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Liquid crystals

fourth state of matter besides gas, liquid and solid

intermediate state between crystalline and isotropic

different liquid crystal phases, depending on the amount of
order in the material

nematic (thread), smectic (soap), cholesteric, columnar
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Nematic liquid crystals

simplest liquid crystal phase, close to the liquid one

molecules have no positional order but tend to point in the
same direction
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Literature

Ericksen (1976) and Leslie (1978) developed the
hydrodynamics theory of liquid crystals based on the
evolution of the velocity field u and the director field d
Lin & Liu (1995), (2001) formulated a simplified version in
which the stretching and rotation effects are neglected
Coutand & Shkoller (2001) (local ∃ ! + stretching)
Shkoller (2002) (global attractor - 2D - no stretching)
Sun & Liu (2009) (periodic boundary conditions for d)
Climent-Ezquerra & Guillen-Gonzalez & Rodryguez-Bellido
(2010)
Segatti & Wu (2011) (smectic model)
Grasselli & Wu, Wu & Xu & Liu (2011) (long time behavior)
Frigeri (2012) (long time behavior)
Bosia (2012) (exponential attractors - no stretching)
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Nematic liquid crystals model

the evolution of the velocity field u is ruled by the 3D
incompressible Navier-Stokes system with a stress tensor
exhibiting a special coupling between the transport and the
induced terms

the dynamics of the director field d is described by a
modified Ginzburg-Landau equation with a suitable
penalization of the physical constraint |d | = 1
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The evolution system for u and d
div u = 0

∂tu + div (u ⊗ u) +∇p = divT + f

∂td + u · ∇d − αd · ∇u + (1− α)d · ∇T u = γ(∆d −∇dW (d))

in Ω× (0,T ), Ω ⊂ R3 bdd domain with smooth bdry Γ

T = S− λ (∇d �∇d)− αλ(∆d −∇dW (d))⊗ d
+ (1− α)λd ⊗ (∆d −∇dW (d))

S = µ
(
∇u +∇T u

)
T, S Cauchy and Newtonian viscous stress tensors

∇d gradient with respect to the variable d
(∇d �∇d)ij = ∇id · ∇jd i , j = 1,2,3
(u ⊗ u)ij = uiuj i , j = 1,2,3 (Kronecker product)
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Basic features

p hydrodynamic pressure

f external force

µ > 0 viscosity

λ competition between kinetic energy and potential energy

γ microscopic elastic relaxation time (Deborah number)

α ∈ [0,1] depends on the shape of the liquid crystal molecules

α = 1
2 spherical shape

α = 1 rod-like shape

α = 0 disc-like shape
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The function W

The function W penalizes the deviation of the length |d | from 1

Example: double well potential W (d) = (|d |2 − 1)2

In general W may be written as a sum of a convex part and a
smooth (possibly) non-convex one
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Novelty 1

we prove the existence of weak solutions (in 3D) without
any restriction on the size of the coefficients and the data,
e.g. we do not need the viscosity coefficient µ in the stress
tensor S big enough (no maximum principle holds for d !)

the main point is an appropriate choice of the space of test
functions leading to a rigorous formulation of the system in
weak form (for u)

a suitable definition of weak solution is necessary in order
to deal with the stretching terms in the tensor T

in Climent-Ezquerra et al. only formal computations are
performed to show the existence of weak solutions but no
rigorous definition of the weak formulation, as well as no
proof of existence of such solutions are given

9 / 33



Novelties 2 and 3

our results hold also for non-homogeneous Dirichlet or
homogeneous Neumann bdry conditions on the director
field d (more meaningful from the application viewpoint)

all the previous contributions in the literature were obtained
assuming periodic bdry conditions on the director field d

the techniques employed for the proof of existence of
solutions is based on the combination of a Faedo-Galerkin
approximation and a regularization procedure, necessary
to treat the stretching terms

a non standard but physically meaningful regularization is
obtained by adding in the stress tensor the r -Laplacian
operator |∇u|r−2∇u, as in J.-L.Lions models (1965),
(1969) or in the Ladyzhenskaya models (1969), where ∇u

is replaced by
∇u +∇T u

2
10 / 33



The initial and boundary value problem

PROBLEM (P) ( γ = λ = 1)

div u = 0,

∂tu + div (u ⊗ u) +∇p = div (µ
(
∇u +∇T u

)
)− div (∇d �∇d)

−div (α(∆d −∇dW (d))⊗ d − (1− α)d ⊗ (∆d −∇dW (d))) + f

∂td + u · ∇d − αd · ∇u + (1− α)d · ∇T u = (∆d −∇dW (d))

u(0, ·) = u0, d(0, ·) = d0, in Ω

u = 0, on (0,T )× Γ

(1) ∂nd = 0 or (2) d |Γ = h on (0,T )× Γ
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Weak formulation of problem (P)

∫
Ω

u(t , ·) · ∇ϕ = 0, ∀ϕ ∈W 1,3
0 (Ω), a.a. t ∈ (0,T )

〈∂tu,v〉 −
∫

Ω
u ⊗ u : ∇v +

∫
Ω
µ
(
∇u +∇T u

)
: ∇v =∫

Ω
(∇d �∇d) : ∇v + α

∫
Ω

(∆d −∇dW (d))⊗ d : ∇v

−(1− α)

∫
Ω

d ⊗ (∆d −∇dW (d)) : ∇v +

∫
Ω

f · v,

∀v ∈W 1,3
0 (Ω;R3) : div v = 0, a.a. t ∈ (0,T )

∂td + u · ∇d − αd · ∇u + (1− α)d · ∇T u = ∆d −∇dW (d),
a.e. in (0,T )× Ω

u(0, ·) = u0, d(0, ·) = d0, a.e. in Ω

(1) ∂nd = 0, or (2) d |Γ = h, a.e. on (0,T )× Γ
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Assumptions on the data

Ω ⊂ R3 bounded domain of class C1,1

W ∈ C2(R3), W ≥ 0
W = W1 + W2 such that
W1 is convex and W2 ∈ C1(R3), ∇W2 ∈ C0,1(R3;R3)

f ∈ L2(0,T ; W−1,2(Ω;R3))

u0 ∈ L2(Ω;R3), div u0 = 0 in L2(Ω)

d0 ∈W 1,2(Ω;R3), W (d0) ∈ L1(Ω)

For the case (2), in addition:

h ∈ H1(0,T ; H−1/2(Γ;R3)) ∩ L∞(0,T ; H3/2(Γ;R3))

h(0) = d0|Γ
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Main result - case (1)

Theorem
Problem (P) admits a global in time weak solution (u, d) s.t.

u ∈ L∞(0,T ; L2(Ω;R3)) ∩ L2(0,T ; W 1,2
0 (Ω;R3))

∂tu ∈ L2(0,T ; W−1,3/2(Ω;R3))

W (d) ∈ L∞(0,T ; L1(Ω)), ∇dW (d) ∈ L2((0,T )× Ω;R3)

d ∈ L∞(0,T ; W 1,2(Ω;R3)) ∩ L2(0,T ; W 2,2(Ω;R3))

∂td ∈ L2(0,T ; L3/2(Ω;R3))

and satisfying, for a.a. t ∈ (0,T ), the energy inequality

d
dt

∫
Ω

(
|u|2 + |∇d |2 + 2W (d)

)
(t) + 2

∥∥(∆d −∇dW (d))(t)
∥∥2

L2(Ω)

+µ‖∇u(t)‖2L2(Ω) ≤ C‖f (t)‖2W−1,2(Ω)
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Main result - case (2)

Theorem
Problem (P) admits a global in time weak solution (u, d) with
the same regularity as in case (1) and satisfying, for
a.a. t ∈ (0,T ), the energy inequality

d
dt

∫
Ω

(
|u|2 + |∇d |2 + 2W (d)

)
(t) + 2

∥∥(∆d −∇dW (d))(t)
∥∥2

L2(Ω)

+µ‖∇u(t)‖2L2(Ω) ≤ C‖f (t)‖2W−1,2(Ω)

+‖h(t)‖2H3/2(Γ)
+ ‖ht (t)‖2H−1/2(Γ)

+ ‖∇dW (h)(t)‖2L2(Γ)
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Sketch of the proof - 1

In the weak formulation, we test on Ω the equation for u by
u and the equation for d by −∆d +∇dW (d)

Summing up, an application of the divergence theorem
gives

1
2
∂

∂t

∫
Ω

(
|u|2 + |∇d |2 + 2W (d)

)
+ µ

∫
Ω
|∇u|2

+

∫
Ω
| −∆d +∇dW (d)|2 =H−1(Ω) 〈f,u〉W 1,2

0 (Ω)

Applying Schwarz and Poincaré inequalities we deduce the
energy estimate
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Sketch of the proof - 2

Integrating over (0,T ) the previous equality we get

u ∈ L∞(0,T ; L2(Ω;R3))∩L2(0,T ; W 1,2(Ω;R3))∩L10/3((0,T )×Ω;R3)

d ∈ L∞(0,T ; W 1,2(Ω;R3))

−∆d +∇dW (d) ∈ L2(0,T ; L2(Ω;R3))

∂td ∈ L2(0,T ; L3/2(Ω;R3))

Using suitable interpolation inequalities one has

∇d ∈ L10/3(0,T ; L10/3(Ω;R3×3))
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Sketch of the proof - 3

The previous estimate is crucial for the proof of existence
of solutions since we can deduce

(∇d �∇d)−α(∆d−∇dW (d))⊗d+(1−α)d⊗(∆d−∇dW (d))

∈ L5/3((0,T )× Ω;R3×3)

(∇d �∇d)−α(∆d−∇dW (d))⊗d+(1−α)d⊗(∆d−∇dW (d))

∈ L2(0,T ; L3/2(Ω;R3×3))
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Sketch of the proof - case (2)

In the case (2) we get the equality
1
2
∂

∂t

∫
Ω

(
|u|2 + |∇d |2 + 2W (d)

)
+µ‖∇u‖2L2(Ω)+‖∆d−∇dW (d)‖2L2(Ω)

=H−1(Ω) 〈f,u〉W 1,2
0 (Ω)

+H−1/2(Γ) 〈ht , ∂nd〉H1/2(Γ)

Using standard trace theorems and regularity results for
elliptic equations, we estimate from above the right hand
side and and from below the left hand side by

H−1/2(Γ)〈ht , ∂nd〉H1/2(Γ)

≤ C
(
‖ht‖2H−1/2(Γ)

+ ‖h‖2H3/2(Γ)

)
+

1
4
‖∆d‖2L2(Ω)

‖∆d −∇dW (d)‖2L2(Ω)

≥ 3
4
‖∆d‖2L2(Ω)−C‖∇d‖2L2(Ω)−C‖h‖2H3/2(Γ)

−C‖∇dW (h)‖2L2(Γ)
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Sketch of the proof - The approximation scheme

We introduce a double approximation scheme: a standard
Faedo-Galerkin method coupled with an approximation of
the convective term and a regularization of the momentum
equation by adding an r -Laplacian operator acting on u

For the approximation of the convective term we follow the
classical approach by Leray

All the a priori bounds and estimates obtained for (P) hold
also for the solution uN,M of the approximation scheme

Passing to the limits limN→∞ uN,M = uM , limM→∞ uM = u,
we can prove that u is a solution to problem (P)
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Open issues

2D: Uniqueness of weak solutions

2D: ∃ strong solutions with Neumann / Dirichlet boundary
conditions for d

2D: istantaneous regularization of the weak solutions with
periodic boundary conditions for d

3D: regularization in finite time of the weak solutions
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Remark

Our technique has been used in

Petzeltová & Rocca & Schimperna (2011), where the
authors prove, via Łojasiewicz-Simon techniques, the
convergence of the trajectories to the stationary states of
(P) with suitable boundary conditions

and in

Feireisl & Frémond & Rocca & Schimperna (2011), where
it is proved the existence of weak solutions for the case of
a non-isothermal system with Neumann (for d) and
complete slip (for u) boundary conditions
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Work in progress

With Elisabetta Rocca and Hao Wu we considered a more
general Ericksen–Leslie system modeling nematic liquid
crystal flows

We proved existence of global-in-time weak solutions
under physically meaningful boundary conditions on the
velocity field u, the director field d and on the Leslie
coefficients
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The Ericksen–Leslie system (E-L)
div u = 0,

∂tu + (u · ∇)u +∇p = divT1

∂td + (u · ∇)d − αd · ∇u + (1− α)d · ∇T u = γ (∆d −∇dW (d))

where

γ =
1

2λ1
α =

1
2

(
1 +

λ2

λ1

)
with λ1 > 0

T1 = − (∇d �∇d) + σ S =
(
∇u +∇T u

)
σ = µ1(dTSd)d ⊗ d + µ2N ⊗ d + µ3d ⊗N

+µ4S + µ5(Sd)⊗ d + µ6d ⊗ (Sd)

(µi : Leslie coefficients µ4 > 0 : viscosity coefficient)

N = λ2γ Sd + γ (∆d −∇dW (d))
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Initial and boundary conditions

Initial conditions

u(0, ·) = u0 d(0, ·) = d0 in Ω

Homogeneous Dirichlet b.c. for the velocity field

u = 0 on (0,T )× Γ

Nonhomogeneous Dirichlet b.c. for the director field

d |Γ = d0|Γ on (0,T )× Γ

(or homogeneous Neumann b.c. ∂nd = 0 on (0,T )× Γ)
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Literature

First result on existence of weak solutions to (E–L) + i.c. +
b.c is due to Lin & Liu [Arch. Ration. Mech. Anal., 2008]
under the assumption λ2 = 0

Physically, λ2 = 0 indicates that the stretching due to the
flow field is neglected

From the mathematical point of view, if λ2 = 0 then the
maximum principle for |d | holds
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Our contribution

Our result shows that, without any restriction on the size of
the fluid viscosity µ4 and the initial data it is possible to
obtain the existence of suitably defined weak solutions

We used a technique analogous to the one applied in the
previous model

27 / 33



Conditions on Leslie cofficients and parameters λi

(1) λ1 > 0 − λ1 ≤ λ2 ≤ λ1 (⇒ α ∈ [0,1] )

(2) µ5 + µ6 ≥ 0

(3) µ1 ≥ 0 µ4 > 0

(4) λ1 = µ3 − µ2 λ2 = µ5 − µ6

(5) µ2 + µ3 = µ6 − µ5

(1) (2) (3) are necessary for the dissipation of the system

(4) is necessary to satisfy the equation of motion identically
and to guarantee the existence of a Lyapunov functional

(5) derives from Onsager relation and expresses equality
between flows and forces (Parodi’s relation)
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Two cases

Case 1 (with Parodi’s relation)

(1)–(5)

(5bis)
(λ2)2

λ1
≤ µ5 + µ6

Case 2 (without Parodi’s relation)

(1)–(4)

(4bis) |λ2 − µ2 − µ3| < 2
√
λ1
√
µ5 + µ6
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Weak solutions

u ∈ L∞(0,T ; L2(Ω;R3)) ∩ L2(0,T ; W 1,2
0 (Ω;R3))

∂tu ∈ L2(0,T ; W−1, 6
5 (Ω;R3))

d ∈ L∞(0,T ; W 1,2(Ω;R3)) ∩ L2(0,T ; W 2,2(Ω;R3))

∂td ∈ L2(0,T ; L
3
2 (Ω;R3))

u(0, ·) = u0 d(0, ·) = d0 a.e. in Ω∫
Ω

u(t , ·) · ∇ϕ = 0, for a.e. t ∈ (0,T ), for anyϕ ∈W 1,6
0 (Ω)

〈∂tu,v〉−
∫

Ω
u⊗u : ∇vdx =

∫
Ω

(∇d�∇d) : ∇vdx−
∫

Ω
σ : ∇vdx

for a.e. t ∈ (0,T ), for any v ∈W 1,6
0 (Ω;R3) s.t. div v = 0

d t + (u · ∇)d − αd · ∇u + (1− α)d · ∇T u = γ (∆d −∇dW (d))
a.e. in (0,T )× Ω

d = d0|Γ a.e. on (0,T )× Γ
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Main results

Theorem
Assume

u0 ∈ L2(Ω;R3), div u0 = 0 in L2(Ω)
d0 ∈W 1,2(Ω;R3), W (d0) ∈ L1(Ω)

d0|Γ ∈ H
3
2 (Γ)

For both Case 1 and Case 2, problem (E–L) + i.c. + b.c.
possesses a global-in-time weak solution (u,d)
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