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Once upon a time...
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What | share with Gianni

@ Love for mountain

@ Strong (and hot) coffee

@ 9 joint papers

@ 24 years of friendship (since | moved to Pavia in 1988 .. .)
@ 2 times in a committee for a researcher position

What | tried to learn from Gianni
@ Clarity and rigor in Mathematical Analysis
What | didn’t learn from Gianni

@ To be as good as he is in Mathematical Analysis



PLAN

@ Cahn-Hilliard-Navier-Stokes systems (model H)
@ CHNS systems with nonlocal interactions

@ existence of a global weak solution

@ dissipative estimate and energy identity

@ attractors

@ concluding remarks

@ future work and open issues



Model H

@ isothermal motion of an incompressible homogeneous
binary mixture of immiscible fluids (model H: Siggia,
Halperin & Hohenberg '76, Halperin & Hohenberg ’77 )

@ rigorous derivation: Gurtin, Polignone & Vifals '96, Jasnow
& Vinals '96, Morro 10

ou+u-Vu—vAu+ Vr = —euVyp
V-u=0

Orp+u-Vo=V-(kVpu)
p=—chp+eF(p)

@ u (averaged) fluid velocity, density = 1

@ ¢ (relative) difference of concentrations of the two species
@ viscosity v > 0, mobility « > 0, interface thickness ¢ > 0
@ 1 chemical potential , F potential energy density



Regular and singular potentials: basic examples

@ regular : the polynomial double-well potential
F(s)=(s* —1)?

foralls e R
@ singular : the logarithmic potential

F(s) = g(u + s)log(1+ ) + (1 — s)log(1 — ) — %32

forallse (—1,1),0 <6,



Cahn-Hilliard-Navier-Stokes systems

@ CHNS system is a diffuse interface model : the interface is
treated as a finite (although thin: O(¢)) region where ¢
varies from one value (not necessarily of equilibrium) to
the other

@ taking the limit as £ \, 0 one gets a sharp interface model:
the Navier-Stokes-Mullins-Sekerka system (Abels &
Réger ’09)

@ the free bdry need not be explicitly tracked

@ the (diffuse) interface is transported with the material

@ numerical approximation

Badalassi, Ceniceros & Banerjee ’03, Liu & Shen ’03; Kay,
Styles & Welford ’08; Kim, Kang & Lowengrub ’'04; Shen &
Yang ’10, Boyer et al. '11, ...



CHNS systems: theoretical results

@ well-posedness, stability of equilibria: V.N. Starovoitov '97
[Q = R?, smooth F, spatially decaying sols]

@ existence and uniqueness, local stability of constant
solutions: F. Boyer '99 [degenerate x = x(y), singular or
regular F]

@ existence and uniqueness: H. Abels '09 [constant «,
singular F]

@ unmatched densities: F. Boyer 01 [3 local strong sols], H.
Abels '09 [ weak sols]

@ compressible case: H. Abels & E. Feireisl '08 [3 weak sols]



CHNS systems: longtime behavior

convergence to equilibrium of single trajectories

@ H. Abels ’09 [singular F]

@ M.G. & C.G. Gal ‘09 [2D, regular F, conv. rate estimates]

@ L. Zhao, H. Wu & H. Huang '09 [regular F, nonconstant x,
conv. rate estimates]

attractors

@ H. Abels 09 [singular F, global attractor a la Foias &
Cheskidov ]

@ M.G. & C.G. Gal '10 [3D, smooth F, nonconstant «,
time-dependent ext. force, trajectory attractor]

@ M.G. & C.G. Gal '09 and ’11 [2D, regular F, ext. force,
smooth global attractor, exp. attractors, dim. bounds]



Further comments

@ known results for NS can be extended to CHNS
@ CHNS longterm dynamics is more complex (as expected)

@ similar considerations hold for the Ladyzhenskaya variant

where
Tq(Du) = vDu + §|Du|92Du

with v,§ > 0 and g > 2 is large enough (G. & Prazak '11)

Standard CH eq can be derived through a phenomenological
argument, however a nonlocal CH eq can be rigorously
Justified as a macroscopic limit of microscopic of suitable phase
segregation models (Giacomin & Lebowitz 97, '98)
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Free energies: local vs. nonlocal

w is the first variation of the (local) free energy

E) = [ (5176002 + nF (o) ) o
but the hydrodynamic limit "gives" the nonlocal free energy
&)= 3 [ [ KO )00 - ey)eaby + n [ Flelx)ae

where K : RV — R s.t. K(x) = K(—x)
examples

K(x)=e " Kx)=ox|"' 6>0
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Nonlocal chemical potential

The chemical potential given by the nonlocal free energy is

p=ap—Kxo+nF(p)

where

(K * ¢)(x /Kx y)e(y)dy, a(x) ::/QK(x—y)dy

The term ¢
| S1vetozax
Q

can be viewed as the first approximation of

/ / K(x — y)(p(x) — o(y))2dxdy
QJQ
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Nonlocal interactions: some math literature

@ nonlocal Cahn-Hilliard eqgs : Giacomin & Lebowitz '97 and
'98; Chen & Fife '00; Gajewski '02; Gajewski & Zacharias
'03; Han '04; Bates & Han ’'05; Colli, Krej¢i; Rocca &
Sprekels ’07; Londen & Petzeltova '11; Gal & G. '12

@ Binary fluids with long range segregating interactions :
Bastea et al. '00

@ Navier-Stokes-Korteweg systems (liquid-vapour phase
transitions): Rohde ’05, Haspot '10

@ nonlocal Allen-Cahn egs and phase-field systems : Bates
et al.; Sprekels et al.; Feireisl, Issard-Roch & Petzeltova
'04; G. & Schimperna 11
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Nonlocal CHNS systems

Q cRNbdd (N =2,3)

ou+u-Vu—vAu+ Vr = uVe +g(t)
V-u=0

Orp+u-Vo=Au
w=—-Kxp+ap+ F'(p)

in Q x (0, +00)
subject to
u=0 @—0 on 9Q x (0, +00)
7 on O

u(0) =ug, ¢(0)=¢e iInQ
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Basic assumptions

interaction kernel

o Ke WH(RN)s.t. a(x) = [o K(x — y)dy >0
potential

@ F=F +Fp, Fy € C*—1,1), Fp € C?([-1,1])
lims_,11 F{(8) = £o0
F1(2)(s) > 0 and F1(4)(s) > ¢y >0nears =41
F1(3)(s) >0(<0)nears=1(s=—1)

F1(4) non-decreasing (increasing) near s =1 (s = —1)

Ja,8 € Rwith a + 8> —ming_q1 F{ s.t.

FO(s)>a Vse(-1,1), ax)>8 ae xeQ

the logarithmic potential fulfills the assumptions above
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Notion of weak solution 1

o H:LZ(Q), V:H1(Q)’ Q=Qx(0,T), T>0
@ (Ug, o) € Haiy x Hs.t. F(ipo) € L1(Q)
@ gel?0,T; V)

(u, ) is a weak sol if

u e L°°(0, T; Hai) N L2(0, T; Vai)

ure L4230, T;VYy,), N=3, uecl?0,T;V)), N=2
0 e L0, T;LP)NL20, T; V)NL®(Q), pe[l, )

ol <1ae. inQ

or e Y30, T; V), N=3, ¢ el?0,T;V), N=2
pe L?0,T; V)
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Notion of weak solution 2

and V¢ € V, Vv € Vg, we have

(et 9) + (Vp, V) = (U, V), ) + (VK * ), Vi)

(ug, v) + v(Vu,vu) + b(u,u,v) = —((v- V), @) + (g,V)

fora.a. t € (0, T) with

u(0) =ug, ©(0)=wo, @(t)=¢@o, Vtel0,T]

where
p(x, ) == a(x)p + F'(¢)
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Existence of a global weak solution

Theorem (Frigeri & G.’12)

vV T > 0 3 a weak solution (u, ¢) on (0, T) which satisfies the
energy inequality for all t > s and a.a. s > 0 (including s = 0)

£(u(). o(1) = ()P +E(e(0)
t
+ / WIVU()| + Vi) [B)dr

t
< E(u(s), o(5)) + / (@(r).u(r))dr

The proof is based on a previous global existence result on
regular potentials (Colli, Frigeri & G. '12)

A\

18/27



N = 2: energy identity

The weak solution (u, @) satisfies the energy identity

d
Ftue)+ v|[Vull? + [Vull? = (g, u)

Thanks to the energy identity and to the strong continuity

u € C([0,+00); Hgiv), © € C([0,+0); H)

we can use the generalized semiflow approach devised by J.M.
Ball to establish the existence of a global attractor in the
autonomous case
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Generalized semiflows (J.M. Ball ’97)

Let (X, d) be metric space, a family of maps z : [0, +oc0) — X' is
a generalized semiflow G if

@ Vzpe X,dze Gs.t z(0) =2z

@ translates of elements of G still belong to G
@ concatenation property holds

@ upper semicontinuity w.r.t. initial data

We set

T ={z(t) : zeg, z(0)e©}, VvOoCX

Definition

A C X is the global attractor for G if it is compact, fully invariant
and attracts T(t)B for any bdd set BC X
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N = 2: the generalized semiflow

e geV,
@ phase space (m € [0, 1) given)

Xm = Hgiv X Ym

where Y = {p € H : F(p) € L'(Q), || < m}
@ metric (z = (u, ¢))

1/2
d(z1, 22) = llus — Ul + llp1 — ool + ' IGEIRGE)

G = { all weak sols corresponding to all (ug, vg) € Xm}
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N = 2: existence of the global attractor

Theorem (Frigeri & G.’12)

G is a generalized semiflow on (X, d) which has the global
attractor An,

The convective nonlocal Cahn-Hilliard equation (i.e. u is given
and smooth enough) is s.t.

@ the energy identity still holds if N = 3
@ the (weak) solution is unique

thus we have a flow S(t) on Y, which possesses the
connected global attractor A
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N = 3: trajectory attractors

The energy inequality and a suitable generalized Gronwall’s
lemma are the basic tools to prove the existence of the
trajectory attractor (cf. Foias & Temam ’87, Sell ‘96, Chepyzhov
& Vishik '97)

@ regular potentials: Frigeri & G., ’11
@ singular potentials: Frigeri & G.,’12

g = d(t) and the trajectory attractor is strong if N = 2

ALL the results still hold if the viscosity depends smoothly on ¢
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Concluding remarks

@ the regularity L>°(LP) of ¢ is lower than the one in the local
model (¢ € L*(H"))

@ the Korteweg force 11V ¢ is as nasty as the convective one

@ J(and!) of a strong sol in 2D is nontrivial : it requires
K ¢ W?" and regular potentials [Frigeri, G. & Krej&i, in
preparation]

@ the above result also entails that A, is bdd in V;, x H?
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Work ahead

@ N =2 and g = 0: convergence of a weak sol to a single
equilibrium

@ log potential and degenerate mobility (x(p) = 1 — ¢?)
[Frigeri, G. & Rocca, in progress]

@ 2D: finite fractal dimension of A, and 3 exp. attr.

@ Cahn-Hilliard-Hele-Shaw systems (Wang et al. ’10, '11)
accounting for nonlocal interactions

25/27



Open issues

2D: uniqueness of weak sols

2D: complete regularity theory

nonsmooth interaction kernels (e.g. fractional Laplacian)
unmatched densities

sharp interface limits

numerical simulations and comparison with standard
models
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