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1 - The equations

Model by P. Podio Guidugli (Ric. Mat. 2006)
e Q=body CR® and T = boundary of Q
e ( open, bounded, connected, and smooth

e ;= chemical potential and p = order parameter

200¢p + poep — kA =0 and >0 InQx(0,T)
0<p<l and —Ap+f(p)=pn inQx(0,T)
Onpt =0pp=0 onT x(0,T)

ple=o = po and  pli=o = po in Q

e f=1f+1f doublewell potential on (0, 1)
fi convex singular at end-points, f, smooth in [0,1]



2 - The equations (cont'd)

Two “viscosity terms’ have been added
e c£>0andd>0

(¢ +2p)O¢pu + pdep — KAp =0
00ep — Dp+f'(p) = p

e The case ¢ = 0 could be considered with some care
while 6 = 0 leads to ill-posedness, namely

e infinitely many (even smooth) solutions

e no uniqueness and no control on time regularity

e the Cauchy condition for y should be reformulated
e think of suitably selected solutions

e completely open problem !!!

e Fromnowon, §d =1



3 - History
Series of papers with P. Colli, J. Sprekels, P. Podio-Guidugli
[1] SIAM-JAM'11 - [2] DCDS-S t.a. - [3] CMT t.a. - [4] MJM t.a.
e Main assumption on the potential: f = f + f» with

fi convex and smooth in (0,1), f smooth on [0, 1]

lim f/(p) = —c0 and lim £ (p) = +0
lim, 1(p) lim 1(p)

e.g., the logarithmic double well potential

or an even more singular multiple well potential

e Existence for fixed e >0 [1]
e Uniqueness for e > 0: provided u, f'(p) are bdd [1]

e Sufficient conditions for such a boundedness [1]



4 - History (cont'd)
e Asymptotics as ¢ — 0: suitable reformulation fore =0 [2]
e Longtime behavior for both cases e >0 and e =0 [1-2]

e Distributed optimal control problem with e >0 [3]
@+2M&u+u&p—nAu=g
Neumann BC as before

e Boundary optimal control problem with ¢ >0 [4]

(e +2p)0cp + pOep — kAP =0
3rd type BC:  Opp = a(LTI —u), a>0



5 - Fresh news and plan of the talk
Three new papers with P. Colli, J. Sprekels, P. Podio-Guidugli on
well-posedness: generalizations in several directions s % %
e 1st paper, the most important one: submitted
e 2nd paper: to appear in BUMI, in memory of E. Magenes
e 3rd paper: in preparation x

More papers in preparation involving P. Krej¢i as a new co-author
e Time discretization (future — full discretization and numerics)

e Asyptotics as 0 — 0 in the modified 2nd equation
Op—clp+f'(p)=pu (in fact a more general full problem)

and relations with hysteresis

Plan of the talk

e the above generalizations * * x



6 - First generalization

e The above system with a fixed ¢ > 0, thuse =1

(1 +2p)0¢pt + p0rp — kAP =0
dep—Dp+fl(p) =

becomes

(14 28(p))0eps + pOeg(p) — kAP =0
Oep — Dp+ f'(p) = g’ (p)

with g : R — R nonnegative on domf (+ something else)
(in the above situation we had g(p) = p and domf = (0,1)).



7 - First generalization (cont'd)

Easy generalization from the mathematical point of view !
However, interesting in modeling.

For a given y, the equation for p reads Allen-Cahn

0 .
dp — Dp+ %FM(P) =0 with F,(p):=1(p) —pelp)
e Already with g(p) = p, F, is not symmetric for a symmetric f
(the preferred well depends on ).
e In the more general case we consider, new situations occur.
For instance, the choice f, = u.g with some critical value .

leads to
Fu(p) = fi(p) + (e — 1) g(p)

and one can construct double-well/convex potentials F,, according
to the sign of pe — p.



8 - Second generalization: general potentials
Aim: replace f by a much more general double well potential, e.g.,

£(p) = Up) — p?
where I is the indicator function of [—1,1]

or a smooth potential on the whole of R, like f(p) = (1 — p?)?.
e OK for existence, while trouble for uniqueness !

Preliminary observation on the old uniqueness proof.
(1) (1+2p)0p+ pdep — kA =0
(2)  Op—Dp+1ti(p) +1H(p) =

Pick two solutions (pi, pi), i=1,2.

Natural trial: use monotonicity of 1, i.e.,

/ (1 - (2)2) % (o1 — o) + / (D1~ (1)2) % (21— 72)

t t

where 7; are suitably chosen and Q; = Q x (0,t).



9 - Second generalization: general potentials (cont'd)

e Natural test functions 7, e.g., u;
led to mess and we got lost !!!

e New trial:

/ ((D)1—(1)2) x (p1 — M2)+/ ((2)1=(2)2) x (9 p1— 0 p2)-

t t

Thus the whole of f'(p) moved to the right hand side.
e This uses just the regularity of f and might work only if

|(F'(p1) — '(p2)) (p1 — p2)| < clpr — p2f* iie.
pi bounded away from 0 and 1

e Thisis true for logarithmic-type potentials
and false if f = indicator + concave



10 - Second generalization: general potentials (cont’'d)

e Now: new uniqueness proof that makes the natural trial work
(hence, with any multiple well potential)

e Trick: rewrite eq'n (1) for p in a different form
e Assumptions on the potential:

f=fi+56
f; : R — [0,+00] convex, proper, |l.s.c.
f, : R — R smooth with f} Lipschitz

Examples

all the above log-type potentials, f(p) = (1 — p?)?
f(p) =1(p) — p?, 1= indicator funct’ of [-1,1], etc



11 - Second generalization: general potentials (cont'd)
Recall 1st eq'n (with k = 1 w.l.o.g.)

(1) (1+2g(p))0cp + poeg(p) — Ap =0

Multiply (1) by «(p), look for a Leibniz rule in the first two terms,
get an ODE for a, and see that a = (1 + 2g)~%/? works.

Hence, we rewrite (1) in the new form

B (1/(p)) — alp)bu =0 where a(p) = (1+2g(p)) "

and p/a(p) is the new unkonwn function in place of p, i.e.,

Oz — ap)A(a(p)z) =0 and p:=a(p)z

More precisely, we account for the Neumann BC as follows

() /Q (D) + /Q V(a(p)7) - V(a(p)v) =0

for every v € HY(Q) and a.e. in (0,T)



12 - Second generalization: general potentials (cont'd)

New system

(1) /Q(ﬁtz)v + /Q V(a(p)z) - V(a(p)v) =0
for every v € H}(Q) and a.e. in (0,T)
(2) Op — Dp +1'(p) = ug'(p) + Neumann BC

and Cauchy conditions, where 1 := a(p)z in (2).

Pick two sol's (zi, pi) and set z := z; — z and p := p1 — p2. Then

[ (n-wi) o asen [ (@i-@n)

Q¢

where M is suitably big and chosen later on in the proof.



13 - Second generalization: general potentials (cont'd)

Then everything works.

However, the proof is rather technical !
In particular, it uses some further regularity of p
(and of z as a consequence), like

(*)  pe WHH0,T;L3(Q)) nL*(0,T; WH°(Q))

besides boundedness.
More generally, we have proved that

p € WHP(0,TS13(Q)) N LP(0,T; H3(Q)) for p € [1, +00)

This implies (*) since H}(Q) C L°(Q), whence H?(Q2) ¢ W16(Q).



14 - Third generalization: nonlinear const’ law

The equation for p

(14 2g(p))0cpt + poig(p) — kAp =0

becomes

(1) (L+2g(p))0p + pdrg(p) — div(k(u, p)Vp) =0

where £ : R? — R is smooth enough.
Main assumption: uniform parabolicity and bdd'ness, i.e.,

0 < ku < K(u, p) < K* for every u and p



15 - Third generalization: nonlinear const’ law (cont'd)

Theorem. Existence of a solution in a proper space.

e No uniqueness proof (we didn't try: too complicated)

e but uniqueness (and a continuous dependence inequality)
if K = rk(p) with k Lipschitz
(Ist eq'n rewritten, same trick as before)



16 - Fourth generalization: degeneracy

This with = r(p) (independent of p) and existence, only

e Aim: to allow x = ;™! with any exponent m > 1

so that div(kV ) ~ Ap™ like in the porous media eq'n
Too difficult due to unboundedness of & !
e New aim: to allow a bdd version like x = tanhp™ ! with

any exponent m > 1
(slow diffusion only where p is small)

e It works, provided that......... (see below)
Precisely, more degeneracy for small values of ;1 can be allowed



17 - Fourth generalization: degeneracy (cont'd)
Precise assumptions:

i)  k:[0,+00) — R is continuous
ii) there exist k., k* > 0 and p, > 0 such that
K(p) < K" Yu>0 and k(p) > ke V> p.
iii)  the function [0,400) 3 pu— K(u) = [§' K(s)ds

is strictly increasing

Examples
e 1, = 0: uniform parabolicity
e x(p)=tanhp™ 1 m>1: eg, us=1and k, = tanh1

Remarks: no monotonicity for x, and iii) is equivalent to:

k > 0 and the set {y € [0, 1] - (1) = 0} has an empty interior
(i.e., a lot of degeneracy for small values of 1 is possible)



18 - Fourth generalization: degeneracy (cont'd)

Trouble
(1) (1+22(p)dp + pdeg(p) — div(r(p)Vi) =0 + BC

e Due to degeneracy, lack of information on YV where p is small

e Consequence: lack of information on both J;x and Oy p|r

e Remedy: rewrite (1) in different form
use VK(u) (recall K = k) instead of x(x)Vu in eq'n and BC
and change the first part of (1) and the IC, namely

1) (1 +2e(p) 1) — ndee(p) — AK(p) = 0
BC"  0,K(u)l[r =0  (in the variational sense)

IC" (1 +22(p)) 1) le=o = (1 +2g(po)) 1o



19 - Fourth generalization: degeneracy (cont'd)
Full problem (+ BC + IC):

(1) 3 ((1+28(p)) 1) — pdeg(p) — AK (1) =0
(2) Op — Dp+1(p) = pg'(p)

Then, the expected regularity of K(u) is something like
K(u) € L(0,T; HY(Q))

(since v.= K(u) should be an admissible test function)
whence, we can ask that

0 ((1 4 2g(p)) 1) € L2(0,T; (H'(R))*)

Theorem. There exists a solution in a proper space.

e Recall: uniqueness OK if p, = 0 (uniform parab) and & Lip



20 - Fourth generalization: degeneracy (cont'd)

A small detail on the existence proof
parabolic regularization + time delay

(1) 0 ((1+ 28(p)) 1) — pdrg(p) — DK (1) =0
(2) Op — Dp+1t'(p) =¢'(p) Tr1t
where  K(p) := / (k(|s]) + ) ds
0
Tou(t) :=u(t—7) fort>r
Tru(t) ;= po fort <7

e existence for the approximating problem
e a priori estimates

e convergence as 7 \, 0 via compactness and monotonicity



Thank you for your attention

Gianni Gilardi
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