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Once upon a time...

courtesy of Facebook c©
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Gianni and I

What I share with Gianni

Love for mountain
Strong (and hot) coffee
9 joint papers
24 years of friendship (since I moved to Pavia in 1988 . . . )
2 times in a committee for a researcher position

What I tried to learn from Gianni

Clarity and rigor in Mathematical Analysis

What I didn’t learn from Gianni

To be as good as he is in Mathematical Analysis
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Cahn-Hilliard-Navier-Stokes systems (model H)
CHNS systems with nonlocal interactions
existence of a global weak solution
dissipative estimate and energy identity
attractors
concluding remarks
future work and open issues
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Model H

isothermal motion of an incompressible homogeneous
binary mixture of immiscible fluids (model H: Siggia,
Halperin & Hohenberg ’76, Halperin & Hohenberg ’77 )
rigorous derivation: Gurtin, Polignone & Viñals ’96, Jasnow
& Viñals ’96, Morro ’10

∂tu + u ·∇u− ν∆u +∇π = −εµ∇ϕ
∇ · u = 0
∂tϕ+ u · ∇ϕ = ∇ · (κ∇µ)
µ = −ε∆ϕ+ ε−1F ′(ϕ)

u (averaged) fluid velocity, density = 1
ϕ (relative) difference of concentrations of the two species
viscosity ν > 0, mobility κ > 0, interface thickness ε > 0
µ chemical potential , F potential energy density
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Regular and singular potentials: basic examples

regular : the polynomial double-well potential

F (s) = (s2 − 1)2

for all s ∈ R
singular : the logarithmic potential

F (s) =
θ

2
((1 + s) log(1 + s) + (1− s) log(1− s))− θc

2
s2

for all s ∈ (−1,1), θ < θc
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Cahn-Hilliard-Navier-Stokes systems

CHNS system is a diffuse interface model : the interface is
treated as a finite (although thin: O(ε)) region where ϕ
varies from one value (not necessarily of equilibrium) to
the other
taking the limit as ε↘ 0 one gets a sharp interface model:
the Navier-Stokes-Mullins-Sekerka system (Abels &
Röger ’09)
the free bdry need not be explicitly tracked
the (diffuse) interface is transported with the material
numerical approximation
Badalassi, Ceniceros & Banerjee ’03, Liu & Shen ’03; Kay,
Styles & Welford ’08; Kim, Kang & Lowengrub ’04; Shen &
Yang ’10, Boyer et al. ’11, . . .
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CHNS systems: theoretical results

well-posedness, stability of equilibria: V.N. Starovoitov ’97
[Ω = R2, smooth F , spatially decaying sols]
existence and uniqueness, local stability of constant
solutions: F. Boyer ’99 [degenerate κ = κ(ϕ), singular or
regular F ]
existence and uniqueness: H. Abels ’09 [constant κ,
singular F ]
unmatched densities: F. Boyer ’01 [∃ local strong sols], H.
Abels ’09 [∃ weak sols]
compressible case: H. Abels & E. Feireisl ’08 [∃ weak sols]
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CHNS systems: longtime behavior

convergence to equilibrium of single trajectories

H. Abels ’09 [singular F ]
M.G. & C.G. Gal ’09 [2D, regular F , conv. rate estimates]
L. Zhao, H. Wu & H. Huang ’09 [regular F , nonconstant κ,
conv. rate estimates]

attractors

H. Abels ’09 [singular F , global attractor à la Foias &
Cheskidov ]
M.G. & C.G. Gal ’10 [3D, smooth F , nonconstant κ,
time-dependent ext. force, trajectory attractor]
M.G. & C.G. Gal ’09 and ’11 [2D, regular F , ext. force,
smooth global attractor, exp. attractors, dim. bounds]
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Further comments

known results for NS can be extended to CHNS
CHNS longterm dynamics is more complex (as expected)
similar considerations hold for the Ladyzhenskaya variant
where

Tq(Du) = νDu + δ|Du|q−2Du

with ν, δ ≥ 0 and q > 2 is large enough (G. & Pražák ’11)

Remark
Standard CH eq can be derived through a phenomenological
argument, however a nonlocal CH eq can be rigorously
justified as a macroscopic limit of microscopic of suitable phase
segregation models (Giacomin & Lebowitz ’97, ’98)
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Free energies: local vs. nonlocal

µ is the first variation of the (local) free energy

E(ϕ) =

∫
Ω

(
ξ

2
|∇ϕ(x)|2 + ηF (ϕ(x))

)
dx

but the hydrodynamic limit "gives" the nonlocal free energy

E(ϕ) =
1
4

∫
Ω

∫
Ω

K (x − y)(ϕ(x)− ϕ(y))2dxdy + η

∫
Ω

F (ϕ(x))dx

where K : RN → R s.t. K (x) = K (−x)

examples

K (x) = e−σ|x |
2
, K (x) = σ|x |−1 σ > 0
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Nonlocal chemical potential

The chemical potential given by the nonlocal free energy is

µ = aϕ− K ∗ ϕ+ ηF ′(ϕ)

where

(K ∗ ϕ)(x) :=

∫
Ω

K (x − y)ϕ(y)dy , a(x) :=

∫
Ω

K (x − y)dy

Remark
The term ∫

Ω

ξ

2
|∇ϕ(x)|2dx

can be viewed as the first approximation of∫
Ω

∫
Ω

K (x − y)(ϕ(x)− ϕ(y))2dxdy
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Nonlocal interactions: some math literature

nonlocal Cahn-Hilliard eqs : Giacomin & Lebowitz ’97 and
’98; Chen & Fife ’00; Gajewski ’02; Gajewski & Zacharias
’03; Han ’04; Bates & Han ’05; Colli, Krejčí; Rocca &
Sprekels ’07; Londen & Petzeltová ’11; Gal & G. ’12
Binary fluids with long range segregating interactions :
Bastea et al. ’00
Navier-Stokes-Korteweg systems (liquid-vapour phase
transitions): Rohde ’05, Haspot ’10
nonlocal Allen-Cahn eqs and phase-field systems : Bates
et al.; Sprekels et al.; Feireisl, Issard-Roch & Petzeltová
’04; G. & Schimperna ’11
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Nonlocal CHNS systems

Ω ⊂ RN bdd (N = 2,3)

∂tu + u ·∇u− ν∆u +∇π = µ∇ϕ+ g(t)
∇ · u = 0
∂tϕ+ u · ∇ϕ = ∆µ
µ = −K ∗ ϕ+ aϕ+ F ′(ϕ)

in Ω× (0,+∞)

subject to

u = 0,
∂µ

∂n
= 0 on ∂Ω× (0,+∞)

u(0) = u0, ϕ(0) = ϕ0 in Ω
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Basic assumptions

interaction kernel

K ∈W 1,1(RN) s.t. a(x) =
∫

Ω K (x − y)dy ≥ 0

potential

F = F1 + F2, F1 ∈ C4(−1,1), F2 ∈ C2([−1,1])

lims→±1 F ′1(s) = ±∞

F (2)
1 (s) ≥ 0 and F (4)

1 (s) ≥ c1 > 0 near s = ±1

F (3)
1 (s) ≥ 0(≤ 0) near s = 1 (s = −1)

F (4)
1 non-decreasing (increasing) near s = 1 (s = −1)

∃ α, β ∈ R with α + β > −min[−1,1] F (2)
2 s.t.

F (2)
1 (s) ≥ α ∀s ∈ (−1,1), a(x) ≥ β a.e. x ∈ Ω

the logarithmic potential fulfills the assumptions above
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Notion of weak solution 1

H = L2(Ω), V = H1(Ω), Q = Ω× (0,T ), T > 0
(u0, ϕ0) ∈ Hdiv × H s.t. F (ϕ0) ∈ L1(Ω)

g ∈ L2(0,T ; V ′div )

(u, ϕ) is a weak sol if

u ∈ L∞(0,T ; Hdiv ) ∩ L2(0,T ; Vdiv )

ut ∈ L4/3(0,T ; V ′div ), N = 3, ut ∈ L2(0,T ; V ′div ), N = 2

ϕ ∈ L∞(0,T ; Lp) ∩ L2(0,T ; V ) ∩ L∞(Q), p ∈ [1,∞)

|ϕ| < 1 a.e. in Q

ϕt ∈ L4/3(0,T ; V ′), N = 3, ϕt ∈ L2(0,T ; V ′), N = 2

µ ∈ L2(0,T ; V )
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Notion of weak solution 2

and ∀ψ ∈ V , ∀v ∈ Vdiv we have

〈ϕt , ψ〉+ (∇ρ,∇ψ) = ((u,∇ψ), ϕ) + ((∇K ∗ ϕ),∇ψ)

〈ut ,v〉+ ν(∇u,∇u) + b(u,u,v) = −((v · ∇µ), ϕ) + 〈g,v〉

for a.a. t ∈ (0,T ) with

u(0) = u0, ϕ(0) = ϕ0, ϕ̄(t) = ϕ̄0, ∀t ∈ [0,T ]

where
ρ(x , ϕ) := a(x)ϕ+ F ′(ϕ)
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Existence of a global weak solution

Theorem (Frigeri & G. ’12)

∀T > 0 ∃ a weak solution (u, ϕ) on (0,T ) which satisfies the
energy inequality for all t ≥ s and a.a. s ≥ 0 (including s = 0)

E(u(t), ϕ(t)) :=
1
2
‖u(t)‖2 + E(ϕ(t))

+

∫ t

s
(ν‖∇u(τ)‖2 + ‖∇µ(τ)‖2)dτ

≤ E(u(s), ϕ(s)) +

∫ t

s
〈g(τ),u(τ)〉dτ

Remark
The proof is based on a previous global existence result on
regular potentials (Colli, Frigeri & G. ’12)
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N = 2: energy identity

Corollary

The weak solution (u, ϕ) satisfies the energy identity

d
dt
E(u, ϕ) + ν‖∇u‖2 + ‖∇µ‖2 = 〈g,u〉

Remark
Thanks to the energy identity and to the strong continuity

u ∈ C([0,+∞); Hdiv ), ϕ ∈ C([0,+∞); H)

we can use the generalized semiflow approach devised by J.M.
Ball to establish the existence of a global attractor in the
autonomous case
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Generalized semiflows (J.M. Ball ’97)

Definition
Let (X ,d) be metric space, a family of maps z : [0,+∞)→ X is
a generalized semiflow G if

∀z0 ∈ X , ∃ z ∈ G s.t. z(0) = z0

translates of elements of G still belong to G
concatenation property holds
upper semicontinuity w.r.t. initial data

We set

T (t)Θ = {z(t) : z ∈ G, z(0) ∈ Θ}, ∀Θ ⊂ X

Definition
A ⊂ X is the global attractor for G if it is compact, fully invariant
and attracts T (t)B for any bdd set B ⊂ X
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N = 2: the generalized semiflow

g ∈ V ′div

phase space (m ∈ [0,1) given)

Xm = Hdiv × Ym

where Ym = {ϕ ∈ H : F (ϕ) ∈ L1(Ω), |ϕ̄| ≤ m}
metric (z = (u, ϕ))

d(z1, z2) = ‖u1−u2‖+‖ϕ1−ϕ2‖+

∣∣∣∣∫
Ω

(F (ϕ1)− F (ϕ2))

∣∣∣∣1/2

G = { all weak sols corresponding to all (u0, ϕ0) ∈ Xm}
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N = 2: existence of the global attractor

Theorem (Frigeri & G. ’12)

G is a generalized semiflow on (Xm,d) which has the global
attractor Am

Remark
The convective nonlocal Cahn-Hilliard equation (i.e. u is given
and smooth enough) is s.t.

the energy identity still holds if N = 3
the (weak) solution is unique

thus we have a flow S(t) on Ym which possesses the
connected global attractor Am
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N = 3: trajectory attractors

The energy inequality and a suitable generalized Gronwall’s
lemma are the basic tools to prove the existence of the
trajectory attractor (cf. Foias & Temam ’87, Sell ’96, Chepyzhov
& Vishik ’97)

regular potentials: Frigeri & G., ’11
singular potentials: Frigeri & G., ’12

Remark
g = g(t) and the trajectory attractor is strong if N = 2

Remark
ALL the results still hold if the viscosity depends smoothly on ϕ
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Concluding remarks

the regularity L∞(Lp) of ϕ is lower than the one in the local
model (ϕ ∈ L∞(H1))
the Korteweg force µ∇φ is as nasty as the convective one
∃ (and !) of a strong sol in 2D is nontrivial : it requires
K ∈W 2,1 and regular potentials [Frigeri, G. & Krejčí, in
preparation]
the above result also entails that Am is bdd in Vdiv × H2
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Work ahead

N = 2 and g ≡ 0: convergence of a weak sol to a single
equilibrium
log potential and degenerate mobility (κ(ϕ) = 1− ϕ2)
[Frigeri, G. & Rocca, in progress]
2D: finite fractal dimension of Am and ∃ exp. attr.
Cahn-Hilliard-Hele-Shaw systems (Wang et al. ’10, ’11)
accounting for nonlocal interactions
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Open issues

2D: uniqueness of weak sols
2D: complete regularity theory
nonsmooth interaction kernels (e.g. fractional Laplacian)
unmatched densities
sharp interface limits
numerical simulations and comparison with standard
models
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