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The biological context

We consider a cross-diffusion system which describes a simplified
model for contact inhibition of growth of two cell populations. In one
space dimension it is known that the solutions satisfy a segregation
property: if two populations initially have disjoint habitats, this property
remains true at all later times.

Today we prove this property in higher space dimension.

We study associated travelling wave solutions, which can be
segregated or overlapping.
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Proliferation of cells
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Proliferation of cancer cells
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Contact inhibition
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The model equations

This tumor growth model has been proposed by Chaplain, Graziano
and Preziosi

{
nt = div(n∇V (N)) + Gn(N)n in RN × R+

at = div(a∇V (N)) + Ga(N)a in RN × R+

n: density of normal cells;
a: density of abnormal cells;
N: total density of cells;
V: monotone increasing function;
Gn: growth rate of normal cells;
Ga: growth rate of abnormal cells.
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The model studied by Bertsch, Dal Passo and Mimura

Bertsch, Dal Passo and Mimura have proved the existence of a
segregated solution of the system{

ut = div(u∇χ(u + v)) + u(1− u − αv)

vt = D div(v∇χ(u + v)) + γv(1− βu − v/k)

u: density of normal cells;
v: density of abnormal cells;
the function χ is a monotone increasing function;
D, α, β, γ are positive constants.

in the one dimensional case. The growth terms are Lotka-Volterra
competition terms.
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The Bertsch, Dal Passo and Mimura result

More precisely, Bertsch, Dal Passo and Mimura have proved the
existence of a segregated solution of the system

ut = (u(χ(u + v))x )x + u(1− u − αv) − L < x < L, t > 0
vt = D (v(χ(u + v))x )x + γv(1− βu − v/k) − L < x < L, t > 0
u(χ(u + v))x ) = v(χ(u + v))x = 0 x = −L,L, t > 0
u(x ,0) = u0(x), v(x ,0) = v0(x),−L < x < L.

The habitats of the two cell populations remain disjoint. Mathematically
we express this property as follows
If u0v0 = 0, then u(t)v(t) = 0 for all t > 0.

This system has the form of a nonlinear cross-diffusion system.
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The nonlinear cross-diffusion system

We suppose that χ = Id{
ut = 1

24u2 + u4v +∇u.∇v + u(1− u − αv),

vt = D
24v2 + D v4u + D ∇u.∇v + γv(1− βu − v/k),

so that it is a hard system. This motivated Bertsch et al to look for
other unknown functions. One of them is quite natural. We set

w = u + v , w0 := u0 + v0

and suppose that

u0 ≥ 0, v0 ≥ 0,w0 ≥ B0 > 0.

Maximum principle type arguments successively tell that

u(t) ≥ 0, v(t) ≥ 0,w(t) ≥ B1 > 0 for all t > 0.
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Regularity considerations

The equation for w has the form of a nonlinear diffusion equation

wt = div(w∇w) + wF(u, v ,w).

This equation is uniformly parabolic since w is bounded away from
zero, and therefore w is smooth. But now, suppose that u and v have
disjoint supports. Then both u and v have to be discontinuous across
the interface between their supports.

We are searching for discontinuous solutions u and v of the original
system. This makes our problem very hard.
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A typical (u,v,w) profile
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Disjoint supports
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Overlapping supports
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New set of unknown functions

We set
w := u + v , r :=

u
u + v

and remark that in the case of disjoint supports, r can only take the
values 0 and 1, and that

uv = 0 is equivalent to r(1− r) = 0.

The system for w and r is given by
wt = div(w∇w) + wF (r ,w) in RN × R+

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

w(x ,0) = w0(x) and r(x ,0) = r0(x) for x ∈ RN ,

where

F (r ,w) := r(1− rw − α(1− r)w) + γ(1− r)(1− βrw − (1− r)w/k)

G(r ,w) := (1− rw − α(1− r)w)− γ(1− βrw − (1− r)w/k).
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Regularity again

We deal with a coupled system with a parabolic equation for w coupled
to a transport equation for r . Now what can we expect for regularity?
First consider the equation for w ; applying again the maximum
principle, we will have that w is bounded from below by a positive
constant whereas 0 ≤ r ≤ 1. Therefore we can apply a very handy
result of the book of Lieberman; this result is based upon regularity
considerations such as in the elliptic articles of Agmon, Douglis, and
Nirenberg. We obtain that w is bounded in

W 2,1
p (BL × (0,T )) and in C1+µ,(1+µ)/2(BL × [0,T ]),

for all positive constants L, where BL ⊂ RN is the ball of radius L. In
particular

∇w ∈ Cµ,µ/2(BL × [0,T ]).
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The function r

We recall that it satisfies the first order hyperbolic equation

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

so that in particular
0 ≤ r ≤ 1.

A possibility is to first solve the equations for the characteristics{
Xt (y , t) = −∇w(X (y , t), t) for t > 0
X (y ,0) = y for y in RN

and then solve for R(y , t) = r(X (y , t), t) along the characteristics:{
Rt = R(1− R)G(R,w(X (y , t), t)) in RN × R+,

R(·,0) = r0 in RN .
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A regularity problem

However, since ∇w is not Lipschitz continuous, but only Hölder
continuous, the characteristics are not well-defined in the classical
sense. This is why we work with a recent concept of characteristics
developed by DiPerna and Lions, De Lellis and Ambrosio.

More precisely, it permits to work with a velocity field b = −∇w which
only possess the "Sobolev regularity", namely

b ∈ L∞loc(RN × [0,∞)) ∩ L1
loc([0,∞); W 1,1

loc (RN)).

ADMAT2012 (September 20th 2012) On a tumour-growth model 17 / 46



The main concepts of the survey paper by De Lellis

The starting point is a velocity field b with the Sobolev regularity,
namely

b ∈ L∞loc(RN × [0,∞)) ∩ L1
loc([0,∞); W 1,1

loc (RN)).

We have here b = −∇w . De Lellis also introduces such concepts as
regular Lagrangian flow;
a nearly incompressible vector field;
a concept of renormalized solutions, which satisfy the chain rule
even though they are not very smooth weak solutions.
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Regularization method

Our approach is to work with smooth solutions, which are easy to
handle, and to study their limit as the regularization parameter n tends
to infinity.
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Existence of smooth overlapping solutions

Theorem. Let Bn ⊂ RN be a ball of radius Rn, α, β, γ and k positive
constants, and u0, v0 ∈ C3(Ω) such that u0, v0 ≥ 0 and
u0 + v0 ≥ B0 > 0 in Ω. Then there exists a pair of smooth nonnegative
solutions (u, v), with u, v ∈ C2,1(Ω× [0,T ]), of the problem

(Pn)


ut = div(u∇(u + v)) + u(1− u − αv) in Bn × R+

vt = div(v∇(u + v)) + γv(1− βu − v/k) in Bn × R+

u
∂(u + v)

∂ν
= v

∂(u + v)

∂ν
= 0 on ∂Bn × R+

u(·,0) = u0, v(·,0) = v0 in Bn,

where ν(x) denotes the outward normal at x ∈ Bn.
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A remark

Note that u and v can be smooth since they are overlapping, first at
the time t = 0 and then at all later times.
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The corresponding approximating problem in w and r

We recall that w = u + v and that r = u/(u + v).The problem then
reads as

(Pn)


wt = div(w∇w) + wF (r ,w) in Bn × (0,T ]

rt = ∇w · ∇r + r(1− r)G(r ,w) in Bn × (0,T ]

w
∂w
∂ν

= 0 on ∂Bn × (0,T ]

w(·,0) = w0 := u0 + v0, r(·,0) = r0 := u0/w0 in Bn.
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Existence of solution for the approximate problems

We define

A = {r ∈ Cµ,µ/2(Bn × [0,T ]), 0 ≤ r ≤ 1}

For given r ∈ Cµ,µ/2(Bn × [0,T ]), let w ∈ C2+µ,1+µ/2(Bn × [0,T ]) be
the unique solution of

wt = div(w∇w) + wF (r ,w) in Bn × (0,T ]

w
∂w
∂ν

= 0 on ∂Bn × (0,T ]

w(·,0) = w0 := u0 + v0 in Bn.

An priori estimate of the form 0 < B1 ≤ w ≤ B2 follows from the
maximum principle.
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The equation on the characteristics

For given w , we consider the ODE for the characteristics{
Xt (y , t) = −∇w(X (y , t), t) for 0 < t ≤ T
X (y ,0) = y .

Then X is continuously differentiable and one to one from Bn × [0,T ]
into itself.
On the characteristics the transport equation reduces to the ODE{

Rt = R(1− R)G(R,w(X (y , t), t)) in Bn × (0,T ]

R(·,0) = r0 in Bn.

The bounds on w(x , t) and X (y , t) imply that R ∈ C1,1(Bn × [0,T ]).
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Existence of a smooth solution

We transform R(y , t) to the original variables:

r̃(x , t) := R(X−1(x , t), t) for (x , t) ∈ Bn × [0,T ].

and we find that r̃ ∈ C1,1(Bn × [0,T ]).
We finally apply Schauder’s fixed point theorem to the map
r 7→ w 7→ r̃ =: T (r) from the closed convex set A into itself and
conclude that there exists a solution (wn, rn) of Problem (Pn).
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Existence of solution of the original system

We then return to the system
wt = div(w∇w) + wF (r ,w) in RN × R+

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

w(x ,0) = w0(x) and r(x ,0) = r0(x) for x ∈ RN ,

and would like to prove that it possesses a solution. The main idea is
to find a (weak) solution (w , r) as a limit of a sequence of solutions
(wn, rn) of the problems (Pn).
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Technical difficulties

We have already seen that {wn} is bounded in W 2,1
p (Bn × (0,T )).

Therefore there exist a function w ∈W 2,1
p,loc(RN × [0,∞)) and a

subsequence of {wn} which we denote again by {wn} such that

wn → w in C1+µ,(1+µ)/2
loc (RN × [0,∞)) as n→∞.

On the other hand, we only know that

0 ≤ rn ≤ 1

but nothing more; thus there exist r ∈ [0,1] and a subsequence of {rn}
which we denote again by {rn} such that

rn ⇀ r in L2
loc(RN × [0,∞)) as n→∞.

At this point, we also know that there exists a bounded function χ such
that

F (rn,wn) ⇀ χ as n→∞,
but we do not know yet that χ = F (r ,w).
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Strong convergence of rn to r

It follows from a result of De Lellis that

Xn → X in L1
loc(RN × [0,∞)) as n→∞.

Defining
Rn(y , t) = rn(Xn(y , t), t),

we prove that
Rn → R in L1

loc(RN × [0,∞)),

and also deduce that

rn → r in L1
loc(RN × [0,∞)).
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Segregation property

We consider again the equation for R(y , t) = r(X (y , t), t). We recall
that r satisfies

rt = ∇w · ∇r + r(1− r)G(r ,w) in RN × R+

so that R is a solution of the problem{
Rt = R(1− R)G(R,w(X (y , t), t)) in RN × R+

R(y ,0) = r0(y) for y ∈ RN .

In turn this implies that{
(R(1− R))t = R(1− R)(1− 2R)G(R,w(X (y , t), t)) in RN × R+

(R(1− R))(y ,0) = 0 for y ∈ RN ,

so that
R(1− R) = 0 or else uv = 0 ∈ RN × R+.
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Singular limit in a special case

We consider the special case that α = 1 and that β = 1
k and consider

the corresponding problem on a bounded domain with natural
boundary conditions. This gives



ut = div(u∇(u + v)) + (1− u − v)u,

vt = div(v∇(u + v)) + γ(1− u + v
k

)v ,
x ∈ Ω, t ∈ (0,T ],

u∇(u + v) · ν = 0,
v∇(u + v) · ν = 0,

x ∈ ∂Ω, t ∈ (0,T ],

u(x ,0) = u0(x),

v(x ,0) = v0(x),
x ∈ Ω,

where ν is a outward normal unit vector, and we we set w = u + v .
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Singular limit in a special case

The system for w and v is given by



wt = div(w∇w) + (1− w)w + (γ(1− w
k

)− 1− w)v in Ω× (0,T ],

vt = div(v∇w) + γ(1− w
k

)v in Ω× (0,T ],

w∇w · ν = v∇w · ν = 0 on ∂Ω× (0,T ],

w(x ,0) = w0(x), v(x ,0) = v0(x), x ∈ Ω

This problem is much easier to study since the reaction terms are
linear in v.

ADMAT2012 (September 20th 2012) On a tumour-growth model 31 / 46



The uniformly parabolic approximating problem

In order to prove the existence of a solution, we can approximate it by
a uniformly parabolic system, say

wt = ε4w + div(w∇w) + (1− w)w + (γ(1− w
k

)− 1− w)v in QT ,

vt = ε4v + div(v∇w) + γ(1− w
k

)v in QT ,

w∇w · ν = v∇w · ν = 0 on ∂Ω× (0,T ],

w(x ,0) = w0(x), v(x ,0) = v0(x), x ∈ Ω

where QT = Ω× (0,T ], and find that along a subsequence as ε→ 0

wε → w strongly in L2(QT ),

∇wε ⇀ ∇w weakly in L2(QT ),

vε ⇀ v weakly in L2(QT ),

where (w , v) is a solution of the original problem.
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The convergence result

Theorem. As k tends to zero, vk converges to zero weakly in L2(QT ),
and wk converges strongly in L2(QT ) to the unique weak solution u of
the problem

ut = div(u∇u) + (1− u)u in QT ,

u∇u · ν = 0 on ∂Ω× (0,T ],

u(x ,0) = u0(x) x ∈ Ω.

This theorem connects the solutions of a rather complicated system
with the unique solution of an initial value problem with a Fisher type
nonlinear parabolic equation.
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Ideas of proof

From maximum principle arguments

0 ≤ vk ≤ wk ≤ 1.

Moreover ∫ T

0

∫
Ω

wkvk ≤ Ck .

Therefore
vkwk → 0

as k → 0, and since vk ≤ wk , it follows that

vk → 0.

Formally setting v = 0 in the equation for u gives the limit equation.
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Travelling wave solutions

We would now like to study travelling wave solutions of our system.
Before doing so, we recall results about travelling wave solutions of the
nonlinear diffusion Fisher equation

ut =
1
m

(um)xx + u(1− u), (x , t) ∈ R× R+

There exist travelling wave solutions of the nonlinear diffusion Fisher
equation, namely functions of the form u(x , t) = U(x − ct) which are
weak solutions of the problem{ 1

m (Um)
′′

+ cU ′ + U(1− U) = 0, x ∈ R
U(−∞) = 1, U(+∞) = 0.
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Travelling wave solutions for degenerate Fisher
equation

Theorem (Gilding and Kersner) Assume that m > 1. Then there exists
cm > 0 such that

For 0 < c < cm, there is no weak solution of the nonlinear
diffusion Fisher equation
For any c ≥ cm, there exists a weak solution Uc to the nonlinear
Fisher equation which is unique up to translation. Moreover, Uc is
nonincreasing. More precisely, for c > cm, Uc is strictly positive
and stricly decreasing on R; for c = cm, Ucm is compactly
supported from the right.

The main difference with the linear case m = 1 is the fact that the
travelling wave of minimal velocity is compactly supported from one
side.
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Travelling wave solutions with compact support
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Positive travelling wave solutions
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Travelling wave solutions of the original problem

We now consider travelling wave solutions, namely solutions of the
problem (TW)

(uw ′)′ + cu′ + u(1− u − v) = 0

(vw ′)′ + cv ′ + γv(1− u − v
k

) = 0

w = u + v
v(−∞) = k , u(∞) = 1, u(−∞) = v(∞) = 0.

Bertsch, Mimura et Wakasa show that for any k > 1 and γ > 0 there
exists a unique (up to translation) segregated travelling wave,
(uc(z), vc(z)), for a unique wave speed c > 0, which satisfies

uc(z)

{
= 0 if z < 0
> 0 if z > 0,

vc(z)

{
> 0 if z < 0
= 0 if z > 0,

and
uc(0+) = vc(0−) > 0.
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Existence of overlapping travelling wave solutions

Theorem 1 Let c > 0 be the speed of the segregated travelling wave.
Then for any c > c Problem (TW) has a solution satisfying

uc(z) > 0, vc(z) > 0, w ′c(z) < 0 for all z.
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Numerical graph
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Travelling wave solutions

Theorem 2 Let c > 0 and let uc(z) and vc(z) be nonnegative and
bounded functions on R which satisfy

(u(u + v)′)′ + cu′ + u(1− u − v) = 0
(v(u + v)′)′ + cv ′ + γv(1− (u + v)/k) = 0
v(−∞) = k , u(∞) = 1,

such that w ′c := (uc + vc)′ < 0 in R. If

u(z + ct , t)→ uc(z) and v(z + ct , t)→ vc(z) in L1
loc(R) as t →∞,{

w(z + ct , t)→ wc(z)

wx (z + ct , t)→ w ′c(z)
uniformly with respect to z > a as t →∞

and
v0(x) = 0 and u0(x) ≥ δ0 > 0 for a.e. x > x0

for some constants x0 ∈ R and δ0 > 0, then (uc , vc) is a segregated
travelling wave.
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