0(\Omega)$ è completo. Topologie deboli e deboli*, chiusure deboli e forti, confronto tra debole e debole* in V'. Compattezze. Teoremi di Banach-Alaoglu e Kakutani (solo una implicazione).
- Operatori aggiunti di operatori lineari non limitati a dominio denso. Esempi: operatori limitati, derivata in $L^1(\mathbb{R})$, $-\Delta$ in $L^2(\Omega)$. Problematica: esistenza di soluzioni per l'equazione Lu=w. Ortogonali in spazi di Banach e proprietà. Teorema: la chiusura di R(L) coincide con l'ortogonale del nucleo dell'aggiunto. Osservazioni, commenti, derivata in $L^1(\mathbb{R})$, $I-\Delta$ in $L^2(\Omega)$ con condizioni omogenee di Dirichlet o di Neumann.
- Spazi di Hilbert: richiami al teorema delle proiezioni e proprietà degli operatori di proiezione. Teorema di Lions-Stampacchia, con dimostrazione che fa uso del teorema delle proiezioni. Lemma di Lax-Milgram e osservazioni relative. Un'applicazione di Lax-Milgram in $H^1(a,b)$ per una forma non simmetrica. Problema del filo e dell'ostacolo come applicazione di Lions-Stampacchia e osservazioni. Due parole sulle terne hilbertiane e sulle perturbazioni singolari astratte.