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Background: MATHEON Project C9

Topic: Crystal growth from the melt (Czochralski method) in traveling magnetic fields

Project heads: J. Sprekels, O. Klein (Weierstrass-Institute Berlin), F. Tréltzsch (TU Berlin).

B Modeling, simulation, optimal control.

W Investigation of a convection damping method based on traveling
magpnetic fields: Heater Magnet Module, project KRISTMAG® of
Leibniz Institute of crystal growth Berlin (2008).

B Recently: modeling and control of effects associated with the
crystallization interface (free boundary).
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El Crystal growth, model equations, classical formulation

Some problems associated with the second order optimal shape of a crystallisation interface -

MAT2012, Cortona, 20 Sept. 2012 - Page 4 (27)

AD-



Model

Geometry for the analysis in the system crystal-melt. Model the local (near to) equilibria in time

SOLID

(process is very slow).

Heat equation for the temperature in the domain
Q:=Gx]—L, L]

S
—div(ks() V) = f(x)inQ\ S.
/\ 2L
G\/
Transmission conditions for the heat flux

LiQuID

[~ks VO -v]=A(z)on S.

0 —0uq =0, 0—0q=divsoy(z, v)+oz(z, V) v.

Stefan condition (without or with surface tension) on S

Minimization principle for the free energy

U(S, 0):= /Sa(m, v)dH, +/a k() xs dHz — /9(9 — Oeq) xs dz .

Gx]—L,L|
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A general remark on weak formulation

Quoting: Giaquinta, Modica, Soucéek, Cartesian currents in the calculus of variations about the
problem of minimal surfaces:

Geometric measure theory provides in some sense the right setting for that.
However, the result will be a kind of collection of problems, the precise formulation of
each problem depending on the definitions one adopts for "surface”, "boundary” and
"area”

=> There is a part of freedom in how to interpret a geometric equation. Geometric measure
theory introduces notions of a surface sufficiently general/weak to allow for topological
changes, compactness, lower s.c. of typical free energies.

Surface := boundary of a Caccioppoli set (x € BV (Q), |x| = 1 a. e. in Q). Free-energy:

W 0) = [ ot g aDx+ | k(@) xdts ~ [ (6~ 6) xda.
|D ‘ 8Gx]—L,L| Q
Parametric minimization problem for the free energy W:

Min W (y, 0), x € BV(Q), |x| = 1 almost everywhere, 0 fixed.

Some problems associated with the second order optimal shape of a crystallisation interface - AD- W
MAT2012, Cortona, 20 Sept. 2012 - Page 6 (27) AS)



Special features/ Control

Special features of the application in crystal growth:

B Industrial crystal growth is a controled process. In particular, there is a control on the
topology of the interface.

B There is a fixed crystallization direction imposed by the applied temperature gradient.
No topological change is expected if the system is properly controled. Moreover:

B Defect formation in crystal growth: interest for the optimal shape of S.

B Need to control the shape up to second order quantities (convexity, curvature).

All this cannot be expressed for too general a notion of surface.
Non-parametric minimization problem for the surface free-energy W (.S, ). Minimization in a
class of graphs in a fixed coordinate system S = graph(¢; G)

U (1, 0) ::/Ga(a?, ¥, V) dz + /ac(/ sign(t — () k(Z, ¥ (Z), t) dt) dHq

—L

—/(/ sign(t — ¢¥(2)) 0(z, Y (Z), t) dt) dT .
G

—L

Here 5(x, q) = o(z, —q, 1) (g € R?) satisfies Ao /1 + ¢2 < &(z,q) < po /1 + ¢2.
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Graph solutions

Under what kind of assumption can we apply the classical approach ?

Consider data o and & independent on the z—variable: 0 = o(Z, q), k = k(Z), T € G.
Assume that ¢ — o(Z, q) is convex.

For the temperature gradient assume the strong sign condition

sup 0.0 < 0.
G xR

These conditions garanty that the non-parametric free energy W is convex!

B The equation associated with the Stefan condition (o = 0):
0(z, v(z)) =0forz € G,

has a unique solution 1/ € G?(G) provided that § € C?(G x R) (Implicit function
theorem).

B The contact angle problem for the generalized mean curvature equation
—divae(z, Vi) = 0(z, ¥)inG, —54(Z, V¥) - n(T) = k(T) on G,

has a unique solution in C**(G) provided that @ € C'**(G x R) [results by Uraltseva,
L. Simon, Spruck, Trudinger (1970s, 1980s)].
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E The control approach
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Control postulates

The non-parametric approach of the geometric problem is justified for monotone temperature
profiles along the z—direction.

Problem for the mathematical method: the sign condition 0.6 < 0 in €2 is not to expect for
the solution of a general heat equation and explicit classes of data.

Heat sources, liquid convection, anisotropic heat diffusion, transmission conditions can deviate
the applied temperature gradient.

— Difficulties to couple the mean curvature eq. approach to the heat equation in
mathematical analysis.

The legitimacy of the classical problem formulation relies on control theoretical
assumptions:
We postulate that the crystallization process can be controled in such a way:
B That 0.6 < 0 pointwise in €2 (pointwise state constraint for 0. 6);
B Thatthereis 0 < L' < L suchthat —L' < ¢(Z) < L’ forall T € G (pointwise state
constraint on ).
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Optimal control
Our approach in control theory
B Solve the heat equation — div(kVE) = f in  with the radiation boundary condition
—kVO-n=p3(0"—0.,)ondQ.

Control the external temperature in 0.

B Solve a regularized mean curvature equation
—dive(z, Vy) = E(0)(Z, v)inG, —a&(Z, Vi) -n(Z) = k(&) on 0G,
with a monotonization operator, for instance
E(0)(%,2) = 0(%,2) — [[[0:0 = 7] |12y 2, 7 <0.
B Impose pointwise state constraints
0.0 <y<0inQ, —-L' <y<LinG.

Def: Call feasible a control Ur if solution(s) (6, 1)) satisfy the pointwise state constraints.
Note: F(6) = 0 for a feasible control.
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A one-phase problem. Differentiable optimization
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A smooth problem

We first study the situation that the heat equation decouples from the geometric equation, and

can be solved independently. That means:

B One-phase problem: Kiquia = ksoia, Where k = heat-conductivity;

B No release of latent heat, purely static equilibrium: [-kV6# - v] = A =00n S.
Results:

B Existence of a (continuously differentiable) control to state mapping

O € WH(Q) (¢ > 3) — (1, 0) € C*(G) x W>(Q).

B Existence of an optimal control for the relevant second order objective functionals:

1 1
J(, 0) = = | — Yalfy22c) + = 110 — Oallfr.2(s) -
2 2

B Lagrange multipliers, adjoint equation, first order optimality system.
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Solution operator to the heat equation

Assume that Q = Gx]| — L, L[, with G C R? a bounded domain of class C*. Assume that
f € L), g > 3. Let k be uniformly elliptic and satisfy

_ ];0 7. 1/, w2X2
k_<0 1), ke C'(Q; RP?).

Letu € W"(Q). Then, there is a unique 0 € W>4(Q) satisfying

—div(kVe) = finQ, —kVO-n=73(60°60—|u*u)ondQ.

Proof: 'y := OGx] — L,L[, T2 := G x {—L, L}.

Look at the PDEs and boundary conditions satisfied by the derivatives of 6, in particular by the
functions 6., knr, - V@ and (nr, X e.) - V0 (distributional sense).

Relying on the structure of k and the fact that I'; and I's meet at right angle, the claim follows
from the Wl’q—theory for elliptic equations with mixed boundary conditions on Lipschitz
domains.
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Solution operator to the mean curvature equation

G C R?, a bounded domain of class C**, a €]0, 1]; o € C*(G x R* \ {0}), convex and
one-homogeneous in the q—variable; k € C*(0G) satisfies the assumption ||#||co < Ao
(Mo = largest constant such that o (Z, q) > Mo |q|)-

0 € C(G x R) satisfies the condition o := supgygr 0= < 0in G x R.

Then there is a unique ¢ € C***(G)) solution to

—divae(z, VY) = 0(z, ¥) inG, —adq4(Z, V) - n(Z) = k(T) on G .

Proof: Uraltseva in

B (1971) 0 = 0(q), k = 0, G convex. A priori estimates.
B (1973) 0 = o(q), k = const, G convex. Gradient estimate.
B (1975) 0 = |g|, k = const. Gradient estimate.
B (1984) 0 = 0(Z, q), k = k(z). Gradient estimate.

[Survey and some extensions on existence, uniqueness and a priori estimates in Druet, Port.
Mat., to appear].
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Extension and monotonization operator

The composition of both solution-operators is not well defined! The solution of the heat
equation:

B Does not necessarily satisfy 6, < 0;

B s defined only in a bounded cylinder Gx] — L, L.

Lemma

Lety < 0,and0 < L’ < L. Then, there is a continuously differentiable operator
E=E, 1 : W»(Q) - C"*(G x R) such that

sup 8. E(#) < 0 foralld € W>9(Q).
GXR

Moreover, E(0) = 0 in Qs forall @ € W2%(Q) such thatsupg, 9.0 < 7.
Proof: Denote co = embedding constant for W19 (2) — C(Q). Let g(t) ~ [t — ] . For
0 c WH1(Q)
P(0)(7,2) =0(z,2) = co ' 1900 lwrage) 2, (%,2) € Q.
Let f(t) = sign(¢) min{|¢|, L}, f > 0, f(¢) = tfor |t| < L’. Define
B(0)(@,2) = PO)(&, f(2)) (3,2) € G xR.
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Optimal control problem

Control space U = W7(Q). State space Y := C**(G) x W>7(Q).

Control to state mapping S : U — Y, u +— y = (3, ) unique solution to

—div(kV8) = f inQ, —kVO-n= 06100 — |ul*u) on HQ
—divay(z, VY) = E(0)(Z, ) in G,—54(Z, V) - n(Z) = k(T) on 9G.

Objective functional J : Y — R*; Denote also J : Y x U — R™ the regularization
p
Iy, w) == J(y) + . lullly, p>0.
Set of admissible controls

emin S’U/Semax on 902
Uw:=quelU:qu>0 onG x {—L}
u<0 onG x {L}
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Optimal control problem

Optimal control problem

(Po) = min {f(u) := J(S(u), u)}

u€Uag

subject to the state constraints

L' < y@E) < L forzedq,
Omin < 0(Z,2) < Omax for (z,2) € Q,
0.0(z,z) <~ for(z,2z) €.

Assume that the functional J is nonnegative and lower-semicontinuous in the topology of
C?(G) x C*(Q). Ifthere is at least one feasible control in Usq, then the problem (P
admits a (possibly not unique) optimal feasible solution u. € U q.

Proof: By assumption, there is a least one minimal sequence of feasible controls {un} C Ug.
Since { f(ux)} is bounded, also ||un||v < C, and {(¢n, 0r)} = {S(un)} is bounded in
C**(G) x W>(Q).
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Differentiability

Differentiability of S/ Solvability of the linearized problem.
Recally = (¢, 8) € Y. Introduce an operator T : Y x U — Z

Z = C*(G) x CV*(8G) x LY(Q) x WhH(Q)
T(y, u) = (Mean curvature eq, Contact-angle b. c., Heat eq., Rad. b. c.)
Note: all coefficients and functions involved in T" are continuously differentiable.

Letu® € U, and denote (v*, 6%) = y* = S(u™). Consider
Then, the equation 0, T (y*, w*)y = F has a unique solutiony = (¢, 0) € Y such that

_ﬁ(aqi,qj (&, Vi©) 0a, ) — B B(07) (&, °) % = E'(67) 6(z, ¥°) + F1 inG,

—niéqi’qj(i, Vw*)amj¢:F2 on 0G ,
—div(kV6) = F3 in€,
—kVO-n=48|0"20 + F, on Q.

Corollary: Formula S’ (u*) u = — [0, T(S(u*), u*)] 7! 8. T(S(u*), u*) u.
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B Bilateral coupling. Non-differentiable optimization
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Coupled system

Let us now consider a bilateral coupling between the heat equation and the geometric
equation:
B Two-phases problem: kiqua 7 Ksoia, Where k = heat-conductivity;
B No release of latent heat, purely static equilibrium: [-kV6# - v] = A =0o0n S.
Thus, we consider the system of equations
—div(ks VO) = finQ\ S, —[ksVO-v]=00nS
—divag(z, VY) =0(z, ) inG.
New problems in analysis:
B Regularity of the temperature: che regularity is excluded by the transmission conditions.
B Gradient estimate in the mean curvature equation is not clear.
B Existence and uniqueness (operator F' requires Lispchitz continuous temperature).
New problem in optimal control:
B Temperature gradient discontinuous at interfaces implies that the nonlinear differential
operator
—div a—(J(i'7 V’/’) - 9(j7 1/1) )

has no continuous %) derivative.
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Results

Results: a priori estimates. For (1, 6) a sufficiently smooth solution to the problem:

B The principal curvatures on the surface S = graph(v; G) are bounded a priori [Local
results by L. Simon, Trudinger; Our contribution are estimates up to the boundary of S].

B Bounds for the temperature in W27 (€2;) (r < 2), in W2(Q;) and W (Q) spaces
under compatibility conditions for the junction of the surfaces S and 0f2, the boundary
data, and the coefficient matrices Kiquia and Ksoiia-

B Existence with a regularization operator E.
Results: Control theory
B Existence of an optimal feasible control.

B Weaker first order necessary conditions (directional derivatives).
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Curvature estimate

Assume that S = graph(v; G) is a C? graph-solution to the problem

divs oq(z, v) + ox(z, v) - v =0(x)on S, oq(z, v) n(x) = r(x)ondS.

For x € 0.5, assume that the function

p = oq(z, V1 =p?n(z) +p17(z) + p2e:) - n(z)

is concave on B (0; R?).
Then for o €]0, 1] arbitrary

[0v] < Ca ([1fllca @) + [IKllcr.o o) -

Note: Hoelder bounds for the solution € to the heat equation depend on the eigenvalues of the
matrices Kiiquia @nd Ksoiig, but not on the structure of .S
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Regularity of the temperature
Setting for the regularity statement on the temperature:

Q = Gx] — L, L[, with G C R? a bounded domain of class C.

Let S be a given surface of class C2 of the relevant topology: S C Gx]— L', L[, with
L' < L, and the intersection S N OG x| — L, L[ is a single closed curve.

Contact-angle o between S and I'y := G x| — L, L[ defined via cosa = v - n.

For the simplicity of the statement, assume that Kiqua 7 Ksolia @re positive constants.

Compatibility function at triple point: f; = fq(a) := cos .
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Neumann problem

Consider the Neumann-problem:

—div(ksV8) = finQ, [-ksVEO-v]=0o0nS
—kVO-n=QondN.

Assume that f € L9(2), ¢ > 3. Let Q € W"4(R2). Assume that:

1. The compatibility function satisfies fq4 = cosa > 0 on dS;
2. The function Q has a representation Q = fq Q1 + Q2 with@Q, € W/ q/’q(Fl) and
Q2 € WY (Ty).
Then, every solution to the Neumann-problem belongs to W*°°(Q), and to W2 (Qjguis) and
w2 (Qso/id)-
If only the condition 2. holds, then 6 € W (Qguia), 0 € W2 (Qsoiis) forar > 6/5.
In these statements the relevant norm of ||6)| is continuously controled in terms of the data

f, Qand|dv|.
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Dirichlet-problem

Consider the Dirichlet-problem

—div(ksV8) = finQ, [-ksVEO-v]=0o0nS
0= asxz on Of).

Assume that f € LY(Q), ¢ > 3. Let O € W>9(Q). Assume that:

1. The compatibility function satisfies fq < 0 on O.S (opposite sign of the inequality!);

2. The representationn’ - VOgq = fa U1 + Uz withU; € Wl/q,’q(l“l) and

Uz € W&/ T9(Ty).

Then, the unique solution to the Dirichlet-problem belongs to W *°° () and to W22 (Qjiguia)
and W2’2 (qulfd) .
If only the condition 2. holds, then 6 € W (Qiguia), 0 € W2 (Qsoiis) forar > 6/5.
In these statements the relevant norm of ||6)| is continuously controled in terms of the data

f, Qand|dv|.

Proofs: Druet, Math. Bohem. to appear. General case fq = fa(k, ).
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Application to solvability

Application: Consider the isotropic surface problem
divsv=60onS, v-n=~kondS.

The contact angle cos « is given!

If || > 0 on 8 or k = 0, either the Dirichlet problem or the Neumann problem is solvable
with § in a bounded set of TW1+°° ().

The regularized mean curvature equation is uniquely solvable.

Fixed-point procedure for existence of solution.
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