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Introduction

A lot of physical an biological phenomena exhibits hysteresis
(elasto-plasticity, ferromagnetism, biochemical oscillators,...)

Many mathematical models for hysteresis have been proposed
in the literature, most of which are devoted to ferromagnetic
bodies (Coleman-Hodgdon, Jiles-Atherton, Preisach,...)

But few of them describes the temperature-induced phase
transition between the non-hysteretic (paramagnetic) and the
hysteretic (ferromagnetic) regimes.
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Introduction

Recently, some efforts have been made in order to apply the
Ginzburg-Landau theory to model temperature-induced phase
transitions with hysteresis:

1 Fabrizio, – , Morro, Phase transition in ferromagnetism, Internat. J.

Engrg. Sci., 47 (2009) 821–839.

2 Berti A., – , Vuk, Free energies and pseudo-elastic transitions for Shape

Memory Alloys, DCDS–S in honor to M.Frémond, to appear.

3 Berti A., – , Vuk, Hysteresis and thermally-induced transitions in ferro-

magnetic materials, in preparation
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Isothermal transitions

Transitions without hysteresis.

Pressure-induced liquid/vapor transition (first order)

O
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vv1 v0vc

Figure: Maxwell construction of the Amagat-Andrews diagram
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Isothermal transitions

Transitions without hysteresis.

Thermodynamic potential ψ (double-well shaped)
ϕ = −1 vapor, ϕ = 1 liquid
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Isothermal transitions

Transitions with hysteresis:
1 – Stress-induced austenite/martensite transition
Shape memory alloys (pseudo-elastic regime: θ > θc)
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Figure: Stable (solid) and unstable (dashed) equilibrium branches.
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Figure: Stable (solid) and unstable (dashed) equilibrium branches.
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Isothermal transitions

Transitions with hysteresis:
1 – Stress-induced austenite/martensite transition
Thermodynamic potential ψ (double-well shaped)
ϕ = 0 austenite, ϕ = ±1 martensite
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Isothermal transitions

Transitions with hysteresis:
2 – H-induced transition (H = external field)
Ferromagnetic materials (ferromagnetic regime: θ < θc)

a)

M

H

O

Ms−Ms

b)

M

Ms−Ms

H

O

Figure: The major hysteresis loop: a) bilinear and b) Langevin.
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Isothermal transitions

Transitions with hysteresis:
2 – H-induced transition (H̃ = internal field)
Ferromagnetic materials (ferromagnetic regime: θ < θc)

a)

M

H̃

O

Ms−Ms

b)

M

Ms−Ms

H̃

O

Figure: The major hysteresis loop: a) bilinear and b) Langevin.
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Plan

1 Duhem’s rate-independent models are considered

dM

dH
= F(M,H, sgn Ḣ), sgn P =











+1 if P > 0,

0 if P = 0,

−1 if P < 0.

M - magnetization, H - applied magnetic field,
χ = dM/dH - magnetic susceptibility

2 The role of skeleton curve description is emphasized.

3 The minimum (Gibbs) free energy representation is obtained:
it is proved to be uniquely determined by the skeleton curve.

4 The Ginzburg-Landau framework for phase transitions in
materials with hysteresis is derived.
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1. Some simple Duhem’s models

1 – Bilinear model

dM

dH
=

8

>

>

>

<

>

>

>

:

χ if M = fb(H) , |M| < Ms , or

M = fb(H) , |M| = Ms and M sgn Ḣ < 0, or

M 6= fb(H) and [fb(H) − M] sgn Ḣ > 0,

0 otherwise.

H

M

O

Ms

−Ms

Mr

Hc

−Hc

Figure: Major loop and hysteresis path (arrowhead) in the bilinear model
(skeleton curve f = fb is red).
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1. Some simple Duhem’s models

2 – Coleman & Hodgdon model (with a bilinear skeleton fb)

dM

dH
= α[f (H) − M]sgn Ḣ + g(H).

-5 -2.5 0 2.5 5

-5

-2.5

2.5

5

Figure: The Coleman-Hodgdon model (skeleton curve f = fb in red and
fatness g = gb in blue.
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1. Some simple Duhem’s models

3 – Coleman & Hodgdon model (with a Langevin skeleton fL)

dM

dH
= α[f (H) − M]sgn Ḣ + g(H).

-5 -2.5 0 2.5 5

-5

-2.5

2.5

5

Figure: The Coleman-Hodgdon model (skeleton curve f = fL in red and
fatness g = gL in blue.
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2. Temperature-induced transitions

The role of the skeleton curve

The slope of the skeleton curve at H = 0 depends on the
temperature:

χ|H=0 = χs(θ) =
χ0(θ)

1 + γχ0(θ)
, χ0(θ) =

C

θ
, γ = α−

θc
C
,

In the limit of high temperatures χs(θ) ≈ C/(θ − θc)
(Curie-Weiss law)

There is a critical temperature, θc , and a critical slope,

χs(θc) = 1/α , at which transition to hysteresis occurs.

Soft materials: limθ→0 χs(θ) = 1/γ > 0,

Hard materials: limθ→0 χs(θ) = 1/γ < 0,
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Temperature-induced transitions

2.1 - The role of the skeleton curve: the bilinear case

θ > θc

H

M

O

Ms

−Ms

θ = θc

H

M

O

Ms

−Ms

θ < θc

H

M

O

Ms

−Ms

Figure: The bilinear-model transition: the critical slope (in red).
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2. Temperature-induced transitions

2.2 - The role of the skeleton curve: the Langevin case

θ ≥ θc

O H

Ms

−Ms

θ < θc

O H

Ms

−Ms

Figure: The Langevin-model transition: the slope χ|H=0 (dotted red).
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2. Temperature-induced transitions

2.3 - The role of the skeleton curve: soft and hard ferromagnetics

H

M

O

Ms

−Ms

soft

χs ≈
1
γ

> 0

H

M

O

Ms

−Ms

hard

χs ≈
1
γ

< 0

Figure: The bilinear-model transition: the skeleton slope when θ ≈ 0 (in red).
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3 - The internal magnetic field

Internal magnetic field H̃ (Brown, 1963):

H̃ = H − AM,

A is a positive-definite tensor which depends on the shape and
the anisotropy of the material.

Along a fixed direction (eigenvector)

H̃ = H − αM , α > 0

Paramagnetic relation (Coey, 2009)

M = f (H̃ , θ) = f (H − αM, θ) , f (0, ·) = 0 .

and
χ(H, θ) = ∂

H̃
f (H̃ , θ)
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3 - The internal magnetic field

By reversing the paramagnetic relation we have

H = f −1(M, θ) + αM

and then
M = f̃ (H, θ) , χ̃(H, θ) = ∂H f̃ (H, θ)

χ̃|H=0 =
χs(θ)

1 − αχs(θ)
, α =

1

χs(θc)
,

The critical slope χ̃|H=0 at θ = θc becomes a vertical line.

In the limit of high temperatures χ̃(0, θ) ≈ C/(θ − θc)
(Curie-Weiss law)
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3 - The internal magnetic field

Temperature-induced transitions in the H̃ − M plane

θ = θc

H̃

M

O

Ms

−Ms

0 < θ < θc

H̃

M

O

Ms

−Ms

Figure: The graph of the bilinear skeleton curve referred to the internal field.
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3 - The internal magnetic field

Temperature-induced transitions in the H̃ − M plane

a)

M

H̃

O

Ms−Ms

b)

M

Ms−Ms

H̃

O

Figure: The major hysteresis loop when 0 < θ < θc : a) bilinear and b)
Langevin.
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4 - The Ginzburg-Landau model

Letting

m =
M

Ms
, |m| ≤ 1,

from the general theory (Fabrizio,–, Morro, 2009)

ṁ = −ωθ δmψ̂G = −ω[∂mψ̂G −∇ · ∂∇mψ̂G , ] ,

ψ̂G =
ψG

θ
– rescaled Gibbs free energy ,

ψG = ψ − H̃B = V (M, θ) +
1

2
κ(θ)|∇M|2 −

1

2
µ0H̃

2 − µ0H̃M ,

ṁ = −ω̂
[

∂MV − µ0H̃ − θ∇ · (κ̂∇M)
]

, κ̂ =
κ

θ
, ω̂ = ωMs .
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4 - The Ginzburg-Landau model

Assuming uniform fields (∇M = 0)

ṁ = −ω̂
[

∂MV − µ0H̃
]

= −ω̂ ∂MΦ,

where
Φ(H̃ ,M, θ) = V (M, θ)− µ0H̃M

can be identified with the Lagrangian density.

Problem: the expression of V and Φ

V can be uniquely determined from the skeleton curve:
dV = µ0H̃dM = µ0f

−1(M, θ)dM

Φ can be uniquely identified (to within a function of H̃) as the
minimum Gibbs free energy
Remark: Φ(0,M, θ) = V (M, θ)
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4 - The Ginzburg-Landau model

Convex potentials V : θ > θc , H̃ = 0

a)

M
Ms−Ms

Vb

O

b)

M
Ms−Ms

VL

O

Figure: The graph of Vb(·, θ) and VL(·, θ) when θ > θc .
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4 - The Ginzburg-Landau model

Non-convex potentials V : θ < θc , H̃ = 0

a)

M
Ms−Ms

Vb

O

b)

Ms−Ms

VL

O

Figure: The graph of Vb(·, θ) and VL(·, θ) when 0 < θ < θc .
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4 - The Ginzburg-Landau model

Convex potentials Φ: θ > θc , H̃ > 0

a)

M

Ms−Ms

Φb

O

b)

M

Ms−Ms

ΦL

O

Figure: The graph of Φb(H , ·, θ) and ΦL(H , ·, θ) at θ > θc when
H = 2H∗ (solid), H = H∗/2 (dashed), H = 0 (red dashed).
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Figure: The graph of Φb(H , ·, θ) and ΦL(H , ·, θ) at θ < θc when
H = 2H∗ (solid), H = H∗/2 (dashed), H = 0 (red dashed).
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4 - The minimum Gibbs free energy density

Non-convex potentials:

a)

H

M

O

Ms

−Ms

Mr

Hc

−Hc

b)

H

M

Ms = Mr

Figure: Minimum work expended: a) θ > θc (convex) and b) θ < θc
(non-convex) . The skeleton curves in red.
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