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Aggregation for particles - Continuum Model

One particle attracted by a fixed location x = a

X=-VUX-a) Ulx)=U(—x),U(0)=0,Uc CRR)NC"R'/{0},R)

Multiple particles attracted by one another K .
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p(t, x) = density of particle at time ¢ I
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So with Morse potential U(x) = 1 — e~

pr+div (pv) =0
v=—-VUxp
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Origin & Main Questions

Aggregation Equation

p(t,x) : density

di =0
pit div (pv) v(t,x): velocity field

v=—VUxp x€RL >0
U:R'>R -VU:R! - R
“interaction potential” “attracting/repulsing field”

Xy

For which interaction attractive potentials do we get finite time blowup?
For which interaction attractive/repulsive potentials do we get convergence towards
some nontrivial steady states?
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Gradient Flows

Formal Gradient Flow

Basic Properties
@ Conservation of the center of mass.

© Liapunov Functional: Gradient flow of

Flol =5 [[ 069 0 o6) asay

with respect to the Wasserstein distance W..

The macroscopic equation can be rewritten as

2 (1,2) = div (p(z,x)v {%(z,x)D .

with entropy dissipation:

V(si: (t,x)

GFw0 == [ 0|5

dr
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@ Choose a time step At.
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Macroscopic Models: measure solutions.
[ele] ]
Gradient Flows

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of
variational problem.

@ Choose a time step At.
@ Solve

— F
Pky1 = arg pg};}(m {ZA (05 i) + (/))}

@ As Ar — 0 it converges to the solution of a weak form of

pr+div(pv) =0
v=—VUx*p

The convergence for smooth C' potentials U with at most quadratic growth at infinity
given in "Gradient Flow in Metric Spaces" by Ambrosio, Gigli, Savaré.
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Finite versus Infinite time Blow-up

Osgood condition

X =-VU(X —a)

Question: how long does it take for a particle to reach the
bottom of a fixed potential?

= —k'(r)
r0) =L U(x) = k(|x])

A L dr because to move by a distance dr, it takes
Answer: |\ T = /U K (r) the particle a time k,‘%
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Finite/Infinite time Blow-up

Sharp condition on the interaction potential in order to get blowup

L
e If / dr = +00, |then we have global existence in
o kK(r)

C([0,00),L' N L") N C'([0,00), W™ "?)  forp > ;4.

L'nL= (Bertozzi, C., Laurent; Nonlinearity 2009)
L' N I7(Bertozzi, Laurent, Rosado; CPAM 2011)

L
di . L

o If / ar ~+00, |then p(f) — dx, in finite time.

o K(r)

(C., DiFrancesco, Figalli, Laurent, Slepcev; Duke Math. J. 2011)
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Gradient Flow Solutions

Let U be a potential with at most quadratic behavior at infinity such that its only
possible singularity is at zero. Moreover, assume that U is A-convex:

U(x) — 3 |x|* is convex.

The typical example in our applications in swarming: the attractive Morse potential
U(x) = 1 — e " is -1-convex.

Let us denote 8°U(x) = VU(x) for all x # 0 and 8°U(0) = 0.

Concept of Solution

An absolutely continuous curve i : [0, +00) 3 ¢ +— P»(R?) is said to be a weak
measure solution with initial datum po € P»(R?) if and only if 0°U * pn € L*(uu(1))
ae. 7€ (0,7) and

/0 f /TR ) @i, 7) dp(1) (x) + /TR ) B(x,0) dpio(x) =
/of /m R Vip(t,x) - °U(x = y) dp(0) () du() (),

for all test functions ¢ € C°([0,1) x RY).
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Characterization of Sub-differential

Given a potential with the hypotheses above, the vector field

K(x) = .¢VVU()C —y)duly) = (0°U = w)(x)

is the unique element of the minimal subdifferential of F,i.e. 8°U % pu = 80.7[#].
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Characterization of Sub-differential

Given a potential with the hypotheses above, the vector field

K(x) = .¢VVU()C —y)duly) = (0°U = w)(x)

is the unique element of the minimal subdifferential of F,i.e. 8°U % pu = 80.7[#].
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with (0) = po and v(#) is the tangent vector to the curve p(7) with minimal norm.



Measure Solutions
[e]e] lele]

Not too singular potentials

Sub-differential Characterization

Characterization of Sub-differential

Given a potential with the hypotheses above, the vector field

K(x) = .¢VVU()C —y)duly) = (0°U = w)(x)

is the unique element of the minimal subdifferential of F,i.e. 8°U % pu = 80.7[#].

The solution obtained by JKO is a gradient flow-type solution:

v(t) = 0" Flu(0)] = —8°U * p(t), |Iv(1)

2y = W (t)a.e.t >0

with (0) = po and v(#) is the tangent vector to the curve p(7) with minimal norm.

Characterization of Sub-differential 2

Recently, in collaboration with S. Lisini and E. Mainini, we extend this to the case of
U(x) convex (not only A-convex) and radial, allowing more Lipschitz points in the
potential.




Not too singular potentials

Well-posedness of Gradient Flow Solutions

Energy equality is satisfied:

/.) /}k/ v(t, %) dpa(t) (x) di + Flp(a)] = Flu(b)]

holds forall 0 < a < b < oo.
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Not too singular potentials

Well-posedness of Gradient Flow Solutions

Energy equality is satisfied:

/.) /}k/ v(t, %) dpa(t) (x) di + Flp(a)] = Flu(b)]

holds forall 0 < a < b < oo.
W,-Expansion
Given two gradient flow solutions p' (¢) and 12 (¢) in the sense of the theorem above,

then
Wa(pi (1), 13(0)) < € Walub, 1)

for all # > 0. In particular, we have a unique gradient flow solution for any given

1o € P2(RY).
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Not too singular potentials

Proof of blowup using the particle model

), A-convex and

We want to prove that if U(x) = k(|x

L

d,

/ ! < +o0, | = ‘ p(t) — Oy, in finite time
o K(r)

Find a bound (independent of
Po the nb. of particles) for the

time it takes for all the particles
to arrive at Xp.

. X; —
Xi = _Zm.f VU(Xi — X;) = —Zm_f m
j#i Y
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with general nonnegative initial Borel measures uy.
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Motivations in fluid mechanics as 1D "analogs" of the Euler equation: Constantin,
Lax, Majda, Cérdoba, Fontelos... and dislocation dynamics in crystals: Head, Biler,
Karch, Monneau.
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Repulsive Singular Potential in 1D

The nonlocal equation
u+ (Hu)u) =0

with general nonnegative initial Borel measures u. Here, H(u) denotes the classical
Hilbert transform

H(u) = 1P\//iﬁdz.

X—2
Motivations in fluid mechanics as 1D "analogs" of the Euler equation: Constantin,
Lax, Majda, Cérdoba, Fontelos... and dislocation dynamics in crystals: Head, Biler,

Karch, Monneau.
It has the structure of gradient flow with potential:

Ox) = — L log |x| forx;éO.
+00 atx =0
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Displacement Convexity in 1D

Given the free energy:

)

aVipl+Wp] for p € PE(R)
Eu Pl =
+o0 otherwise
with & = 0 or = 1 where for p € P»(R)

X

V= [ Sowdr and Wil 5 [ O 9)p(0() dedy.
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V= [ Sowdr and Wil 5 [ O 9)p(0() dedy.

Convexity and Global Minimum

The functional E,, is displacement convex.
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Displacement Convexity in 1D

Given the free energy:
aVp] + Wip] forp € P5(R)

Eu[p] = ;
+o00 otherwise

with & = 0 or = 1 where for p € P»(R)

V= [ Sowdr and Wil 5 [ O 9)p(0() dedy.

Convexity and Global Minimum
The functional E,, is displacement convex. The functional E; has a unique compactly
supported global minimum given by the semicircular law:

p(x) dx = %\/(2 —x?)4dx.
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Singular repulsive potentials in 1D

Displacement Convexity in 1D

Given the free energy:
aVp] + Wip] forp € P5(R)

Eu[p] = ;
+o00 otherwise

with & = 0 or = 1 where for p € P»(R)

V= [ Sowdr and Wil 5 [ O 9)p(0() dedy.

Convexity and Global Minimum
The functional E,, is displacement convex. The functional E; has a unique compactly
supported global minimum given by the semicircular law:

p(x) dx = %\/(2 —x?)4dx.

Saff-Totik, Logarithmic Capacity.
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Global Measure Solutions

Let po € P»(R) and the functional E,,. The following assertions hold:

@ (Existence and Uniqueness) The JKO discrete interpolated curve p; converges
locally uniformly to a locally Lipschitz curve p; := S;[po] in P>(R) which is the
unique gradient flow of E,, with lim;—04+ p; = po. Moreover, the curve lies in
P5°(R), forall ¢ > 0.
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Global Measure Solutions

Let po € P»(R) and the functional E,,. The following assertions hold:

@ (Existence and Uniqueness) The JKO discrete interpolated curve p; converges
locally uniformly to a locally Lipschitz curve p; := S;[po] in P>(R) which is the
unique gradient flow of E,, with lim;—04+ p; = po. Moreover, the curve lies in
P5°(R), forall ¢ > 0.

@ (Contractive semigroup) The map # — S;[po] is a a-contracting semigroup on
P2(R), i.e.

Wa(Si[pol, Silpol) < €™ Wa(po, o) forall po, po € P2(R).
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Global Measure Solutions

Let po € P»(R) and the functional E,,. The following assertions hold:

@ (Existence and Uniqueness) The JKO discrete interpolated curve p; converges
locally uniformly to a locally Lipschitz curve p; := S;[po] in P>(R) which is the
unique gradient flow of E,, with lim;—04+ p; = po. Moreover, the curve lies in
P5°(R), forall ¢ > 0.

@ (Contractive semigroup) The map # — S;[po] is a a-contracting semigroup on
P2(R), i.e.

Wa(Si[po], Si[po]) < €™ Walpo, o)~ forall po, o € Pa(R) .
@ (Asymptotic behavior) For o = 1 and for all 0 < #y < t < oo, we have
Wa(pi,p) < e T W2(p1, P)

and
Ei[p] — Ei[p] < e (E[py,] — E[p) -



Attractive-Repulsive Potentials
®00
Particle Simulations

Outline

e Attractive-Repulsive Potentials
@ Particle Simulations



Attractive-Repulsive Potentials
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Particle Simulations

Some numerics: Particle Simulations d = 2

Potential a = 4, Potential a = 4,

b=2.1 b—=1585 Potential a = 4,

h=1.1
0
Potential a = 4, Potential a = 4,

b=0.85 b=0.05

X, == m VUXi—X;)
j#i

; Di U( ) |x‘u ‘X‘h

o X) = "— — —
- a b
i - 2-d<b<a

0e a5 a4 0z 0 0z 04 a5 o8 : o8 08 44 02 0 02 04 08 08 1



Repulsive Potentials

Particle Simulations

Some numerics: Particle Simulations d = 2

Potentiala = 4,b = 1.1

Potential a = 4, b = 1.85

1=1000

052

054

036

058 e
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Stability/Instability of Delta Rings

Existence of Spherical Shells Steady States

Spherical Shells Stationary States

Given a radially symmetric potential U(x) = k(|x|) belonging to C*(R?\{0}) such
that k'(r)r'~? is integrable on (0, 1). Let us assume that the potential is
repulsive-attractive in the following sense: there exists R, > 0 such that

k' (r) > 0 for r > R,, and 0>k'(r) > —Cwyfor0<r<R,

and lim r/~'k'(r) = 400.

r—oo
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Existence of Spherical Shells Steady States

Spherical Shells Stationary States

Given a radially symmetric potential U(x) = k(|x|) belonging to C*(R?\{0}) such
that k'(r)r'~? is integrable on (0, 1). Let us assume that the potential is
repulsive-attractive in the following sense: there exists R, > 0 such that

k' (r) > 0 for r > R,, and 0>k'(r) > —Cwyfor0<r<R,
and lim r/~'k'(r) = 400.
r— 00

Then there exists at least a R > 0 such that the spherical shell 5z € P(R?) is a steady
state to %—‘I’(I,x) =div (p(t,x) [VU = p] (1, x)).
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The velocity field generated by a spherical shell of radius 7 is given by:
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w(r,n) = —— VU(rer —ny) - erdo(y),

ON J3B(0,1)
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The velocity field generated by a spherical shell of radius 7 is given by:
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Under some conditions on the potential U, the function w € C'(R%.).
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Radial Setting

The velocity field generated by a spherical shell of radius 7 is given by:
1
w(r,m) =—— VU(rer —ny) - erdo(y),

ON J8B(0,1)
Under some conditions on the potential U, the function w € C'(R%.).
The equation %(z,x) = div (p(t,x) [VU % p] (¢, x)) written in radial coordinates is
B+ 0,(9) = 0

+oo
(e, r) = w(r,m)dpu(n) .

<)
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Radial Setting: Instability Result

Instability of Spherical Shells

Assume that the spherical shell dr is a steady state, that is, w(R, R) = 0, and that
w € C'(R%) and diw(R, R) > 0.

|
R—9 R R+
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Radial Setting: Instability Result

Instability of Spherical Shells
Assume that the spherical shell dr is a steady state, that is, w(R, R) = 0, and that
w € C'(R%) and diw(R, R) > 0.

Then it is not possible for an L? radially symmetric solution to converge weakly-x* as
measures to dg as t — 00.

\ |
\
R—-9 R R+9
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Radial Setting: Instability Result

Local Stability of Spherical Shells

Assume w € C'(R?.) and that &g is a stationary solution, w(R, R) = 0. Let us
assume that

Ow(R,R) <0 and Ow(R,R) + Bw(R,R) < 0.
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Radial Setting: Instability Result

Local Stability of Spherical Shells

Assume w € C'(R?.) and that &g is a stationary solution, w(R, R) = 0. Let us
assume that

Ow(R,R) <0 and Ow(R,R) + Bw(R,R) < 0.

Then there exists eo > 0 such that if the initial data po € P (R") satisfies
supp(fi0) C [R — €0, R + 0], then the solution satisfies

Wa(fu, 0r) < Ce™ ™,

for any 0 < v < —max (Oiw(R,R), “w(R,R)) for suitable C.
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Power-Law Case

a b
(T M S S
a b

_ (3=d)a—10+7d—d*> /

b atd—3

ii—d)
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Power-Law Case

2—d<b<a

Theorem: Ins/Stability of Delta Rings with
respect to radial perturbations.

@ There is a computable value of R such
that the uniform distribution on the
sphere of radius R, dr is an steady state.

b

_ (3=d)a—10+7d—d* ~
= ard—3 .

ii—d)
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Power-Law Case

Theorem: Ins/Stability of Delta Rings with

respect to radial perturbations.

@ There is a computable value of R such
that the uniform distribution on the
sphere of radius R, dr is an steady state.

@ If the velocity field generated by dr is
_ (3=d)a—104 Td—d?

strictly increasing at R then it is unstable. b atd—3
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Power-Law Case

2—d<b<a

Theorem: Ins/Stability of Delta Rings with

respect to radial perturbations.

@ There is a computable value of R such
that the uniform distribution on the
sphere of radius R, dr is an steady state.

@ If the velocity field generated by dr is
_ (3=d)a—104 Td—d?

strictly increasing at R then it is unstable. b atd—3

@ If the velocity field generated by dr is

strictly decreasing at R then it is locally

asymptotically stable.

ii—d)
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Mild Repulsive potentials: b > 2

Support is essentially O-dimensional.

Let U € C*(RY) be a radially symmetric potential which is equal to —|x|°/b in a
neighborhood of the origin with b > 2.
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Then a local minimizer of the interaction energy with respect to W, cannot have a
k-dimensional component for any 1 < k < d.
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neighborhood of the origin with b > 2.
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k-dimensional component for any 1 < k < d.

Assumptions are really that the convexity properties near the origin are equal to a
power-law with b > 2.
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Dimensionality of the support

Mild Repulsive potentials: b > 2

Support is essentially O-dimensional.
Let U € C*(RY) be a radially symmetric potential which is equal to —|x|°/b in a
neighborhood of the origin with b > 2.

Then a local minimizer of the interaction energy with respect to W, cannot have a
k-dimensional component for any 1 < k < d.

Assumptions are really that the convexity properties near the origin are equal to a
power-law with b > 2.

Strategy: By Contradiction we built a better competitor locally by sending part of the
mass to a Dirac Delta.
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A radially symmetric function g € C(R¥\{0}) is said to be locally integrable on
k-dimensional manifolds if
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where & = (x1,...,xx), or equivalently, if g(r)7*~" is integrable on (0, 1).

Dimension of the Support depends on b.

Assume that (. is a local minimizer of the interaction energy with respect to W and
that U is radial.

If the divergence of the velocity field created by p, i.e., —AU * p is not integrable on
k-dimensional manifolds, then p cannot contain k-dimensional manifolds in its
support.

Remark: For U(x) ~ —|x|” near zero, AW is locally integrable on k-dimensional
manifold iff 2 — b < k.
Strategy: Look for 2nd-order optimality conditions for y to be local minimizer.
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