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Ou—Apu=0, in
{,u =—Au+f(u)—Iu, in Q
Physically relevant instance

1
f(s)—)\s:—ﬁcs—l—glnli_::, se(=1,1), 6.>60>0

@ f singular at +1

feC*(~1,1) lim f(s) = oo lim f'(s) = 400

s—+1 s—+1
@ f monotone increasing in (—1,1)  f'(s) >0
>0, s>0
Further assumptions : 0)=0 and ")~ -
prions : £(0) f<>{§07 e
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<« Variational formulation of the problem

<« Asymptotic Analysis without any further assumption on f (up to
exponential attractors)



Introduction Our model

Literature
e Cahn-Hilliard

Elliott-Zheng, Nicolaenko-Scheurer, Nicolaenko-Scheurer-Temam,
Novick-Cohen, Brochet-Hilhorst-Novick Cohen, Brochet-Hilhorst-Chen
Alt-Pawlow, Kenmochi-Niezgodka-Pawlow, Rybka-Hoffmann,
Colli-Gilardi-Grasselli-Schimperna...

e Singular Cahn-Hilliard

Elliott-Luckhaus, Elliott-Garcke, Debussche-Dettori, Abels-Wielke,
Li-Zhong, Miranville-Zelik,...

e Cahn-Hilliard with dynamic boundary conditions
Racke-Zheng, Chill-FaSangova-Priiss, Priiss-Racke-Zheng, Miranville-Zelik...
e Singular Cahn-Hilliard with dynamic boundary conditions

Gilardi-Miranville-Schimperna, Miranville-Zelik,
Ruiz Goldstein-Miranville-Schimperna

Review on Singular Cahn Hilliard with different boundary conditions :
Cherfils-Miranville-Zelik



Our results
@ Variational solutions



Our results

Our results

@ Variational solutions

@ Relation between variational and classical solutions



Our results

Our results

@ Variational solutions

@ Relation between variational and classical solutions

© Asymptotic analysis for variational solutions



Our results

Our results

@ Variational solutions

Approximate singular (P) by regular (Py) (+ replace f with fy)

@ Relation between variational and classical solutions

© Asymptotic analysis for variational solutions



Our results

Our results

@ Variational solutions
Approximate singular (P) by regular (Py) (+ replace f with fy)
3lUy solution to (Py), Lipschitz continuous dependence on the initial

data at any fixed time, a priori estimates, smoothing, dissipativity
uniformly in N

@ Relation between variational and classical solutions

© Asymptotic analysis for variational solutions



Our results

Our results

@ Variational solutions
Approximate singular (P) by regular (Py) (+ replace f with fy)

3lUy solution to (Py), Lipschitz continuous dependence on the initial
data at any fixed time, a priori estimates, smoothing, dissipativity
uniformly in N

AUy, — U but U is NOT classical solution what solution is U ?

@ Relation between variational and classical solutions

© Asymptotic analysis for variational solutions



Our results

Our results

@ Variational solutions
Approximate singular (P) by regular (Py) (+ replace f with fy)
3lUy solution to (Py), Lipschitz continuous dependence on the initial

data at any fixed time, a priori estimates, smoothing, dissipativity
uniformly in N

AUy, — U but U is NOT classical solution what solution is U ?

The monotonicity of fy 1 and f 1 allows to associate (Py) with (Vy)
and (P) with (V)
Since Uy solves (V) = U is (the variational) solution to (V)

@ Relation between variational and classical solutions

© Asymptotic analysis for variational solutions



Our results

Our results

@ Variational solutions
Approximate singular (P) by regular (Py) (+ replace f with fy)
3lUy solution to (Py), Lipschitz continuous dependence on the initial

data at any fixed time, a priori estimates, smoothing, dissipativity
uniformly in N

AUy, — U but U is NOT classical solution what solution is U ?

The monotonicity of fy 1 and f 1 allows to associate (Py) with (Vy)
and (P) with (V)
Since Uy solves (V) = U is (the variational) solution to (V)

@ Relation between variational and classical solutions

© Asymptotic analysis for variational solutions

For any fixed total mass I € (—1,1) 3.4, regular global attractor and
3 & exponential attractor = Bound on the fractal dimension of A;
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Abstract problem

o Let U = (u,ulr) and M = (p, u|1)
1
m(U) = W(/Qudx—i—/ru]rcﬁ]) and (U) = (m(U), m(U))

oU+AM =0
o fu) — Au in
M=AU+1(U) f(U) =
8¥) on I
U(0) = Uy
@ A is invertible with compact A~! on functions with null mass
U +AM-(M)) =0 A7QU+M - (M) =0
M =AU +1(U) — M =AU +1(U)

U(0) = U U(0) = U
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Exploit monotonicity
ATQU+M~- (M) =0 xU-V

M=AU+1(U) xU—-V V: m(V)=m(U)
U(0) = Uy
(A~lo,u,U - V)

+ (AU, U -~ V)+LIA'U, U~ V) + (f(U), U — V)
=LAT'U,U-V)

3o >03L>0: (AU, U) + (f(U), U)y+L|A~2U|
= [IVull + Vet = ol IR = Alluld + L|A™ U
coercive B(U,U)EHUH,ZHI/Z

+ (f(u), u)q + (8(¥) + 0%1/1)11 for U: m(U)=0

~
Jo>0: monotone increasing
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Since
B(U,U—-V)>B(V,U—-V)VYU,V suchthat m(U)=m(V)

and

(f(u),u—v)a+ (8(¥) + o, —w)r 2
FO)u=v)a+(gw) +owp—wir U= wv) V= (v,w)

(AT'QU,U—-V)+B(V,U—-V)+ (f(v),u—v)a
+(gw) +ow, v —w)r < LU — (U), A" (U~ V))
fora.a.t >0 VV = (v,v[r) € H! such that
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Our notion of a variational solution

YUy U(t) = (u(t), (1)) is a variational solution if U(0) = Uy and

o u(t)r = () and m(U(t)) = m(Uy) foraa. >0

o —1<u(x,t) <1, foralmostall (x,7) € Q2 x[0,00)

o UeC([0,4+00), ') N L*(0,T),H"), VT > 0,

o flu) € L'(Q x[0,T]), forany T >0

o QU e L([r,T,H): (U, )30 =0 ¥7€(0,T], YT >0,
o U(t)satisfies (V) :

(AU, U—-VY+B(V,U—-V)+ {f(v),u—v)a
+(g(v[r) + ovlr, ¥ —vir)r < LU — (U),A" (U~ V))
foraa.t >0, YV = (v,v[r) € H' such that

m(V) = m(Uy) and  f(v) € LY(Q)
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e JUy, —» Ubut U(r) = (u(t),1(t)) is NOT necessarily a classical
solution, since # may reach 41 on regions of I' x R™ with positive
measure. The normal derivative may have discontinuities

o uc L®((r,T|; W»'(Q)) forany0 < 7 < T
= [Ontt]ins := Onup € L>([7, 7], L1 (T"))
@ Uy, — U, the a priori estimates and the dynamic boundary condition
= A[Ontt]exs == lim  Oyup, ir € L>®([r,T],LX(I"))
Ny—+o0
Ou—Ap=0 inLl (Qx (1,T))
p=—Au+f(u)—Iu inL} (Qx(1,T))
u(t)lr = (), >0
db — Arplr = —0ap,  inLi, (U x (,T))
plr = —Ar + g(¥) + [Optt]ery onT, T >7>0

e Unfortunately [0,u], is not necessarily equal to [0,u]ey-




Our variational problem

Sufficient condition for U to be classical

If (%) |u(x,f)|<1 aein I'xRT = [Ouulin = [Ontt]ens

= U classical solution



Our variational problem

Sufficient condition for U to be classical

If (%) |u(x,f)|<1 aein I'xRT = [Ouulin = [Ontt]ens

= U classical solution

If (M) lirjIEllF(s):—i—oo (F'=f) = (%) holds true



Our variational problem

Sufficient condition for U to be classical

If (%) |u(x,f)|<1 aein I'xRT = [Ouulin = [Ontt]ens

= U classical solution
If (M) SgrjrtllF(s):+oo (FF=f) = (%) holds true

Property (H) holds true if f is strongly singular at +1 = No logarithmic
functional
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The semigroup

Let U = (u, )
& ={U € L*(Q) x L>(T) : [|ullz (@), [P llzoery < 1, m(U) € (=1, 1)}
o, ={Ue®: mU)=1I}, Ie(—1,1)
H' = H'(Q) x HY(T) € £? = [*(Q) x L(T) C (H')*

S(t) : (@, H') — (@7, H'")  closed semigroup
Up — U(1) solution to the variational problem (V)
(S(t), @) admits a compact absorbing set

=  3A; (®;,H'")—global attractor
A bounded in C%(2) x C%(I") has finite fractal dimension
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Exponential attractors

e [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
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We are dealing with variational solutions

How can we prove the existence of an exponential attractor ?

Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

ecloseto 1  f’ goes to +oo

= f'(1 —s) and f'(—1 + s) as large as we want if s > 0 is small enough
o far from £1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

e dBy compact, absorbing and positively invariant, where, in particular,
uniform bounds for the solutions hold true and u|r = .

o {By,1+(Uo, p) }zcB, are an open covering of By, for any 0 < p < py < 1
= we work on a finite number of balls
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0, xeQs(U)
1, xe ng(Uo)

o f'(u(x,1)) > A(9), x € Qs(Up), t€[0,T] contraction
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(o) Iy € (0,1) such that, forany Uy, U, € Bx(Up,p)
[SU; — SUs||x < ||U1 — Uallx + || Ky, (Ur) — Ky, (U2) |1

= 3&4 discrete exponential attractor with basin By endowed with the
X-topology.

X =H'", S = S(T(5)) where 6 small enough, p € (0, po()) and T = T(4)
Ky, : By (Uo, p) — L2 is Ky,U = (Ou(-),0)
Hy = L2([0, 7], ") N H' ([0, 7], H*") € H = L*([0, T], £?)
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o [[u(?)|lca(xr,i+1) < Cr, t > T and the Lipschitz continuous dependence
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As usual, from £ we obtain the continuous exponential attractor &;

& C C(Q) x C*(T)

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville,
Zelik 2004 ]

@ B exponentially attracts the bounded sets in ®;

@ & exponentially attracts By

Q [IS(\U1 — S Usllyg+ < ce!||Us — Unllpp=, VUL, Uz € &y
= the basin of attraction of & extends to ®;

= A; C & = A, has finite fractal dimension
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The example by Miranville and Zelik

An ill-posed CH equation

Assume fecl(-1,1) lim f(r) =+oco lim f'(r) = o0
r—=+1 r—=+1
f(0)=0 f20  geC-1,1]  A>0

If f is odd with F(u) = [ f(s)ds such that F(1) < oo and g = —K with
large enough K

=) +f(y) =0, xe(=1,1) (A=0)

= Fclassical solution to ,
Y(£1) =

o If K is not too large dyk odd, regular solution separated from =1
o If K is large enough = yx = y, singular solution to
{—yw) +f+) =0, xe (=11
y+(

= yk can not be classical
-=-1 y(1)=1
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