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� Modeling, simulation, optimal control.

� Investigation of a convection damping method based on traveling

magnetic fields: Heater Magnet Module, project KRISTM̃AG
R©of

Leibniz Institute of crystal growth Berlin (2008).

� Recently: modeling and control of effects associated with the

crystallization interface (free boundary).
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Model

Geometry for the analysis in the system crystal–melt. Model the local (near to) equilibria in time

(process is very slow).

Heat equation for the temperature in the domain

Ω := G×] − L, L[

− div(kS(θ)∇θ) = f(x) in Ω \ S .

Transmission conditions for the heat flux

[−kS ∇θ · ν] = λ(x) on S .

G

S

2L

SOLID

LIQUID

Stefan condition (without or with surface tension) on S

θ − θeq = 0 , θ − θeq = divS σq(x, ν) + σx(x, ν) · ν .

Minimization principle for the free energy

Ψ(S, θ) :=

Z

S

σ(x, ν) dH2 +

Z

∂G×]−L,L[

κ(x)χS dH2 −

Z

Ω

(θ − θeq)χS dx .
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A general remark on weak formulation

Quoting: Giaquinta, Modica, Souček, Cartesian currents in the calculus of variations about the

problem of minimal surfaces:

Geometric measure theory provides in some sense the right setting for that.

However, the result will be a kind of collection of problems, the precise formulation of

each problem depending on the definitions one adopts for ”surface”, ”boundary” and

”area”

⇒ There is a part of freedom in how to interpret a geometric equation. Geometric measure

theory introduces notions of a surface sufficiently general/weak to allow for topological

changes, compactness, lower s.c. of typical free energies.

Surface := boundary of a Caccioppoli set (χ ∈ BV (Ω), |χ| = 1 a. e. in Ω). Free-energy:

Ψ(χ, θ) :=

Z

Ω

σ(x,
Dχ

|Dχ|
) d|Dχ| +

Z

∂G×]−L,L[

κ(x)χdH2 −

Z

Ω

(θ − θeq)χdx .

Parametric minimization problem for the free energy Ψ:

Min Ψ(χ, θ), χ ∈ BV (Ω), |χ| = 1 almost everywhere, θ fixed.
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Special features/ Control

Special features of the application in crystal growth:

� Industrial crystal growth is a controled process. In particular, there is a control on the

topology of the interface.

� There is a fixed crystallization direction imposed by the applied temperature gradient.

No topological change is expected if the system is properly controled. Moreover:

� Defect formation in crystal growth: interest for the optimal shape of S.

� Need to control the shape up to second order quantities (convexity, curvature).

All this cannot be expressed for too general a notion of surface.

Non-parametric minimization problem for the surface free-energy Ψ(S, θ). Minimization in a

class of graphs in a fixed coordinate system S = graph(ψ;G)

Ψ(ψ, θ) :=

Z

G

σ̄(x̄, ψ, ∇ψ) dx̄+

Z

∂G

(

Z L

−L

sign(t− ψ(x̄))κ(x̄, ψ(x̄), t) dt) dH1

−

Z

G

(

Z L

−L

sign(t− ψ(x̄)) θ(x̄, ψ(x̄), t) dt) dx̄ .

Here σ̄(x, q) = σ(x, −q, 1) (q ∈ R
2) satisfies λ0

p

1 + q2 ≤ σ̄(x, q) ≤ µ0

p

1 + q2.
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Graph solutions

Under what kind of assumption can we apply the classical approach ?

Consider data σ and κ independent on the z−variable: σ = σ(x̄, q), κ = κ(x̄), x̄ ∈ G.

Assume that q 7→ σ(x̄, q) is convex.

For the temperature gradient assume the strong sign condition

sup
G×R

∂zθ < 0.

These conditions garanty that the non-parametric free energy Ψ is convex!

� The equation associated with the Stefan condition (σ = 0):

θ(x̄, ψ(x̄)) = 0 for x̄ ∈ G ,

has a unique solution ψ ∈ C2(G) provided that θ ∈ C2(G× R) (Implicit function

theorem).

� The contact angle problem for the generalized mean curvature equation

− div σ̄q(x̄, ∇ψ) = θ(x̄, ψ) in G, −σ̄q(x̄, ∇ψ) · n(x̄) = κ(x̄) on ∂G ,

has a unique solution in C2,α(G) provided that θ ∈ C1,α(G× R) [results by Uraltseva,

L. Simon, Spruck, Trudinger (1970s, 1980s)].
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Control postulates

The non-parametric approach of the geometric problem is justified for monotone temperature

profiles along the z−direction.

Problem for the mathematical method: the sign condition ∂zθ < 0 in Ω is not to expect for

the solution of a general heat equation and explicit classes of data.

Heat sources, liquid convection, anisotropic heat diffusion, transmission conditions can deviate

the applied temperature gradient.

=⇒ Difficulties to couple the mean curvature eq. approach to the heat equation in

mathematical analysis.

The legitimacy of the classical problem formulation relies on control theoretical

assumptions:

We postulate that the crystallization process can be controled in such a way:

� That ∂zθ < 0 pointwise in Ω (pointwise state constraint for ∂zθ);

� That there is 0 < L′ < L such that −L′ < ψ(x̄) < L′ for all x̄ ∈ G (pointwise state

constraint on ψ).
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Optimal control

Our approach in control theory

� Solve the heat equation − div(k∇θ) = f in Ω with the radiation boundary condition

−k∇θ · n = β (θ4 − θ4Ext) on ∂Ω .

Control the external temperature in θExt.

� Solve a regularized mean curvature equation

− div σ̄(x̄, ∇ψ) = E(θ)(x̄, ψ) in G, −σ̄(x̄, ∇ψ) · n(x̄) = κ(x̄) on ∂G ,

with a monotonization operator, for instance

E(θ)(x̄, z) = θ(x̄, z) − ‖[∂zθ − γ]+‖L∞(Ω) z , γ < 0 .

� Impose pointwise state constraints

∂zθ ≤ γ < 0 in Ω, −L′ ≤ ψ ≤ L′ in G .

Def: Call feasible a control θExt if solution(s) (θ, ψ) satisfy the pointwise state constraints.

Note: E(θ) = θ for a feasible control.
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A smooth problem

We first study the situation that the heat equation decouples from the geometric equation, and

can be solved independently. That means:

� One-phase problem: kliquid = ksolid, where k = heat-conductivity;

� No release of latent heat, purely static equilibrium: [−k∇θ · ν] = λ = 0 on S.

Results:

� Existence of a (continuously differentiable) control to state mapping

θExt ∈W 1,q(Ω) (q > 3) 7−→ (ψ, θ) ∈ C2,α(G) ×W 2,q(Ω) .

� Existence of an optimal control for the relevant second order objective functionals:

J(ψ, θ) :=
1

2
‖ψ − ψd‖

2
W2,2(G) +

1

2
‖θ − θd‖

2
W1,2(S) .

� Lagrange multipliers, adjoint equation, first order optimality system.
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Solution operator to the heat equation

Lemma

Assume that Ω = G×] − L, L[, with G ⊂ R
2

a bounded domain of class C2
. Assume that

f ∈ Lq(Ω), q > 3. Let k be uniformly elliptic and satisfy

k =

 

k̃ 0

0 1

!

, k̃ ∈ C1(Ω; R
2×2) .

Let u ∈W 1,q(Ω). Then, there is a unique θ ∈W 2,q(Ω) satisfying

− div(k∇θ) = f in Ω, −k∇θ · n = β (|θ|3 θ − |u|3 u) on ∂Ω .

Proof: Γ1 := ∂G×] − L,L[, Γ2 := G× {−L,L}.

Look at the PDEs and boundary conditions satisfied by the derivatives of θ, in particular by the

functions θz , knΓ1
· ∇θ and (nΓ1

× ez) · ∇θ (distributional sense).

Relying on the structure of k and the fact that Γ1 and Γ2 meet at right angle, the claim follows

from the W 1,q−theory for elliptic equations with mixed boundary conditions on Lipschitz

domains.
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Solution operator to the mean curvature equation

Lemma

G ⊂ R
2
, a bounded domain of class C2,α

, α ∈]0, 1]; σ ∈ C3(G× R
3 \ {0}), convex and

one-homogeneous in the q−variable; κ ∈ C1,α(∂G) satisfies the assumption ‖κ‖∞ < λ0

(λ0 = largest constant such that σ(x̄, q) ≥ λ0 |q|).

θ ∈ C1,α(G× R) satisfies the condition γ0 := supG×R
θz < 0 in G× R.

Then there is a unique ψ ∈ C2,α(G) solution to

− div σ̄q(x̄, ∇ψ) = θ(x̄, ψ) in G, −σ̄q(x̄, ∇ψ) · n(x̄) = κ(x̄) on ∂G .

Proof: Uraltseva in

� (1971) σ = σ(q), κ = 0, G convex. A priori estimates.

� (1973) σ = σ(q), κ = const, G convex. Gradient estimate.

� (1975) σ = |q|, κ = const. Gradient estimate.

� (1984) σ = σ(x̄, q), κ = κ(x). Gradient estimate.

[Survey and some extensions on existence, uniqueness and a priori estimates in Druet, Port.

Mat., to appear].
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Extension and monotonization operator

The composition of both solution-operators is not well defined! The solution of the heat

equation:

� Does not necessarily satisfy θz < 0;

� Is defined only in a bounded cylinder G×] − L,L[.

Lemma

Let γ < 0, and 0 < L′ < L. Then, there is a continuously differentiable operator

E = Eγ, L′ : W 2,q(Ω) → C1,α(G× R) such that

sup
G×R

∂zE(θ) < 0 for all θ ∈W 2,q(Ω) .

Moreover, E(θ) = θ in ΩL′ for all θ ∈W 2,q(Ω) such that supΩ ∂zθ ≤ γ.

Proof: Denote c0 = embedding constant for W 1,q(Ω) → C(Ω). Let g(t) ≈ [t− γ]+. For

θ ∈W 2,q(Ω)

P (θ)(x̄, z) = θ(x̄, z) − c−1
0 ‖g(θz)‖W1,q(Ω) z , (x̄, z) ∈ Ω .

Let f(t) ≈ sign(t) min{|t|, L}, f ′ > 0, f(t) = t for |t| ≤ L′. Define

E(θ)(x̄, z) := P (θ)(x̄, f(z)) (x̄, z) ∈ G× R .
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Optimal control problem

Control space U = W 1,q(Ω). State space Y := C2,α(G) ×W 2,q(Ω).

Control to state mapping S : U → Y , u 7→ y = (ψ, θ) unique solution to

− div(k∇θ) = f in Ω, −k∇θ · n = β (|θ|3θ − |u|3u) on ∂Ω

− div σ̄q(x̄, ∇ψ) = E(θ)(x̄, ψ) in G,−σ̄q(x̄, ∇ψ) · n(x̄) = κ(x̄) on ∂G .

Objective functional J : Y → R
+; Denote also J : Y × U → R

+ the regularization

J(y, u) := J(y) +
ρ

q
‖u‖q

U , ρ > 0 .

Set of admissible controls

Uad :=

8

>

>

<

>

>

:

u ∈ U :

8

>

>

<

>

>

:

θmin ≤ u ≤ θmax on ∂Ω

u ≥ 0 on G× {−L}

u ≤ 0 on G× {L}

9

>

>

=

>

>

;

.
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Optimal control problem

Optimal control problem

(Popt) = min
u∈Uad

{f(u) := J(S(u), u)}

subject to the state constraints

−L′ ≤ ψ(x̄) ≤ L′ for x̄ ∈ G ,

θmin ≤ θ(x̄, z) ≤ θmax for (x̄, z) ∈ Ω ,

∂zθ(x̄, z) ≤ γ for (x̄, z) ∈ Ω .

Lemma

Assume that the functional J is nonnegative and lower-semicontinuous in the topology of

C2(G) × C1(Ω). If there is at least one feasible control in Uad, then the problem (Popt)

admits a (possibly not unique) optimal feasible solution u ∈ Uad.

Proof: By assumption, there is a least one minimal sequence of feasible controls {un} ⊂ Uad.

Since {f(un)} is bounded, also ‖un‖U ≤ C , and {(ψn, θn)} = {S(un)} is bounded in

C2,α(G) ×W 2,q(Ω).
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Differentiability

Differentiability of S / Solvability of the linearized problem.

Recall y = (ψ, θ) ∈ Y . Introduce an operator T : Y × U → Z

Z := Cα(G) × C1,α(∂G) × Lq(Ω) ×W 1,q(Ω)

T (y, u) = (Mean curvature eq, Contact-angle b. c., Heat eq., Rad. b. c.)

Note: all coefficients and functions involved in T are continuously differentiable.

Lemma

Let u∗ ∈ U , and denote (ψ∗, θ∗) = y∗ = S(u∗). Consider

Then, the equation ∂yT (y∗, u∗) y = F has a unique solution y = (ψ, θ) ∈ Y such that

−
d

dxi
(σ̄qi, qj

(x̄, ∇ψ∗) ∂xj
ψ) − ∂zE(θ∗)(x̄, ψ∗)ψ = E′(θ∗) θ(x̄, ψ∗) + F1 in G ,

−ni σ̄qi, qj
(x̄, ∇ψ∗) ∂xj

ψ = F2 on ∂G ,

− div(k∇θ) = F3 in Ω,

−k∇θ · n = 4β |θ∗|3θ + F4 on ∂Ω .

Corollary: Formula S ′(u∗)u = −[∂yT (S(u∗), u∗)]−1 ∂uT (S(u∗), u∗)u.
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Coupled system

Let us now consider a bilateral coupling between the heat equation and the geometric

equation:

� Two-phases problem: kliquid 6= ksolid, where k = heat-conductivity;

� No release of latent heat, purely static equilibrium: [−k∇θ · ν] = λ = 0 on S.

Thus, we consider the system of equations

− div(kS ∇θ) = f in Ω \ S, −[kS ∇θ · ν] = 0 on S

− div σ̄q(x̄, ∇ψ) = θ(x̄, ψ) in G .

New problems in analysis:

� Regularity of the temperature: C1,α regularity is excluded by the transmission conditions.

� Gradient estimate in the mean curvature equation is not clear.

� Existence and uniqueness (operator E requires Lispchitz continuous temperature).

New problem in optimal control:

� Temperature gradient discontinuous at interfaces implies that the nonlinear differential

operator

− div σ̄q(x̄, ∇ψ) − θ(x̄, ψ) ,

has no continuous ψ derivative.
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Results

Results: a priori estimates. For (ψ, θ) a sufficiently smooth solution to the problem:

� The principal curvatures on the surface S = graph(ψ; G) are bounded a priori [Local

results by L. Simon, Trudinger; Our contribution are estimates up to the boundary of S].

� Bounds for the temperature in W 2,r(Ωi) (r < 2), in W 2,2(Ωi) and W 1,∞(Ω) spaces

under compatibility conditions for the junction of the surfaces S and ∂Ω, the boundary

data, and the coefficient matrices kliquid and ksolid.

� Existence with a regularization operator E.

Results: Control theory

� Existence of an optimal feasible control.

� Weaker first order necessary conditions (directional derivatives).
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Curvature estimate

Assume that S = graph(ψ; G) is a C2 graph-solution to the problem

divS σq(x, ν) + σx(x, ν) · ν = θ(x) on S, σq(x, ν) · n(x) = κ(x) on ∂S .

For x ∈ ∂S, assume that the function

p 7→ σq(x,
p

1 − p2 n(x) + p1 τ(x) + p2 ez) · n(x)

is concave on B1(0; R
2).

Then for α ∈]0, 1] arbitrary

| δ ν| ≤ Cα (‖θ‖Cα(Ω) + ‖κ‖C1,α(∂Ω)) .

Note: Hoelder bounds for the solution θ to the heat equation depend on the eigenvalues of the

matrices kliquid and ksolid, but not on the structure of S!
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Regularity of the temperature

Setting for the regularity statement on the temperature:

Ω = G×] − L, L[, with G ⊂ R
2 a bounded domain of class C2.

Let S be a given surface of class C2 of the relevant topology: S ⊂ G×] − L′, L′[, with

L′ < L, and the intersection S ∩ ∂G×] − L,L[ is a single closed curve.

Contact-angle α between S and Γ1 := ∂G×] − L,L[ defined via cosα = ν · n.

For the simplicity of the statement, assume that kliquid 6= ksolid are positive constants.

Compatibility function at triple point: fd = fd(α) := cosα.
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Neumann problem

Consider the Neumann-problem:

− div(kS ∇θ) = f in Ω, [−kS ∇θ · ν] = 0 on S

−k∇θ · n = Q on ∂Ω .

Lemma

Assume that f ∈ Lq(Ω), q > 3. Let Q ∈W 1,q(Ω). Assume that:

1. The compatibility function satisfies fd = cosα ≥ 0 on ∂S;

2. The function Q has a representation Q = fd Q1 +Q2 with Q1 ∈W 1/q′,q(Γ1) and

Q2 ∈W
1/q′,q
S (Γ1).

Then, every solution to the Neumann-problem belongs to W 1,∞(Ω), and to W 2,2(Ωliquid) and

W 2,2(Ωsolid).

If only the condition 2. holds, then θ ∈W 2,r(Ωliquid), θ ∈W 2,r(Ωsolid) for a r > 6/5.

In these statements the relevant norm of ‖θ‖ is continuously controled in terms of the data

f, Q and | δ ν|.
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Dirichlet-problem

Consider the Dirichlet-problem

− div(kS ∇θ) = f in Ω, [−kS ∇θ · ν] = 0 on S

θ = θExt on ∂Ω .

Lemma

Assume that f ∈ Lq(Ω), q > 3. Let θExt ∈W 2,q(Ω). Assume that:

1. The compatibility function satisfies fd ≤ 0 on ∂S (opposite sign of the inequality!);

2. The representation n′ · ∇θExt = fd U1 + U2 with U1 ∈W 1/q′,q(Γ1) and

U2 ∈W
1/q′,q
S (Γ1).

Then, the unique solution to the Dirichlet-problem belongs to W 1,∞(Ω) and to W 2,2(Ωliquid)

and W 2,2(Ωsolid).

If only the condition 2. holds, then θ ∈W 2,r(Ωliquid), θ ∈W 2,r(Ωsolid) for a r > 6/5.

In these statements the relevant norm of ‖θ‖ is continuously controled in terms of the data

f, Q and | δ ν|.

Proofs: Druet, Math. Bohem. to appear. General case fd = fd(k, S).
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Application to solvability

Application: Consider the isotropic surface problem

divS ν = θ on S, ν · n = κ on ∂S .

The contact angle cosα is given!

If |κ| > 0 on ∂Ω or κ ≡ 0, either the Dirichlet problem or the Neumann problem is solvable

with θ in a bounded set of W 1,∞(Ω).

The regularized mean curvature equation is uniquely solvable.

Fixed-point procedure for existence of solution.
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