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Introduction

Elastoplastic materials subject to cyclic loading exhibit increasing
fatigue, which is manifested by
material softening, heat release and material failure in finite
time.
In the uniaxial processes there is a qualitative and quantitative
relationship between

accumulated fatigue (by the rainflow algorithm, which counts
closed hysteresis loops in the loading history and with each
closed loop associates a number depending on its amplitude –
the contribution of the loop to the total damage)

dissipated energy (the number associated with a closed loop is
its area).
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Introduction

In multiaxial loading processes

the concept of closed loop is meaningless

reliable counterpart of the rainflow algorithm ?

the notion of energy dissipation is a purely thermodynamic
one – independent of the experimental setting

We propose a thermodynamic model for material fatigue
accumulation based on the hypothesis that there exists a
qualitative and quantitative relation between accumulated fatigue
and dissipated energy.
We demonstrate our model on the example of a transversally
oscillating elastoplastic beam.
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Constitutive laws of elastoplasticity

A classical hysteresis-type model for one-dimensional
elastoplasticity by L. Prandtl and A. Yu. Ishlinskii - the relation
between strain ε and stress σ given by the formula

σ = P[ε](t) =

∫ ∞
0

sr [ε](t)ϕ(r) dr (1)

for ε ∈W 1,1(0,T ; R). Here, ϕ(r) > 0 is a weight function, and
sr [ε](t) represents the elastic-ideally plastic element or stop
operator with the threshold r > 0.
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The stop operator

Given a parameter r > 0, a function ε : [0,T ]→ R, and an initial
condition σ0 ∈ [−r , r ], we look for functions σ, ξ : [0,T ]→ R such
that σ(0) = σ0, and

σ(t) + ξ(t) = ε(t)

|σ(t)| ≤ r

ξ̇(t) (σ(t)− σ̃) ≥ 0 ∀σ̃ ∈ [−r , r ]�
σ

ε

r

−r

For every ε ∈W 1,1(0,T ) and σ0 ∈ [−r , r ], the problem has a
unique solution σ ∈W 1,1(0,T ). The solution mapping

sr : [−r , r ]×W 1,1(0,T )→W 1,1(0,T ) , σ = sr [σ0, ε] ,

is called the stop (or elastoplastic element).
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The stop operator

Given a parameter r > 0, a function ε : [0,T ]→ R, and an initial
condition σ0 ∈ [−r , r ], we look for functions σ, ξ : [0,T ]→ R such
that σ(0) = σ0, and
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For every ε ∈W 1,1(0,T ) and σ0 ∈ [−r , r ], the problem has a
unique solution σ ∈W 1,1(0,T ). The solution mapping is Lipschitz
continuous and admits Lipschitz continuous extension to
sr : [−r , r ]× C [0,T ]→ C [0,T ].
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Prandtl-Ishlinskii energy balance

For a single stop, the energy balance reads

ε̇ sr [ε]− d
dt

(1

2
s2
r [ε]
)

= r
∣∣∣ d
dt

(ε− sr [ε])
∣∣∣.

For the Prandtl-Ishlinskii operator

P[ε] =

∫ ∞
0

ϕ(r) sr [ε]dr

we define the potential energy operator

V [ε] =
1

2

∫ ∞
0

ϕ(r) s2
r [ε]dr

and the dissipation operator

D[ε] =

∫ ∞
0

rϕ(r) (ε− sr [ε])dr .

Prandtl-Ishlinskii energy balance

ε̇P[ε]− V [ε]t = |D[ε]t |.
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Constitute laws of elastoplasticity - continuation

Kinematic hardening:

σ = Bε + P[ε] (2)

with B positive.
The momentum balance equation:

%utt − div σ = f ,

in Ω× (0,T ) and with suitable initial and boundary conditions.
Here u is the displacement, ε = ux , f is a given volume force and
% is the mass density.
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First idea of the model

Prandtl- Ishlinskii operators are easily understood and rather
intuitive, but their use in physical and engineering literature is still
nonstandard.
Disadvanteges:

The density function ϕ is a priori unknown and must be
identified

other 3D plasticity models like von Mises or Tresca models are
available.

In P. Krejč́ı, J. Sprekels: Elastic-ideally plastic beams and
Prandtl-Ishlinskii hysteresis operators, Math. Meth. Appl. Sci. 30
(2007), 2371–2393 they showed that in the modeling of the
one-dimensional transversal vibrations of an elastoplastic beam the
tree-dimensional von Mises model leads to a scalar
Prandtl-Ishlinskii model whose density function is a priori given.
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The model

is based on the idea that the Euler-Bernoulli dimensional reduction
applied to transversal oscillations of an elastoplastic beam leads, as
a result of averaging over the thickness of the beam, to a
Prandtl-Ishlinskii constitutive law:

σ = P[ε](t) =

∫ ∞
0

sr [ε](t)ϕ(r) dr

for ε ∈W 1,1(0,T ; R) and to the momentum balance equation:
(after rescaling all constants to 1)

wtt − wxxtt + σxx = f ,

where w is the transversal displacement, ε = wxx .
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PDE system

The resulting prototypical system of partial differential equations is
of the form

wtt − wxxtt + P[wxx ]xx = f

with boundary conditions

w(0, t) = w(L, t) = P[wxx ](0, t) = P[wxx ](L, t) = 0 .

Prandtl-Ishlinskii operators are not differentiable in general; hence,
for the existence and uniqueness analysis, we rewrite the PDE as a
system

ut = P[wxx ]

wt − wxxt = −uxx + g

with boundary conditions
u(0, t) = w(0, t) = u(L, t) = w(L, t) = 0.
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The fatigue model

Our basic modeling assumption consists in replacing the
elastoplastic constitutive law (2) by

σ = B(m)ε+

∫ ∞
0

sr [ε](t)ϕ(r) dr (3)

where

m is the fatigue parameter
and the momentum balance equation becomes

wtt − wxxtt + [B(m(wxx))wxx + P[wxx ]]xx = f .
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The fatique equation

We complete the system by an evolution equation for the fatigue
parameter m:( 1

C
+

1

2
B ′(m)ε2

)
mt =

∫ ∞
0
∂t(ε− sr [ε])sr [ε]ϕ(r) dr

= |D[ε]t |,

assuming that the rate of fatigue mt is proportional to the
dissipation rate D

D = −B ′(m)ε2mt + |D[ε]t |

with a proportionality factor C .
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The associated system

ut = B(m(wxx))wxx + P [wxx ] in QT ,

wt − wxxt = −uxx + g(x , t) in QT ,

u(1, t) = ux(1, t) = 0 0 ≤ t ≤ T ,

w(0, t) = wx(0, t) = 0 0 ≤ t ≤ T ,

u(x , 0) = w1(x) 0 ≤ x ≤ 1 ,

w(x , 0) = w0(x) 0 ≤ x ≤ 1 ,

where we put

u(x , t) = w1(x) +

∫ t

0
[B(m(wxx))wxx + P [wxx ]](x , s) ds ,

g(x , t) = w1(x) +

∫ t

0
f (x , s) ds

is well posed on some a priori unknown time interval [0,T ∗].
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The fatigue model with temperature

Our basic modeling assumption consists in replacing the
elastoplastic constitutive law (5) by

σ = B(m)ε +

∫ ∞
0

sr [ε](t)ϕ(r) dr−β(θ − θc) + νεt , (4)

where

m is the fatigue parameter, θ is the absolute temperature,
β > 0 is the thermal dilation coefficient, θc > 0 is a fixed reference
temperature and ν a viscosity parameter.
The momentum balance equation becomes

wtt − wxxtt + [B(m(wxx))wxx + P[wxx ]]xx −βθxx + νwxxxxt = f .
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Thermodynamics

With the constitutive law (4) we associate the specific entropy

S[θ, ε] = cV log(θ/θc) + βε

and the specific internal energy

U [θ, ε] = cV θ +
1

2
B(m)ε2 +

1

2

∫ ∞
0

ϕ(r)s2
r [ε](t)dr +βθcε .

We have the energy balance

Ut + qx = σεt ,

and again we assume that the fatigue rate mt is proportional to
the dissipation rate D with a proportionality factor C (θ):( 1

C (θ)
+

1

2
B ′(m)ε2

)
mt =

∫ ∞
0
∂t(ε− sr [ε])sr [ε]ϕ(r) dr

= |D[ε]t |
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Thermodynamics

The second Principle of Thermodynamics (Claudius-Duhem
inequality) states for the entropy production ψ

ψ := S[θ, ε]t +
(q

θ

)
x
≥ 0 .

We rewrite it in the form

θψ := σεt + θS[θ, ε]t − U [θ, ε]t −
qθx
θ
≥ 0 ,

use the Fourier law q = −kθx and get that the dissipation rate

D = −B ′(m)ε2mt + |D[ε]t |

has to be nonnegative. The fatigue accumulation rate mt should
be nonnegative, so we need to assume that B ′(m) is negative.
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Oscillating elastoplastic beam

For the oscillating elastoplastic beam problem

ut = B(m)wxx + P[wxx ] + wxxt−(θ − θc) ,

wt − wxxt = −uxx + g

θt = θxx −
1

2
B ′(m)w2

xxmt + |D[wxx ]t |+ w2
xxt − θwxxt ,

mt =

∫ 1

0
λ(x − y)

(
−1

2
B ′(m)w2

xxmt + |D[wxx ]t |
)

(y , t)dy

with a spatially regularized fatigue equation, and with zero initial
and boundary conditions for w and u, and homogeneous Neumann
boundary conditions for θ, we find and efficient lower bound for
the existence and uniqueness time T ∗.

Singularity occurs when mt ↗ +∞.

Extension to temperature and fatigue dependent plasticity is
straightforward.
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Jana Kopfová Non-isothermal cyclic fatigue in an oscillating elastoplatic material with phase transition



Oscillating elastoplastic beam

For the oscillating elastoplastic beam problem

ut = B(m)wxx + P[wxx ] + wxxt−(θ − θc) ,

wt − wxxt = −uxx + g

θt = θxx −
1

2
B ′(m)w2
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xxt − θwxxt ,

mt =

∫ 1

0
λ(x − y)

(
−1

2
B ′(m)w2
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with a spatially regularized fatigue equation, and with zero initial
and boundary conditions for w and u, and homogeneous Neumann
boundary conditions for θ, we find and efficient lower bound for
the existence and uniqueness time T ∗.

Singularity occurs when mt ↗ +∞.

Extension to temperature and fatigue dependent plasticity is
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Jana Kopfová Non-isothermal cyclic fatigue in an oscillating elastoplatic material with phase transition



Oscillating elastoplastic beam

For the oscillating elastoplastic beam problem

ut = B(m)wxx + P[wxx ] + wxxt−(θ − θc) ,

wt − wxxt = −uxx + g

θt = θxx −
1

2
B ′(m)w2

xxmt + |D[wxx ]t |+ w2
xxt − θwxxt ,

mt =

∫ 1

0
λ(x − y)

(
−1

2
B ′(m)w2

xxmt + |D[wxx ]t |
)

(y , t)dy

with a spatially regularized fatigue equation, and with zero initial
and boundary conditions for w and u, and homogeneous Neumann
boundary conditions for θ, we find and efficient lower bound for
the existence and uniqueness time T ∗.

Singularity occurs when mt ↗ +∞.

Extension to temperature and fatigue dependent plasticity is
straightforward.
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Hypotheses

(i) P is a Prandtl-Ishlinskii operator and D is its associated
dissipation operator. We assume that its distribution function
ϕ ∈ L1(0,∞) is such that ϕ ≥ 0 a.e., and

∫∞
0 rϕ(r)dr <∞.

(ii) B : [0,∞)→ (0,∞) is a C 2 function, B ′(0) = 0,
−1 ≤ B ′′(m) ≤ 0 for all m > 0.

(iii) λ : R→ [0,∞) is a C 1 function with compact support,
L := max{λ(x) + |λ′(x)| , x ∈ R}.

(iv) g ∈ L2(ΩT ) is a given function for some fixed T > 0, such
that gtt , gxx ∈ L2(ΩT ).

(v) θ0 ∈ L∞(0, 1) is such that θ0 ≥ θ∗ > 0, θ0
xx ∈ L2(0, 1).

(vi) θc is a given positive constant.
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Method of proof

We discretize the problem, truncate the term with dissipation

We get a system of ODEs with locally Lipschitz continuous
right hand sides, and one integrodifferential equation

We first check that the system admits a local solution on a
time interval [0,Tn)

We then establish a lower bound for the existence time
0 < TR ≤ Tn independent of n

On the interval [0,TR), we derive estimates for the
approximate solutions which enable us to show that the
truncation never becomes active if R is sufficiently large, and
can be removed

We select a convergent subsequence indexed by n and pass to
the limit as n→∞ to obtain the solution
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Energy identity

d
dt

∫
Ω

(
θ +

1

2

(
w2

t + w2
xt + B(m)w2

xx

)
+ V [wxx ] + θcwxx

)
dx

=

∫
Ω

gtwtdx .

The solution is constructed by passing to the limit in a
space-semidiscrete scheme. Higher order estimates are obtained by
successive testing by higher and higher order terms and imply the
following regularity:

wxxxt ,wxxtt , θt , θxx , utt , uxxt ∈ L2(0,T ∗; L2(Ω)).
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Model with temperature and phase transition

The idea of this model is to consider also decreasing fatigue. Our
present model takes into account the possibility to repair a
partially damaged material by the effects of partial melting, so that
fatigue can also decrease in time.
The constitute law will be the same as before

σ = B(m)ε +

∫ ∞
0

sr [ε](t)ϕ(m, r) dr−β(θ − θc) + νεt , (5)

and also the momentum balance equation stayes the same:

wtt − wxxtt + [B(m(wxx))wxx + P[wxx ]]xx = f .
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Thermodynamics

With the constitutive law (5) we associate the specific entropy

S[θ, ε, χ] = cV log(θ/θc) + βε+
L

θc
χ

and the specific internal energy

U [θ, ε, χ] = cV θ +
1

2
B(m)ε2 +

1

2

∫ ∞
0

ϕ(m, r)s2
r [ε](t)dr +βθcε

+Lχ+ I[0,1](χ),

where L is the constant latent heat, χ is the space and time
dependent phase variable and IA is the indicator function of the set
A. We have the energy balance

Ut + qx = σεt ,

and the second Principle of Thermodynamics (Claudius-Duhem
inequality) for the entropy production ψ

ψ := S[θ, ε]t +
(q

θ

)
x
≥ 0 .
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Thermodynamics

We assume as before that B ′(m) is negative and we have an
equation for the phase variable χ:

−γχt ∈ ∂I[0,1](χ)− L

θc
(θ − θc),

and the evolution equation for the fatigue rate we assume in the
form

1

C (θ)
mt +

1

2
B ′(m)ε2m−t = −h(m)χt |χt |+

∫ ∞
0
∂t(ε− sr [ε])sr [ε]ϕ(r) dr .
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The system

For the problem

ut = B(m)wxx + P[wxx ] + wxxt−(θ − θc) ,

wt − wxxt = −uxx + g ,

θt = θxx −
1

2
B ′(m)w2

xxmt + |D[wxx ]t |+ w2
xxt − θwxxt ,−Lχt

−1

2
mt

∫ ∞
0

ϕ(m, r)sr [ε]dr ,

−γχt ∈ ∂I[0,1](χ)− L

θc
(θ − θc),

1

C (θ)
mt +

1

2
B ′(m)ε2m−t = −h(m)χt |χt |+

∫ ∞
0
∂t(ε− sr [ε])sr [ε]ϕ(r) dr .

with zero initial and boundary conditions for w and u, and
homogeneous Neumann boundary conditions for θ, we expect
existence of a global solution.
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