
Recent news about modeling water-ice phase transitions

Joint work with E. Rocca and J. Sprekels

Pavel Krejč́ı
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Modeling hypotheses

(A1) We consider a bounded 3D container filled with water based
substance subject to freezing, assume small displacements inside, and
describe the process in Lagrangean coordinates.

The mass conservation is then equivalent to the condition of constant
mass density %0 > 0 .

(A2) The substance is compressible, and the speed of sound v0 may
depend on the phase.

(A3) The evolution is slow, and we neglect shear viscosity and inertia
effects.

(A4) We neglect shear stresses.

(A5) The thermal expansion coefficient β is constant, the heat
conductivity κ(χ) and specific heat capacity c0(χ) · c1(θ) may
depend on the absolute temperature θ > 0 and on the phase
χ ∈ [0, 1] , χ = 1 means liquid, χ = 0 means solid.

(A6) The specific volume of the solid phase V (0) is larger than the
specific volume of the liquid phase V (1) .
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State variables

θ ... absolute temperature

u ... displacement vector

ε ... strain tensor, ε = ∇su

χ ... liquid content, χ ∈ [0, 1]

State functions

σ ... stress tensor

e ... specific internal energy

s ... specific entropy

p ... pressure, σ = −p δ

p = −νεt : δ −λ(χ)(ε : δ− α(1− χ)) +β(θ − θc)

ν bulk viscosity
δ Kronecker tensor
λ(χ) = v2

0 (χ)/V (χ) bulk elasticity modulus
α = (V (0)− V (1))/V (1) phase expansion coefficient
β thermal expansion coefficient
θc freezing point at standard pressure
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Specific volume of water V (1) = 1/%0 10−3 m3/kg

Specific volume of ice V (0) 1.09 · 10−3 m3/kg

Speed of sound in water v0(1) 1.5 · 103 m/s

Speed of sound in ice v0(0) 3.12 · 103 m/s

Bulk elasticity modulus of water λ(1) = v0(1)2/V (1) 2.25 · 109 Pa = J/m3 = kg/m s2

Bulk elasticity modulus of ice λ(0) = v0(0)2/V (0) 9 · 109 Pa = J/m3 = kg/m s2

Bulk viscosity ν 8.9 · 10−4 Pa/s = kg/m s3

Specific heat capacity of water c0(1) 4.2 · 103 J/kg K = m2/s2K

Specific heat capacity of ice c0(0) 2.1 · 103 J/kg K = m2/s2K

Latent heat L0 3.34 · 105 J/kg = m2/s2

Thermal expansion coefficient β 4.5 · 105 J/m3K = kg/m s2K

Freezing point at standard pressure θc 273 K

Standard pressure p0 105 Pa = J/m3 = kg/m s2

Phase expansion coefficient α = (V (0) − V (1))/V (1) 0.09

Gravity constant g 9.8 m/s2

Table: Physical constants
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Balance equations

In a bounded connected C 1,1 container Ω ⊂ R3 subject to a constant
gravity force ggrav , we consider for times t ≥ 0 the system

−div σ = ggrav mechanical equilibrium

%0et + divq = σ : εt energy balance

%0st + div
q

θ
≥ 0 entropy balance

where q is the heat flux.

Specific free energy

f = e − θ s = c0(χ)f1(θ) +
λ(χ)

2%0

(
ε : δ− α(1− χ)

)2

− β

%0
(θ − θc)ε : δ + L0

(
χ
(
1− θ

θc

)
+ I (χ)

)
.

I ... indicator function of the interval [0, 1] , L0 ... latent heat.
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Balance equations II

The mechanical balance equation can be written in the form
p(x , t) = P(t)− %0gx3 with an unknown function P(t) of time only.

Put U = ε : δ = divu , L = %0L0, c = %0c0, γ = %0γ0 , and assume the
Fourier law q = −κ(χ)∇θ .
The full dynamical problem reads

c(χ)e1(θ)t − div (κ(χ)∇θ) = c ′(χ)χt(f1(θ)− e1(θ))

+ νU2
t − βθUt + γχ2

t − L
θ

θc
χt ,

νUt + λ(χ)(U − α(1− χ))− β(θ − θc) = %0gx3−P(t) ,

−γχt −
λ′(χ)

2
(U − α(1− χ))2 − αλ(χ)(U − α(1− χ))

∈ c ′(χ) (f1(θ)− f1(θc)) + L

(
1− θ

θc

)
+ ∂I (χ)

The function P(t) is determined from the boundary condition for u .
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Pavel Krejč́ı (Matematický ústav AV ČR) water and ice September 18, 2012 10 / 24



Balance equations II

The mechanical balance equation can be written in the form
p(x , t) = P(t)− %0gx3 with an unknown function P(t) of time only.

Put U = ε : δ = divu , L = %0L0, c = %0c0, γ = %0γ0 , and assume the
Fourier law q = −κ(χ)∇θ .
The full dynamical problem reads

c(χ)e1(θ)t − div (κ(χ)∇θ) = c ′(χ)χt(f1(θ)− e1(θ))

+ νU2
t − βθUt + γχ2

t − L
θ

θc
χt ,

νUt + λ(χ)(U − α(1− χ))− β(θ − θc) = %0gx3−P(t) ,

−γχt −
λ′(χ)

2
(U − α(1− χ))2 − αλ(χ)(U − α(1− χ))

∈ c ′(χ) (f1(θ)− f1(θc)) + L

(
1− θ

θc

)
+ ∂I (χ)

The function P(t) is determined from the boundary condition for u .
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Elastic boundary
Assume that the normal displacement on the boundary is proportional to
the difference between the inner and outer pressure, that is,
p(x , t)− p0(t) = k(x)u · n on ∂Ω.

Hence,∫
Ω

U(x , t) dx =

∫
∂Ω

u · n ds(x) =

∫
∂Ω

1

k(x)
(P(t)− %0gx3 − p0(t)) ds(x).

We obtain

P = KΓ

∫
Ω

U dx + P̃,
1

KΓ
=

∫
∂Ω

ds(x)

k(x)
, P̃ = p0 + KΓ

∫
∂Ω

%0gx3

k(x)
ds(x),

and the mechanical equilibrium equation has the form

νUt + λ(χ)(U − α(1− χ))− β(θ − θc) = %0gx3−KΓ

∫
Ω

U dx − P̃(t).
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Elastoplastic boundary I
The response of the boundary to pressure changes is assumed to be
elastoplastic according to the Prager hardening model. We assume that
the normal displacement u · n is decomposed into the sum u · n = ue + up

of an elastic component ue and plastic component up .

Let also the
pressure difference P0(x , t) = P(t)− %0gx3 − p0(t) be decomposed into a
sum P0(x , t) = ph(x , t) + pb(x , t) of a kinematic hardening component
ph and a backstress pb . The boundary condition for u then reads

P0(x , t) = k(x)ue(x , t) ,

ph(x , t) = b(x)up(x , t) ,

|pb(x , t)| ≤ r(x) a.e. ,
∂up

∂t
(pb(x , t)− y) ≥ 0 a.e. , ∀y ∈ [−r(x), r(x)]

with given positive measurable functions k(x) (elasticity of the
boundary), b(x) (hardening coefficient), and r(x) (yield stress).
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An analogical model

�P0, u
e

ph, up

pb, up

The phase diagram

�0 P0r(x)
−r(x)

ph
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Elastoplastic boundary II
The variational inequality

∂ph(x , t)

∂t
(P0(x , t)− ph(x , t)− y) ≥ 0 a.e. ∀y ∈ [−r(x), r(x)] ,

with initial condition

ph(x , 0) = min{P0(x , 0) + r(x),max{0,P0(x , 0)− r(x)}}

corresponding to the initially undeformed state, defines the so-called play
operator

ph(x , t) = pr(x)[P0](x , t)

with threshold r(x) .

Hence,

u · n =
1

k(x)
P0(x , t) +

1

b(x)
pr(x)[P0](x , t) .
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Elastoplastic boundary III
The Gauss formula yields again

UΩ(t) :=

∫
Ω

divu dx =

∫
∂Ω

( 1

k(x)
P0(x , t) +

1

b(x)
pr(x)[P0](x , t)

)
ds(x) ,

The mapping

F [P](t) :=

∫
∂Ω

( 1

k(x)
P0(x , t) +

1

b(x)
pr(x)[P0](x , t)

)
ds(x)

is the Prandtl-Ishlinskii hysteresis operator, and the mechanical
equilibrium reads

νUt = −λ(U − α(1− χ)) + β(θ − θc) + %0gx3−F−1[UΩ] .

Note that the inverse F−1 is also a Prandtl-Ishlinskii operator.
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The Prandtl-Ishlinskii operator

�

��0 UΩU∗

P

A diagram of the inverse Prandtl-Ishlinskii operator F−1 .

When the pressure P increases from zero to some maximal value and then
decreases to zero again (the red part of the diagram), a remanent volume
deformation U∗ persists in mechanical equilibrium.
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Boundary condition for temperature

In the rigid or elastic case, no energy is dissipated on the boundary and we
choose the boundary condition for θ as

κ(χ)∇θ · n + h(x)(θ − θΓ(x , t)) = 0

with given external temperature θΓ(x , t) and heat transfer coefficient
h(x) > 0 .

If the boundary is elastoplastic, then the plastic dissipation appears as a
boundary heat source

κ(χ)∇θ · n + h(x)(θ − θΓ) =
r(x)

b(x)

∣∣pr(x)[P0]t
∣∣

in the energy balance.
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Mathematical results for the full model

Derivation of the model, equilibria: PK + ER + JS, Wilmański
Anniversary Volume, 2010.

We have shown that in “standard” containers (height less than a few
kilometers, and a reasonable topological structure), there exists a unique
equilibrium: Pure water for high temperatures, ice for low temperatures, or
a sharp horizontal interface between ice (above) and water (below) for
intermediate outer temperatures.

Global existence and uniqueness for the elastic case under further
assumptions: PK + ER, Frémond Anniversary Volume, 2013 (?)

Main hypothesis: limθ→∞
c1(θ)

θ = ∞ .

Recall:

e1(θ) =

∫ θ

0
c1(τ) dτ , s1(θ) =

∫ θ

0

c1(τ)

τ
dτ , f1(θ) = e1(θ)− θs1(θ) .
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Anniversary Volume, 2010.

We have shown that in “standard” containers (height less than a few
kilometers, and a reasonable topological structure), there exists a unique
equilibrium: Pure water for high temperatures, ice for low temperatures, or
a sharp horizontal interface between ice (above) and water (below) for
intermediate outer temperatures.

Global existence and uniqueness for the elastic case under further
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Global solutions
For given initial conditions θ0,U0, χ0 ∈ L∞(Ω) , θ0 ∈ H1(Ω) ,
θ0(x) ≥ θ∗ > 0 , χ0(x) ∈ [0, 1] a.e., we solve the system:

c(χ)e1(θ)t − div (κ(χ)∇θ) = c ′(χ)χt(f1(θ)− e1(θ))

+ νU2
t − βθUt + γχ2

t − L
θ

θc
χt ,

νUt + λ(χ)(U − α(1− χ))− β(θ − θc) = %0gx3 − KΓ

∫
Ω

U dx − P̃(t) ,

−γχt −
λ′(χ)

2
(U − α(1− χ))2 − αλ(χ)(U − α(1− χ))

∈ c ′(χ) (f1(θ)− f1(θc)) + L

(
1− θ

θc

)
+ ∂I (χ) .
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Global solutions II
The main difficulty comes from the quadratic term in the phase evolution
equation.

For a cut-off system, existence and uniqueness on every time interval
(0,T ) are obtained for a time semidiscrete system;

Energy + entropy estimates enable us to let the discretization
parameter tend to zero and obtain a solution to the cut-off system;

Uniform bounds independent of the cut-off parameter follow from
Moser-Alikakos iterations;

Uniqueness of the solution is obtained if the heat conductivity κ is
constant.
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Cut-off

We introduce, for θ ∈ R , R > 0 , the functions

QR(θ) = min{θ+,B(R)}, B(R) = R1/2(min{e1(R), |f1(R)|})1/4,

cR
1 (θ) = c1(QR(θ)),

eR
1 (θ) =

∫ θ

0
cR
1 (τ) dτ,

sR
1 (θ) =

∫ θ

0

cR
1 (τ)

QR(τ)
dτ,

f R
1 (θ) = eR

1 (θ)− QR(θ)sR
1 (θ) =

∫ θ

0
cR
1 (τ)

(
1− QR(θ)

QR(τ)

)
dτ,

Main property:

lim
R→∞

e1(R)

B2(R)
= lim

R→∞

B(R)

R
= ∞.
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Pavel Krejč́ı (Matematický ústav AV ČR) water and ice September 18, 2012 21 / 24



Energy + entropy bound

For the “extended” energy %0(e − θ̄Γs) , with some fixed constant
temperature θ̄Γ , we have the following balance equation:∫

Ω

(
c(χ)(e1(θ)− f1(θc)) +

λ(χ)

2
(U − α(1− χ))2

)
(x , t) dx

+

∫
Ω

(βθcU + Lχ− %0gx3U) (x , t) dx

+
KΓ

2

(
UΩ(t) + P0(t) +

%0g ζΓ

KΓ

)2

+ θ̄Γ

∫ t

0

∫
Ω

(
κ(χ)|∇θ|2

θ2
+

γ(θ)

θ
χ2

t +
ν

θ
U2

t

)
(x , ξ) dx dξ

+

∫ t

0

∫
∂Ω

h(x)

θ
(θ − θΓ(x , ξ))(θ − θ̄Γ) dσ(x) dξ

= E 0 + E 0
Γ − θ̄ΓS

0 + θ̄Γ

∫
Ω

(
c(χ)s1(θ) +

L

θc
χ + βU

)
(x , t) dx

+

∫ t

0
KΓ(P0)t(ξ)

(
UΩ(ξ) + P0(ξ) +

%0gζΓ

KΓ

)
dξ .
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Moser-Alikakos iterations

The truncated energy balance

c(χ)eR
1 (θ)t − div (κ(χ)∇θ) = c ′(χ)χt(f

R
1 (θ)− eR

1 (θ))

+ νU2
t − βQR(θ)Ut + γχ2

t − L
QR(θ)

θc
χt

is tested by vp , letting p →∞ , with a clever choice of v ,

v = (QR(θ)− R)+ .

The right hand side can be rewritten as a sum of one bounded term with a
product of two terms of opposite signs provided R is sufficiently large.
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Pavel Krejč́ı (Matematický ústav AV ČR) water and ice September 18, 2012 23 / 24



Moser-Alikakos iterations

The truncated energy balance

c(χ)eR
1 (θ)t − div (κ(χ)∇θ) = c ′(χ)χt(f

R
1 (θ)− eR

1 (θ))

+ νU2
t − βQR(θ)Ut + γχ2

t − L
QR(θ)

θc
χt

is tested by vp , letting p →∞ , with a clever choice of v ,

v = (QR(θ)− R)+ .

The right hand side can be rewritten as a sum of one bounded term with a
product of two terms of opposite signs provided R is sufficiently large.
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Conclusions

A simple 3D model is proposed for mechanical interaction between a
substance undergoing phase transition and the boundary of the
container;

The pressure due to freezing may become by three orders of
magnitude higher than the standard pressure;

Although the gravity force in small containers (< 1m) is by four
orders of magnitude weaker than pressure forces, it has a substantial
qualitative influence on the long time behavior by selecting a unique
equilibrium with solid on the top and liquid on the bottom;

Elastoplastic response of the container is manifested by the
occurrence of hysteresis operators in the mechanical balance equation,
and as a boundary heat source in the energy balance equation.

The solutions to the full evolution system can be constructed by time
semidiscretization, cut-off and Moser-Alikakos iterations.

The long time asymptotics of the trajectories has been studied in
special cases only.
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