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Examples of thin layers of heterogeneities in a structure (of elastic
material)
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The heterogeneities can be holes, elastic material, rigid inclusions
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Problem peculiarities:

a thin layer of very small heterogeneities with highly contrasted materials
( the materials characteristics of the structure and the heterogeneity can
be very different)

a large number of very small heterogeneities periodically distributed in the
layer

small deformations

Computational difficulties:
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The computational cost increases with the number of heterogeneities

It can be difficult to obtain a correct mesh
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How much can the heterogeneities be important?
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The influence of the heterogeneities on the stresses
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The methods

i) Matched asymptotic expansions (S. Hendili, F. Krasucki, M.
Vidrascu)
ii) Variational convergence (M. Bellieud, F. Krasucki, G. Michalle;
F. Krasucki, P. E. Steltzig)
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Goals of the matched asymptotic expansions method

obtain a precise macroscopic behaviour replacing the layer by a surface
(low cost)
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and still obtain precise informations on the local fields near the
heterogeneities (important for the applications)
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The problem (the unknown field solution is uε)
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A two-scale internal boundary layer
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The main steps of the matched asymptotic expansions method

? Decomposition of the domain and scale separation

? Associated asymptotic developments of the solution uε.

? Matching conditions

=⇒ Boundary value problems at the different orders

=⇒ Construction of the approximate solutions

Some references

? Van Dyke (1964).

? Nguetseng, Sanchez-Palencia (1986).

? Abdelmoula, Marigo (2000).

? G., Hendili, Krasucki, Vidrascu (2011).

? David, Marigo, Pideri (2012).

The effect of a thin layer of heterogeneities in an elastic structure.
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Domain decomposition
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}
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η(ε)
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Scale separation in the inner domain

MMMMMMM
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yM

y1

y2
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1

M(xM) ∈ Ωint(ε) =
{

x ∈ Ω ; |x1| < η(ε)
2

}
xM = xI + εyM ⇔


xM1 = εyM

1

xM2 = x I2 + εyM
2

xM3 = x I3 + εyM
3

Consequences when ε→ 0

M(x̂, yM) with x̂ = (x2, x3)

the periodic cell is infinite in the
direction y1

the periodic cell is bounded in the
directions y2 and y3
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Outer development : far from ω

uε(x1, x2, x3) =
∞∑
i=0

εiui (x1, x2, x3)

x1

x2

O
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Inner development : near ω
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∞∑
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εivi (x̂, y1, ŷ)
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O

1
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ε
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x2−x I

2

ε ,
x3−x I
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Matching conditions

1

Overlapping region:

ε
2
< |x1| < η(ε)

2
or

1
2
< |y1| = |x1|

ε
<

η(ε)
2ε

In the overlapping region both expansions are valid

For every ui one has for 0 < x1 <
η(ε)

2ε
:

ui (x) = ui (0+, x̂) + x1
∂ui

∂x1
(0+, x̂) + ...

hence since x1 = εy1:

uε(x1, x̂) = u0(0+, x̂) + ε

(
u1(0+, x̂) + y1

∂u0

∂x1
(0+, x̂)

)
+ ...

= v0(x̂, y1, ŷ) + εv1(x̂, y1, ŷ) + .....

take the limit for ε −→ 0 with fixed x1:

lim
y1→±∞

(
v0(x̂, y1, ŷ)− u0(0±, x̂)

)
= 0

lim
y1→±∞

(
v1(x̂, y1, ŷ)−

(
u1(0±, x̂) + y1

∂u0

∂x1
(0±, x̂)

))
= 0

Analogous matching conditions hold for the stresses.
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(
u1(0±, x̂) + y1

∂u0

∂x1
(0±, x̂)

))
= 0

Analogous matching conditions hold for the stresses.

The effect of a thin layer of heterogeneities in an elastic structure.



Introduction
Matched asymptotic expansions

Variational convergence

Matching conditions

1

Overlapping region:

ε
2
< |x1| < η(ε)

2
or

1
2
< |y1| = |x1|

ε
<

η(ε)
2ε

In the overlapping region both expansions are valid

For every ui one has for 0 < x1 <
η(ε)

2ε
:

ui (x) = ui (0+, x̂) + x1
∂ui

∂x1
(0+, x̂) + ...

hence since x1 = εy1:

uε(x1, x̂) = u0(0+, x̂) + ε

(
u1(0+, x̂) + y1

∂u0

∂x1
(0+, x̂)

)
+ ...
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1
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ε
2
< |x1| < η(ε)

2
or

1
2
< |y1| = |x1|

ε
<

η(ε)
2ε

In the overlapping region both expansions are valid

For every ui one has for 0 < x1 <
η(ε)

2ε
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Study of the problems at the different orders

Order i = 0

Outer approximation:
divσ0 = 0

σ0 = Aγ(u0)

σ0n = F

u0 = 0

in Ω

in Ω

on ΓF

on Γ0

Inner approximation

v0 (x̂) = u0 (0, x̂)

The heterogeneities disappear at the order 0

This result does not depend on the type of heterogeneity
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Order i = 1 
divσ1 = 0

σ1 = Aγ(u1)

σ1n = 0

u1 = 0

in Ω\ω
in Ω\ω
on ΓF

on Γ0

Transmission conditions on ω :
[
u1
]

(x̂) = u0
i ,j(0, x̂)ai ,j[

σ1e1

]
(x̂) = |Y |divx

(
A
(
∂u0

∂x2
(0, x̂)⊗S e2 + ∂u0

∂x3
(0, x̂)⊗S e3

))
−divx

(
∂u0

i
∂xj

(0.x̂)bi ,j

)
v1 = u0

i ,j(0, x̂)ci ,j
|Y | is the volume of the heterogeneity

the coefficients (ai,j , bi,j , ci,j) are obtained from the solutions of some

elementary problems that only depend on the heterogeneity (as in

homogenization).
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Conclusion

The layer of heterogeneities is replaced by the internal surface ω

=⇒ the macroscopic behaviour is computed on a domain without
heterogeneities

The coefficients (ai,j , bi,j , ci,j) are computed only once

The microscopic behaviour is computed for only one heterogeneity Y

Drawbacks

Only a formal method

The transmission conditions on the exterior problem of order i = 1 are
non usual

The microscopic scale for the interior domain leads to an unbounded
domain.

A last (?) comment

The method has been developed in a particular situation (the geometry of the
heterogeneity is of the type εY ); however it might be adapted for other
situations

The effect of a thin layer of heterogeneities in an elastic structure.
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Goals of the variational convergence

To give a rigorous mathematical proof of the convergence of
the solution uε to u0

To characterize the problem whose solution is u0.

To obtain error estimates and/or a first corrector

The effect of a thin layer of heterogeneities in an elastic structure.
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A joint work with M. Bellieud, F. Krasucki, G. Michaille

Notations

Σ := Ω ∩ {x1 = 0}, T ⊂ R2 bdd, Lipschitz
Fε =

⋃
i∈Iε εie2 + εT × (0, L)

Iε := {i ∈ Z, εie2 + εT × (−L, L) ⊂ Ω}
divσε = f

σε = λεtr(γ(uε))I3 + 2µεγ(uε))

uε = 0

in Ω

in Ω

on Γ

µε = µ01Ω\Fε + kεµ11Fε

λε = λ01Ω\Fε + kελ11Fε .

3λ0 + 2µ0 > 0, µ0 > 0,
3λ1 + 2µ1 > 0, µ1 > 0

kε = 1
εp with p > 0

The effect of a thin layer of heterogeneities in an elastic structure.
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Variational formulation

inf
u∈H1

0 (Ω;R3)
Φε(u)

where

Φε(u) := {1

2

∫
Ω

{λε(trγ(u))2 + µεγ(u) : γ(u)}dx −
∫

Ω

fudx}

a priori estimate + Korn’inequality =⇒ existence and uniqueness of the
solution uε with:∫

Ω

uε : uεdx +

∫
Ω\Fε

γ(uε) : γ(uε)dx + kε

∫
Fε

γ(uε) : γ(uε)dx ≤ C

uε converges weakly in H1
0 (Ω; R3) to u0

Goal

Find the problem whose solution is u0 , i.e. the Γ-limit of Φε

The effect of a thin layer of heterogeneities in an elastic structure.
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Answer

The Γ-limit of Φε is:

Φ0(u) :=
1

2

∫
Ω
{λ0(trγ(u))2 +µ0γ(u) : γ(u)}dx−

∫
Ω

fudx+ΨF (u)

A similar situation has been studied by A.L. Bessoud, F. Krasucki,
G. Michaille (2009) when Fε is the full layer Lε := (− ε

2 ,
ε
2 )× Σ.

They found

Φ0(u) :=
1

2

∫
Ω
{λ0(trγ(u))2 +µ0γ(u) : γ(u)}dx−

∫
Ω

fudx +ΨL(u)

with two significant cases: p = 1 and p = 3.

The effect of a thin layer of heterogeneities in an elastic structure.
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The case p = 1

full layer Lε

ΨL(u) =

∫
Σ

{ 2λ1mu1

λ1 + 2mu1
(tr γ̂(u))2 + 2µ1γ̂(u) : γ̂(u)}dΣ

Remark: plate membrane energy

present situation

ΨF (u) = k2µ1
3λ1 + 2µ1

2(λ1 + µ1)

∫
Σ

|∂u3

∂x3
|2dΣ

Remark: extensional strain energy of the fibers

The effect of a thin layer of heterogeneities in an elastic structure.
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The case p = 3

full layer Lε

ΨL(u) =
1

3

∫
Σ

{ 2λ1mu1

λ1 + 2mu1
(∆̂u1)2 + 2µ1

∂2u1

∂xα∂xβ

∂2u1

∂xα∂xβ
}dΣ

Remark: plate bending energy

present situation

ΨF (u) =
2∑

α,β=1

µ1
3λ1 + 2µ1

2(λ1 + µ1)
kαβ

∫
Σ

∂2uα
∂x2

3

∂2uβ
∂x2

3

dΣ

Remark: bending energy of the fibers

The effect of a thin layer of heterogeneities in an elastic structure.
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Proofs:

a priori estimates

choice of the good spaces : subspaces of H1
0 (Ω; R3) where

ΨF (u) has a meaning for p = 1, resp. p = 3

....

The effect of a thin layer of heterogeneities in an elastic structure.
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Thank you !

tanti auguri Gianni!!

The effect of a thin layer of heterogeneities in an elastic structure.
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Th(Ωext(ε)) Th(Ωint(ε)) MODULEF : krasucki  

APPLIE                                  

18/06/11

pb0.nopo                                

   861   POINTS

  3321   NOEUDS

  1600   ELEMENTS

  1600   TRIANGLES

     0   TROU(S)

COIN BAS GAUCHE :    

 -1.100     -1.078       

COIN HAUT DROIT :    

  1.100      1.078       

                    

Th(Ωext
0 )
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δext(ε)

||uε − uext||E
||uε||E

uext = u0

uext = u0 + εu1
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Figure: Holes ε = 1
20 and ε = 1
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δint(ε)

||uε − uint||E
||uε||E

uint = v0 + εv1
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