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1. Motivation

e Solid-Liquid phase transition
Well-posedness for the system between the
Stefan and Navier-Stokes equations

e Interpretation of the liquid region
(i) Classical Stefan problem

(ii) Enthalpy formulation (weak solution)

Variational formulation of Navier-Stokes equations in a material (solid-
liquid) region 2 with any test function n (suppn C €2,(60)),
(ex.) J. F. Rodrigues (2000). 8 € C((0,T) x £2).

N = 2, Navier-Stokes type.

N = 3, Non-Newtonian (dilatant fluid) type (mathematical reason)

It is not easy to formulate Navier-Stokes equations on the unknown
liquid region €2,(0).
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e Bingham fluid

. o . % Bingham Pseudoplastic
Bingham fluid is characterized by a flow 5
curve which is a straight line having an in- @

: (‘; Newtonian
tercept on the shear stress axis. S
: . : : <

(ex.) slurries, drilling muds, oil paints, @ Tilatant

toothpaste, etc. Shoar Tate

4

If the vield limit is exceeded, then the structure completely disinte-
grates and the system behaves as a Newtonian fluid.



Variational inequality of Bingham and Navier-Stokes type 4/10

e Bingham fluid

0<T < o0, ” Bingham Pseudoplastic
QQ C R3: bounded domain with smooth g
P
boundary 052, @
v = (v1,vp,v3): Vvelocity, § Hewtonian
p. pressure, ﬁ Dilatant
f = (f1, f2, f3): body force, Shear rate
T :=o;;: stress tensor,
ov . :
E—F(’U-V)’U:f‘Fd'VT in Q :=(0,T) x €, (1)
divv =0 in Q, (2)
v=0 onX:=(0,T)x022, v(0)=wvy Iin Q. (3)

3
divT — (Z 8013 Z 8023 Z 6033) .

1=1 le J]l
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e Bingham fluid

: Mseudoplastic
%, :
a—?—l—(v-V)v:f—l—divT in O, :
E Newtonian
divo =0 in Q, g
- ] N Dilatant
The stress tensor T := o;; is defined by
T = —pI + TP satisfying (Deviation) Shear rate
D
TP =2ouD + \Egﬁ if |D| > 0, (4)
ITP| <+/2g if and only if |D| =0, (5)
where, the shear rate (deformation rate) tensor is defined by
1 /(0v; = Ov,;
D :=DWw) =¢; (== L 2
() = iy = (awj + a@)

D] := (53,1 le;j|?)1/2, u > 0: viscosity coefficient.
g:Q — [0,400) is a function, stands for the yield limit.
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e Bingham fluid

§ Vseud(mlastic
0 H
8—?;—|—(v-V)v:f—|—divT in Q. 3
E Newtonian
divo =0 in Q, g
_ . @ Dilatant
The stress tensor T := o;; is defined by
T := —pI + TP satisfying (Deviation) shear rate
D
TP =2uD + \Fzgﬁ if |D| > 0,

ITP| <+v2¢ if and only if |D| =0,

§
Remark. Newton fluid TP =2uD  (g=0),

Dilatant fluid TP = 2u|DP~2D (for p > 2).




Variational inequality of Bingham and Navier-Stokes type 6/10

2. Well-posedness of variational inequality

e Notation

H = LQ(Q), V= Wol’Q(Q), V*: dual space of V;

V— H— V* (dense and compact imbeddings);

Ds(2) := {u € CF(R) := (CF(2))3; divu = 0 in Q};

H:=L2(Q), V:=W§5i(Q); Vo Ho VY

Bilinear functional a(-,-) : V x V — R and trilinear functional b(-,-,") :
VXV XV =R by

3
a(u,w) :=2u | D(u) : D(w)dx := 2u Z eij(u)(z)e;j(w)(z)dz,
Y Q

i,j=1
3 61}- v
b(u,v,w) = Y / wi(2) 2 (2w (z)de  (Tu,v,w € V),
i =1 Q 8$Z
noting that b(u,v,w) = —b(u,w,v), b(u,w,w) = 0 for all u,v,w € V;

1
|u|| := a(u,w)2, the equivalent norm of |ul|y .
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T he following convex constraint set plays the important role,

K = {zEV;|z(:p)|R3§c for a.a. a;EQ}, (6)
¢ > 0: constant. See, G. Prouse (1979), F - N. Kenmochi (2010).

Theorem. Assume f € L?(0,T: H), vg € K and g ¢ Wh1(0,T: H)
with ¢ > 0. Then, F1v € W12(0,T: H) N L>°(0,T; V) s.t.

v(t) e K Yte[0,T], (7)
(' (1), v(t) — z)g + a(v(t),v(t) — z)
+ b(v(t),v(t),v(t) — 2) + ﬁ/Q g(t, 2)| D) (¢, z)|dx

< V2 gt ) DE)@)ldz + (F(©),v(8) - 2)m
V2 € K and for a.a. t € (0,T), (8)

v(0) =vg in H.
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e Known result

- _ ™
¢ G. Duvaut - J. L. Lions, Inequalities in mechanics and physics,

\Springer Verlag, Berlin-Heidelberg-New York, 1976.

/N = 2, abstract form, constant g > 0O

o H. Brézis, J. Math. Anal. Appl., 39(1972), 159—-165.

N = 3, abstract form, constant g > O

¢ J. Naumann, Ann. Mat. Pure Appl.(4), 124(1980), 107—125.

N J
v'(t) + Av(t) + Bo(t) + dp(v(t)) 5 f(¢) in W™
N = 3, related abstract form.
o M. Otani, J. Differential Equations, 46(1982), 268—299.

v'(t) + 8¢t (v(t)) + Blo(t) > f(t) in H.

N = 3, constant g > 0
¢ Y. Kato, Nagoya Math. J., 129(1993), 53—95.
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e Known result for Boussinesg-Stefan
a - N
N = 3, Dilatant fluid p > 3, in order to obtain 6 € C(Q).

¢ J. F. Rodrigues, On the evolution Boussinesg-Stefan problem for
non-Newtonian fluids, pp.390—-397 in Vol.14, GAKUTO Internat.

KSer. Math. Sci. Appl., 2000.

%

Moreover, there are many results by his team for the Boussinesg-Stefan
problem of ‘“stationary Boussinesg-Stefan problem with the Bingham
fluid on the unknown liquid region with a non-negative constant ¢ > 0",
“Boussinesg-Stefan of different Non-Newtonian type’, etc.

e ~
Remark. In the above paper, he gave us the conjecture of the exis-

tence with respect to the special case of “solidification of Boussinesq-

Stefan problem of Bingham type with a constant g > 0" under the

Kassumption that the liquid zone decreases. )
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e Key of the proof R. Kano - N. Kenmochi -Y. Murase (2009):

b b V' (1) + 0ot (v;v(t)) 3 g(t) in H.
—0p,t) ‘=
[u e Wh2(=50,t; H) N L®(=50,t; V)i u(t) € K, "Vt € [~60,1]}.

Moreover, the functional ¢! : V(—dg,t) x H — R U {+o0} by

(21212 4+ V2 [ g(t.2)|D(2) ()| de
"a; z) ==« 2 _ oS / : VEEV(—cS t)
U, z)- + b(u(t),u(t),z) +c if z € K, 0, %/
\ ~+ o0 otherwise, N
-

Lemma. [A. Ito - N. Yamazaki - N. Kenmochi (2008)] J¢; > 0:
constant s.t.
' (@; 2) — ¢*(@; 2)|
< cflg(t) = g(s)|g + |[u®) —uls)|g (1 + ¢°(u; 2)),

sz c K, VueVv(-6y,T), Vs,t €[0,T].
/)
We need g € Wh1(0,T; H), namely we can treat the dependence of g

with respect to the temperature 6 € W171(O,T; H), cf. J. F. Rodrigues.




