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Introduction

First, we consider a problem involving a partial differential equation

(PDE )


vt = ∆v + f (v)−

∫
−

Ω
f (v) in Ω× R+,

∂νv = 0 on ∂Ω× R+,

v(x , 0) = v0(x) x ∈ Ω.

Here, Ω ⊂ RN(N ≥ 1) is a bounded connected open set with
smooth boundary, ∂ν is the outer normal derivative to ∂Ω and∫

−
Ω
f (v) :=

1

|Ω|

∫
Ω
f (v(x)) dx .
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Introduction

Problem (PDE ) was proposed by Rubinstein and Sternberg as
a model for phase separation in a binary mixture.

We assume that the function f is of the form

f (s) =
n∑

i=1

ai s
i where n ≥ 3 is an odd number, an < 0.
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Introduction

Mass conservation property∫
Ω
v(x , t) dx =

∫
Ω
v0(x) dx .

Lyapunov functional

E(v) =
1

2

∫
Ω
|∇v |2 dx −

∫
Ω
F (v) dx ,

where F (s) =

∫ s

0
f (τ) dτ .
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Introduction

BOUSSÄID, HILHORST and NGUYEN gave a version of
Lojasiewicz inequality and used it to prove that as t →∞

v(t) converges to a stationary solution ϕ in H1(Ω).

In other words, the omega-limit set of Problem (PDE) is a
singleton.
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Introduction

The stabilization and the existence of a global attractor in the case
that f is singular will be studied in the doctoral thesis of Samira
Boussaid
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Next, we consider a nonlocal differential equation on I := (−L, L)

(ODE )


ut = f (u)−

∫
−

I
f (u) in I × R+,

u(x , 0) = u0(x) x ∈ I ,

where L > 0, and ∫
−

I
f (u) :=

1

2L

∫
I
f (u(x)) dx .

Our aim is to study the omega-limit set

ω(u0) := {ϕ ∈ L1(I ) : ∃tn →∞ such that

u(tn)→ ϕ in L1(I ) as n→∞}.
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Introduction

Problem (ODE) has the following properties:

Mass conservation

Lyapunov functional

E (u) = −
∫

Ω
F (u) dx , where F (s) =

∫ s

0
f (τ) dτ.

Howerver, the technique used to study Problem (PDE) can
not be used for Problem (ODE). In the following, we give a
different method, which is based on studying the profile of
u(t) for each time t.
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The function f

f

s
s1

s2Os∗
s∗m

M

f ′(m) = f ′(M) = 0

We choose s1 (large enough) and s2 (small enough) such that

f (s2) < f (s) < f (s1) for all s ∈ (s1, s2).

s∗ and s∗ satisfy f (s∗) = f (M), f (s∗) = f (m).
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Hypothesis

We assume that the initial function satisfies the hypothesis:

(H) : u0 is piecewise monotone, continuous on [−L, L],

and lap(u0) is finite.

−L L

u0
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Lap-number

Lap-number

Let w be a piecewise monotone continuous function from I into R.
Then Ī can be divided into a finite number of non-overlapping
sub-intervals J1, . . . , Jm(∪mi=1Jm = Ī ), where w is monotone.

Such a division of Ī is not unique, but there exists a minimum
value m for which we can find a division {Ji} as above. This value
is called the lap-number of w and we shall denote it by lap(w).
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Heuristics

For every t > 0, we have

lap(u(t)) = lap(u(0)).

A comparison result for the nonlocal problem (ODE):

s1 ≤ u(0) ≤ s2 =⇒ s1 ≤ u(t) ≤ s2 for all t ≥ 0.

We prove that {u(t), t ≥ 0} is bounded in BV (I ) so that

{u(t), t ≥ 0} is relatively compact in L1(I ).
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First result

Theorem 1

Let ϕ ∈ ω(u0), then ϕ is a step function. More precisely,

ϕ = a−XA− + a0XA0 + a+XA+ ,

where A−,A0,A+ (which depend on ϕ, and may not exist) are
pairwise disjoint subsets of I such that

A− ∪ A0 ∪ A+ = I .

a−, a0, a+ satisfy

f (a−) = f (a0) = f (a+) = ηϕ(some constant)
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f (a−) = f (a0) = f (a+)
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First Idea

We have the following constraints

The constraints

The functional Lyapunov is constant on omega-limit set,∫
I
ϕ =

∫
I
u0,

f (a−) = f (a0) = f (a+) = ηϕ.

and we have six unknowns: a−, a0, a+,A−,A0,A+. Therefore, we
need more conditions to find these unknows.

The first idea is to prove that |A0| = 0, since a0 is an unstable
point.
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Counterexample

Let u0 be an odd function on Ī .

u0(x)

−L L

Assume that f (s) = s − s3. Then ω(u0) possesses a unique
element ϕ which is given by

ϕ(x) =


−1 if u0(x) < 0
0 if u0(x) = 0
1 if u0(x) > 0.

Consequently, if |u−1
0 ({0})| 6= 0, then |A0| 6= 0.
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Theorem 1

We shall use the notations for each t ≥ 0,

I−(t) := {x ∈ Ī , u(x , t) ≤ m},
I0(t) := {x ∈ Ī ,m < u(x , t) < M},
I+(t) := {x ∈ Ī , u(x , t) ≥ M}.

Key lemma

Assume that s∗ ≤ u0 ≤ s∗, then for each t ≥ 0 and for every
t ′ > t,

I−(t) ⊂ I−(t ′), I+(t) ⊂ I+(t ′) and I0(t) ⊃ I0(t ′).

On the other words, I−(t), I+(t) are monotonically expanding in t
and I0(t) is monotonically shrinking in t.
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Arguments for the key lemma

Arguments

For all t ′ > t ≥ 0 and x ∈ Ī , we have

if u(x , t) ≤ m then u(x , t ′) ≤ m,

if u(x , t) ≥ M then u(x , t ′) ≥ M.
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Theorem 1

Theorem

Assume that s∗ ≤ u0 ≤ s∗. There exists α such that for all
ϕ ∈ ω(u0) with ηϕ ∈ (f (m), f (M)).

A− = u−1
0 ((−∞, α)),A0 = u−1

0 ({α}),A+ = u−1
0 (α,+∞).

Corollary

Assume that u0 is strictly monotone on every connected
components of u−1

0 ((m,M)), then |A0| = 0. Moreover, ω(u0)
possesses a unique element.
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Theorem 2

We note that if u0(x) ∈ [s∗, s
∗] for all x ∈ Ī , then

∫
−

I
u0 ∈ [s∗, s

∗].

Now, we consider the case that∫
−

I
u0 6∈ [s∗, s

∗].

Theorem

Assume that ∫
−

I
u0 6∈ [s∗, s

∗];

then ω(u0) possesses a unique element ϕ. Moreover,

ϕ(x) ≡
∫
−

I
u0(y) dy .

Thanh Nam NGUYEN Omega limit set



Introduction
Hypothesis and heuristics

First result and idea of proof
Main result

Theorem 1
Theorem 2
Theorem 3

Theorem 3

Theorem

Assume that for all x ∈ Ī ,

either u0(x) ≤ m or u0(x) ≥ M.

Then ω(u0) possesses a unique element ϕ. Moreover,

ϕ(x) ≡
∫
−

I
u0(y) dy .
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Future work

Hilhorst, Matano, and Nguyen are planning to study a generation
of interface property for the equation

ut = uxx +
1

ε2

(
f (u)−

∫
−

I
f (u)

)
.
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Thank you for your attention!
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