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Introduction

Examples of thin layers of heterogeneities in a structure (of elastic
material)
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The heterogeneities can be holes, elastic material, rigid inclusions



Introduction

Problem peculiarities:

@ a thin layer of very small heterogeneities with highly contrasted materials
( the materials characteristics of the structure and the heterogeneity can
be very different)

@ a large number of very small heterogeneities periodically distributed in the
layer

@ small deformations
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Problem peculiarities:

@ a thin layer of very small heterogeneities with highly contrasted materials

the materials characteristics of the structure and the heterogeneity can

(

)
@ a large number of very small heterogeneities periodically distributed in the

be very different

layer

@ small deformations

Computational difficulties:
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@ The computational cost increases with the number of heterogeneities

@ It can be difficult to obtain a correct mesh



Introduction

How much can the heterogeneities be important?
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How much can the heterogeneities be important?

The influence of the heterogeneities on the

deformed shape



The influence of the heterogeneities on the
deformed shape
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How much can the heterogeneities be important?
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The influence of the heterogeneities on the stresses



Introduction

The methods

i) Matched asymptotic expansions (S. Hendili, F. Krasucki, M.
Vidrascu)

i) Variational convergence (M. Bellieud, F. Krasucki, G. Michalle;
F. Krasucki, P. E. Steltzig)
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Goals of the matched asymptotic expansions method

@ obtain a precise macroscopic behaviour replacing the layer by a surface

(low cost)
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Goals of the matched asymptotic expansions method

@ obtain a precise macroscopic behaviour replacing the layer by a surface

(low cost)
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@ and still obtain precise informations on the local fields near the

heterogeneities (important for the applications)




Matched asymptotic expansions

The problem (the unknown field solution is u®)
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The problem (the unknown field solution is u®)

x

‘ holes, elastic inclusions, rigid inclusions

What happens for e — 0 ?
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The problem (the unknown field solution is u®)

x

‘ holes, elastic inclusions, rigid inclusions

What happens for e — 0 ?

w w u

Ty Ty




Matched asymptotic expansions

The problem (the unknown field solution is u®)

x

‘ holes, elastic inclusions, rigid inclusions

What happens for e — 0 ?
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A two-scale internal boundary layer



Matched asymptotic expansions

The main steps of the matched asymptotic expansions method



Matched asymptotic expansions

The main steps of the matched asymptotic expansions method

* Decomposition of the domain and scale separation

* Associated asymptotic developments of the solution uc.

* Matching conditions
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The main steps of the matched asymptotic expansions method

* Decomposition of the domain and scale separation
* Associated asymptotic developments of the solution uc.
* Matching conditions

— Boundary value problems at the different orders

— Construction of the approximate solutions



Matched asymptotic expansions

The main steps of the matched asymptotic expansions method

* Decomposition of the domain and scale separation
* Associated asymptotic developments of the solution uc.
* Matching conditions

— Boundary value problems at the different orders

— Construction of the approximate solutions

Some references
* Van Dyke (1964).
* Nguetseng, Sanchez-Palencia (1986).
* Abdelmoula, Marigo (2000).
* G., Hendili, Krasucki, Vidrascu (2011).
* David, Marigo, Pideri (2012).




Matched asymptotic expansions

Domain decomposition
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Outer domain: Q°“!(g) := {x €Q; x| > 5}



Matched asymptotic expansions

Domain decomposition
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Outer domain: Q°(e) := {X €Q; [l > 5} Inner domain: Q" (¢) := {x €Q; x| < L(:)}

n(e)
€

with lim._,0 n(e) = 0 and lim._y¢ = oo



Matched asymptotic expansions

Domain decomposition

7 o
. € .
Outer domain: Q°(e) := {X €Q; [l > 5} Inner domain: Q" (¢) := {x €Q; x| < L(:)}
with lim._,0 n(e) = 0 and lim._y¢ 77(5) = oo

(6)

Overlapping region: 5 < |xl < —



Matched asymptotic expansions

\:Q

Scale separation in the inner domain

M(xM) € Qirt(e) = {XEQ; Ix1| < @}

M _ M
xM = ey]
xM=x! +eyM < L xM = xb +eyM

ol M
X3" =x3tey;

Consequences when € — 0

@ M(x,yM) with X = (x, x3)

@ the periodic cell is infinite in the
direction y;

@ the periodic cell is bounded in the

(4\~ S directions y» and y3




Matched asymptotic expansions

x

@ Outer development : far from w




Matched asymptotic expansions

x

@ Outer development : far from w

@ Inner development : near w

o0
UE(Xl,X2,X3) = ZE’VI()?,yl,y) ’
i=0
X1
= ;
g :'(Xi%? Xang’) I ¢ |~
v’ y-periodic




Matched asymptotic expansions

Matching conditions
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Matching conditions

Overlapping region:
5 <lxal< @ or

1
B<lnl=t<n2
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Matching conditions

In the overlapping region both expansions are valid

@ For every u’ one has for 0 < x1 < % :

i i - ou’ -
u'(x) = u'(0+, %) +xla—:1(0+,x) + ...
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Matching conditions

In the overlapping region both expansions are valid

@ For every u’ one has for 0 < x1 < % :

i i - ou’ -
u'(x) = u'(0+, %) +xla—:1(0+,x) + ...

@ hence since x; = ey;:

0
O I AR RN (UL PR (I

0/s N 1 N
= vy tev Gy, 9t

Overlapping region:

£
2
B<lnl=t <



Matched asymptotic expansions

Matching conditions

In the overlapping region both expansions are valid

@ For every u’ one has for 0 < x1 < % :

i i - ou’ -
u'(x) = u'(0+, %) +xla—:1(0+,x) + ...

@ hence since x; = ey;:

0
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Overlapping region:

(e) @ take the limit for ¢ — 0 with fixed x;:
£ <Ixa| < T or

Loyl =tal<ne lim  (vV’(%,y1,9) — u’(0£,%)) =0

y1—+oo

lim <v1(f<,y1,9) - (ul(Oi,ﬁ) +y12—?§(0i,)“<)>> =0

y1—*oo



Matched asymptotic expansions

Matching conditions

In the overlapping region both expansions are valid

@ For every u’ one has for 0 < x1 < % :

Do N Hul N
u'(x) = u'(0+, %) +xla—:1(0+,x) +...

@ hence since x; = ey;:

0
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0/s N 1 N
= vy tev Gy, 9t

Overlapping region:
n(e) @ take the limit for ¢ — 0 with fixed x;:
5 <|xal <5 or

L< iyl =l < 22 im (P(R1,9) - u(04,%)) =0
lim <v1(f< §) — (ul(Oi ) + 8—”0(% x))) =0
y—too y Y1, ¥ ) y1 ax1 B =

Analogous matching conditions hold for the stresses.
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Study of the problems at the different orders
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Study of the problems at the different orders

Order i =0
@ Quter approximation:
dive? =0 in Q
o’ = Ay’ inQ
o’n=F on g
u’ =0 on Iy

@ Inner approximation

VO (%) = u® (0, %)
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Study of the problems at the different orders

Order i =0
@ Quter approximation:
dive? =0 in Q
o’ = Ay’ inQ
o’n=F on g
u’ =0 on Iy

@ Inner approximation
VO (%) = u® (0, %)

@ The heterogeneities disappear at the order 0



Matched asymptotic expansions

Study of the problems at the different orders

Order i =0
@ Quter approximation:
dive? =0 in Q
o’ = Ay’ inQ
o’n=F on g
u’ =0 on Iy

@ Inner approximation
VO (%) = u® (0, %)

@ The heterogeneities disappear at the order 0
@ This result does not depend on the type of heterogeneity



Matched asymptotic expansions

Orderi=1

divel =0

in Q\w
in Q\w
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on [y



Matched asymptotic expansions

Orderi=1
divel =0 in Q\w
ol = Ay(u) in Q\w
oln=0 onlF
ul =0 on g

@ Transmission conditions on w :
[u'] (&) = u?;(0,%)ai, 0 0
[alel] (R) = |Y]d|vx (A (%(o,x) s ez + 20(0,%) ®s e3))
6

. (300

ovl—u (

X)cij



Matched asymptotic expansions

Orderi=1
divel =0 in Q\w
ol = Ay(u) in Q\w
oln=0 onlF
ul =0 on g

@ Transmission conditions on w :
[u'] (&) = u?;(0,%)ai,

IJ

[oles] (%) = | Y |divy (A (%ﬁ(o,x) s ez + 20(0,%) ®s e3))
—div, (52 (0%)b1;)

1_,0 e -
o vi =u(0,%)ci;
@ |Y| is the volume of the heterogeneity
@ the coefficients (a;j, bij, ¢i,j) are obtained from the solutions of some
elementary problems that only depend on the heterogeneity (as in

homogenization).



Matched asymptotic expansions

Conclusion
@ The layer of heterogeneities is replaced by the internal surface w

@ —> the macroscopic behaviour is computed on a domain without
heterogeneities

@ The coefficients (a; j, bij, ci,j) are computed only once

@ The microscopic behaviour is computed for only one heterogeneity Y
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Conclusion
@ The layer of heterogeneities is replaced by the internal surface w

@ —> the macroscopic behaviour is computed on a domain without
heterogeneities

@ The coefficients (a; j, bij, ci,j) are computed only once

@ The microscopic behaviour is computed for only one heterogeneity Y

Drawbacks

@ Only a formal method

@ The transmission conditions on the exterior problem of order i = 1 are
non usual

@ The microscopic scale for the interior domain leads to an unbounded
domain.




Matched asymptotic expansions

Conclusion
@ The layer of heterogeneities is replaced by the internal surface w

@ —> the macroscopic behaviour is computed on a domain without
heterogeneities

@ The coefficients (a; j, bij, ci,j) are computed only once

@ The microscopic behaviour is computed for only one heterogeneity Y

Drawbacks

@ Only a formal method

@ The transmission conditions on the exterior problem of order i = 1 are
non usual

@ The microscopic scale for the interior domain leads to an unbounded
domain.

A last (?) comment

The method has been developed in a particular situation (the geometry of the
heterogeneity is of the type €Y'); however it might be adapted for other
situations




Variational convergence

Goals of the variational convergence

@ To give a rigorous mathematical proof of the convergence of
the solution u® to u®

@ To characterize the problem whose solution is uC.

@ To obtain error estimates and/or a first corrector



Variational convergence

A joint work with M. Bellieud, F. Krasucki, G. Michaille
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Q= wn’



Variational convergence

A joint work with M. Bellieud, F. Krasucki, G. Michaille

Notations

Y = QnN{x =0}, T CR? bdd, Lipschitz
Fe=Uic, cie2+eT x (0, L)

/ﬁr 1. l.:={i€Z, ciea+¢eT x (=L, L) C Q}

2 divo® = f in Q
T 1 GKTZ; o° = Aetr(y(u))ls + 2uy(u¥))  in Q
x4 @ u =0 onl

e = polo\F. + kepalr,
Ae = dola\r. + keAilE,.

3Xo + 20 > 0, po >0,
3A+2u1 >0, u1 >0

Q= wn’

k. = X with p >0

eP



Variational convergence

Variational formulation

inf &, (u)
ueH} (4R3)

where

o-(u) = {; / Dre(try())? + pev(u) : y(u)ydx — / fuds}
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Variational convergence

Variational formulation

inf &, (u)
ueH} (4R3)

where

o-(u) = {; / Dre(try())? + pev(u) : y(u)ydx — / fuds}

@ a priori estimate + Korn'inequality = existence and uniqueness of the
solution u® with:

/ u® @ udx +/ F(u®) : y(u®)dx + ka/ () : y(u)dx < C
Q Q\Fe

e

@ u° converges weakly in Hy(Q; R®) to u®

Find the problem whose solution is u® , i.e. the I'-limit of ®.




Variational convergence

The I-limit of &, is:

o(u) = %/Q{)\o(tr'y(u))z—kuo'y(u) : 'y(u)}dx—/qudx+\U,:(u)




Variational convergence

The I-limit of &, is:

Oo(u) = 5 /Q Doltry(w))2 +pery(u) 2 v(u)}dx— /Q Fudx+ V()

A similar situation has been studied by A.L. Bessoud, F. Krasucki,
G. Michaille (2009) when F. is the full layer L.

= (—%, %) X Y.
They found
Sofu) == | Dualtry(w)+ or(u) s (o) o~ | fudk i

with two significant cases: p =1 and p = 3.



Variational convergence

Thecase p=1

full layer L.

Vi) = {522 (o3 ()) + 23 (w) s S(u)} o

Remark: plate membrane energy



Variational convergence

Thecase p=1

full layer L.

Vi) = [ (Gt (w) + 23 (u)  A(u) T

Remark: plate membrane energy

present situation

2 3)\1+2u1 / ous »
Ve(u) = k“p 200+ ) |8X3‘ dx

Remark: extensional strain energy of the fibers



Variational convergence

The case p =3
full layer L.
2)\1mu1 A 2 82U1 82U1
2 - -
/{)\1 + 2mu Aun)" +2m Oxa0xg 0xa0Xg

Remark: plate bending energy



Variational convergence

The case p =3

full layer L.

2)\1mu1 A 2 82U1 82U]_
2y L
/{)\1 + 2mu Aun)" +2m Oxa0xg 0xa0Xg

Remark: plate bending energy

present situation
2
31+ 2 8%uy 0% ug
Ve(u) = E ——————ka dx
F(u) R 6:1M12(/\1 + 1) s s Ox2 Ox2

Remark: bending energy of the fibers




Variational convergence

Proofs:
@ a priori estimates

@ choice of the good spaces : subspaces of H}(Q; R®) where
Ve (u) has a meaning for p =1, resp. p=3



Thank you !

tanti auguri Giannil!!
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