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1 - The equations

Model by P. Podio Guidugli (Ric. Mat. 2006)

• Ω = body ⊂ R3 and Γ = boundary of Ω

• Ω open, bounded, connected, and smooth

• µ = chemical potential and ρ = order parameter

2ρ∂tµ+ µ∂tρ− κ∆µ = 0 and µ ≥ 0 in Ω× (0,T )

0 < ρ < 1 and −∆ρ+ f ′(ρ) = µ in Ω× (0,T )

∂nµ = ∂nρ = 0 on Γ× (0,T )

µ|t=0 = µ0 and ρ|t=0 = ρ0 in Ω

• f = f1 + f2 double well potential on (0, 1)
f1 convex singular at end-points, f2 smooth in [0, 1]



2 - The equations (cont’d)

Two “viscosity terms” have been added

• ε > 0 and δ > 0

(ε+ 2ρ)∂tµ+ µ∂tρ− κ∆µ = 0

δ∂tρ−∆ρ+ f ′(ρ) = µ

• The case ε = 0 could be considered with some care
while δ = 0 leads to ill-posedness, namely

• infinitely many (even smooth) solutions

• no uniqueness and no control on time regularity

• the Cauchy condition for µ should be reformulated

• think of suitably selected solutions

• completely open problem !!!

• From now on, δ = 1



3 - History

Series of papers with P. Colli, J. Sprekels, P. Podio-Guidugli
[1] SIAM-JAM’11 - [2] DCDS-S t.a. - [3] CMT t.a. - [4] MJM t.a.

• Main assumption on the potential: f = f1 + f2 with

f1 convex and smooth in (0, 1), f2 smooth on [0, 1]

lim
ρ↘0

f ′1(ρ) = −∞ and lim
ρ↗1

f ′1(ρ) = +∞

e.g., the logarithmic double well potential

or an even more singular multiple well potential

• Existence for fixed ε > 0 [1]

• Uniqueness for ε > 0: provided µ, f ′(ρ) are bdd [1]

• Sufficient conditions for such a boundedness [1]



4 - History (cont’d)

• Asymptotics as ε→ 0: suitable reformulation for ε = 0 [2]

• Longtime behavior for both cases ε > 0 and ε = 0 [1-2]

• Distributed optimal control problem with ε > 0 [3]

(ε+ 2ρ)∂tµ+ µ∂tρ− κ∆µ = u
↑

Neumann BC as before

• Boundary optimal control problem with ε > 0 [4]

(ε+ 2ρ)∂tµ+ µ∂tρ− κ∆µ = 0

3rd type BC: ∂nµ = α(u
↑
− µ), α > 0



5 - Fresh news and plan of the talk

Three new papers with P. Colli, J. Sprekels, P. Podio-Guidugli on
well-posedness: generalizations in several directions ∗ ∗ ∗
• 1st paper, the most important one: submitted ∗
• 2nd paper: to appear in BUMI, in memory of E. Magenes ∗
• 3rd paper: in preparation ∗

More papers in preparation involving P. Krejč́ı as a new co-author

• Time discretization (future → full discretization and numerics)

• Asyptotics as σ → 0 in the modified 2nd equation

∂tρ− σ∆ρ+ f ′(ρ) = µ (in fact a more general full problem)

and relations with hysteresis

Plan of the talk

• the above generalizations ∗ ∗ ∗



6 - First generalization

• The above system with a fixed ε > 0, thus ε = 1

(1 + 2ρ)∂tµ+ µ∂tρ− κ∆µ = 0

∂tρ−∆ρ+ f ′(ρ) = µ

becomes

(1 + 2g(ρ))∂tµ+ µ∂tg(ρ)− κ∆µ = 0

∂tρ−∆ρ+ f ′(ρ) = µg ′(ρ)

with g : R→ R nonnegative on dom f (+ something else)
(in the above situation we had g(ρ) = ρ and dom f = (0, 1)).



7 - First generalization (cont’d)

Easy generalization from the mathematical point of view !
However, interesting in modeling.

For a given µ, the equation for ρ reads Allen-Cahn

∂tρ−∆ρ+
∂

∂ρ
Fµ(ρ) = 0 with Fµ(ρ) := f(ρ)− µ g(ρ)

• Already with g(ρ) = ρ, Fµ is not symmetric for a symmetric f
(the preferred well depends on µ).

• In the more general case we consider, new situations occur.
For instance, the choice f2 = µc g with some critical value µc

leads to
Fµ(ρ) = f1(ρ) +

(
µc − µ

)
g(ρ)

and one can construct double-well/convex potentials Fµ according
to the sign of µc − µ.



8 - Second generalization: general potentials
Aim: replace f by a much more general double well potential, e.g.,

f(ρ) = I(ρ)− ρ2

where I is the indicator function of [−1, 1]

or a smooth potential on the whole of R, like f(ρ) = (1− ρ2)2.

• OK for existence, while trouble for uniqueness !

Preliminary observation on the old uniqueness proof.

(1) (1 + 2ρ)∂tµ+ µ∂tρ− κ∆µ = 0

(2) ∂tρ−∆ρ+ f ′1(ρ) + f ′2(ρ) = µ

Pick two solutions (µi, ρi), i = 1, 2.

Natural trial: use monotonicity of f ′1, i.e.,∫
Qt

(
(2)1 − (2)2

)
× (ρ1 − ρ2) +

∫
Qt

(
(1)1 − (1)2

)
× (?1 − ?2)

where ?i are suitably chosen and Qt = Ω× (0, t).



9 - Second generalization: general potentials (cont’d)

• Natural test functions ?i, e.g., µi

led to mess and we got lost !!!

• New trial:∫
Qt

(
(1)1−(1)2

)
×(µ1 − µ2)+

∫
Qt

(
(2)1−(2)2

)
×(∂tρ1−∂tρ2).

Thus the whole of f ′(ρ) moved to the right hand side.

• This uses just the regularity of f ′ and might work only if

|
(
f ′(ρ1)− f ′(ρ2)

)
(ρ1 − ρ2)| ≤ c|ρ1 − ρ2|2 i.e.

ρi bounded away from 0 and 1

• This is true for logarithmic-type potentials
and false if f = indicator + concave



10 - Second generalization: general potentials (cont’d)

• Now: new uniqueness proof that makes the natural trial work
(hence, with any multiple well potential)

• Trick: rewrite eq’n (1) for µ in a different form

• Assumptions on the potential:

f = f1 + f2
f1 : R→ [0,+∞] convex, proper, l.s.c.

f2 : R→ R smooth with f ′2 Lipschitz

Examples

all the above log-type potentials, f(ρ) = (1− ρ2)2

f(ρ) = I(ρ)− ρ2, I = indicator funct’ of [−1, 1], etc



11 - Second generalization: general potentials (cont’d)
Recall 1st eq’n (with κ = 1 w.l.o.g.)

(1) (1 + 2g(ρ))∂tµ+ µ∂tg(ρ)−∆µ = 0

Multiply (1) by α(ρ), look for a Leibniz rule in the first two terms,
get an ODE for α, and see that α = (1 + 2g)−1/2 works.

Hence, we rewrite (1) in the new form

∂t

(
µ/α(ρ)

)
− α(ρ)∆µ = 0 where α(ρ) :=

(
1 + 2g(ρ)

)−1/2

and µ/α(ρ) is the new unkonwn function in place of µ, i.e.,

∂tz− α(ρ)∆
(
α(ρ) z

)
= 0 and µ := α(ρ) z

More precisely, we account for the Neumann BC as follows

(1′)

∫
Ω

(∂tz)v +

∫
Ω
∇
(
α(ρ) z

)
· ∇
(
α(ρ) v

)
= 0

for every v ∈ H1(Ω) and a.e. in (0,T)



12 - Second generalization: general potentials (cont’d)

New system

(1′)

∫
Ω

(∂tz)v +

∫
Ω
∇
(
α(ρ) z

)
· ∇
(
α(ρ) v

)
= 0

for every v ∈ H1(Ω) and a.e. in (0,T)

(2) ∂tρ−∆ρ+ f ′(ρ) = µg′(ρ) + Neumann BC

and Cauchy conditions, where µ := α(ρ) z in (2).

Pick two sol’s (zi, ρi) and set z := z1 − z2 and ρ := ρ1 − ρ2. Then∫ t

0

(
(1′)1 − (1′)2

) ∣∣
v = z ds + M

∫
Qt

(
(2)1 − (2)2

)
ρ

where M is suitably big and chosen later on in the proof.



13 - Second generalization: general potentials (cont’d)

Then everything works.

However, the proof is rather technical !
In particular, it uses some further regularity of µ
(and of z as a consequence), like

(∗) µ ∈W1,4(0,T; L2(Ω)) ∩ L4(0,T; W1,6(Ω))

besides boundedness.
More generally, we have proved that

µ ∈W1,p(0,T; L2(Ω)) ∩ Lp(0,T; H2(Ω)) for p ∈ [1,+∞)

This implies (∗) since H1(Ω) ⊂ L6(Ω), whence H2(Ω) ⊂W1,6(Ω).



14 - Third generalization: nonlinear const’ law

The equation for µ

(1 + 2g(ρ))∂tµ+ µ∂tg(ρ)− κ∆µ = 0

becomes

(1) (1 + 2g(ρ))∂tµ+ µ∂tg(ρ)− div
(
κ(µ, ρ)∇µ

)
= 0

where κ : R2 → R is smooth enough.
Main assumption: uniform parabolicity and bdd’ness, i.e.,

0 < κ∗ ≤ κ(µ, ρ) ≤ κ∗ for every µ and ρ



15 - Third generalization: nonlinear const’ law (cont’d)

Theorem. Existence of a solution in a proper space.

• No uniqueness proof (we didn’t try: too complicated)

• but uniqueness (and a continuous dependence inequality)
if κ = κ(µ) with κ Lipschitz
(1st eq’n rewritten, same trick as before)



16 - Fourth generalization: degeneracy

This with κ = κ(µ) (independent of ρ) and existence, only

• Aim: to allow κ = µm−1 with any exponent m ≥ 1
so that div(κ∇µ) ≈ ∆µm like in the porous media eq’n

Too difficult due to unboundedness of κ !

• New aim: to allow a bdd version like κ = tanhµm−1 with
any exponent m ≥ 1
(slow diffusion only where µ is small)

• It works, provided that. . . . . . . . . (see below)
Precisely, more degeneracy for small values of µ can be allowed



17 - Fourth generalization: degeneracy (cont’d)

Precise assumptions:

i) κ : [0,+∞)→ R is continuous

ii) there exist κ∗, κ
∗ > 0 and µ∗ ≥ 0 such that

κ(µ) ≤ κ∗ ∀µ ≥ 0 and κ(µ) ≥ κ∗ ∀µ ≥ µ∗
iii) the function [0,+∞) 3 µ 7→ K(µ) :=

∫ µ
0 κ(s) ds

is strictly increasing

Examples

• µ∗ = 0: uniform parabolicity

• κ(µ) = tanhµm−1, m > 1: e.g., µ∗ = 1 and κ∗ = tanh 1

Remarks: no monotonicity for κ, and iii) is equivalent to:

κ ≥ 0 and the set {µ ∈ [0, µ∗] : κ(µ) = 0} has an empty interior
(i.e., a lot of degeneracy for small values of µ is possible)



18 - Fourth generalization: degeneracy (cont’d)

Trouble

(1) (1 + 2g(ρ))∂tµ+ µ∂tg(ρ)− div
(
κ(µ)∇µ

)
= 0 + BC

• Due to degeneracy, lack of information on ∇µ where µ is small

• Consequence: lack of information on both ∂tµ and ∂nµ|Γ

• Remedy: rewrite (1) in different form
use ∇K(µ) (recall K′ = κ) instead of κ(µ)∇µ in eq’n and BC
and change the first part of (1) and the IC, namely

(1′) ∂t

(
(1 + 2g(ρ))µ

)
− µ∂tg(ρ)−∆K(µ) = 0

BC′ ∂nK(µ)|Γ = 0 (in the variational sense)

IC′
(
(1 + 2g(ρ))µ

)
|t=0 = (1 + 2g(ρ0))µ0



19 - Fourth generalization: degeneracy (cont’d)

Full problem (+ BC + IC):

(1′) ∂t

(
(1 + 2g(ρ))µ

)
− µ∂tg(ρ)−∆K(µ) = 0

(2) ∂tρ−∆ρ+ f ′(ρ) = µg′(ρ)

Then, the expected regularity of K(µ) is something like

K(µ) ∈ L2(0,T; H1(Ω))

(since v = K(µ) should be an admissible test function)
whence, we can ask that

∂t

(
(1 + 2g(ρ))µ

)
∈ L2(0,T; (H1(Ω))∗)

Theorem. There exists a solution in a proper space .

• Recall: uniqueness OK if µ∗ = 0 (uniform parab) and κ Lip



20 - Fourth generalization: degeneracy (cont’d)

A small detail on the existence proof
parabolic regularization + time delay

(1′)τ ∂t

(
(1 + 2g(ρ))µ

)
− µ∂tg(ρ)−∆K̃(µ) = 0

(2)τ ∂tρ−∆ρ+ f ′(ρ) = g′(ρ) Tτµ

where K̃(µ) :=

∫ µ

0

(
κ(|s|) + τ

)
ds

Tτµ(t) := µ(t− τ) for t > τ

Tτµ(t) := µ0 for t < τ

• existence for the approximating problem

• a priori estimates

• convergence as τ ↘ 0 via compactness and monotonicity



Thank you for your attention

Gianni Gilardi

Coordinates & info’s: Google→ gianni gilardi→ 1st result is
http://www-dimat.unipv.it/gilardi


