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Description of Problem P, 3

OFw — alAdw — BAW+ du=f  on |0, T|] x (1)
O —Au+~y(u)+g(u) 30w  onf0, T] x Q )
Ow =0, Ou=0 on [0, T] x 02 3)

w(0, ) =wo, w0, )=vy, u(0,:)=uy onf. 4)

e O C R3is a bounded smooth domain, T > 0 a finite time;

u is the phase variable;

w is the thermal displacement: if § is the temperature, then by
definition

w(t, x) = /95x ds  for(t,x) €0, T] x Q;

a, B > 0 are parameters, v C R? is a maximal monotone graph, g
a Lipschitz—continuous function on R, f a given source term.



Description of the model

o Let

¢ :R — [0, +o0] be a proper l.s.c. convex function,

$(0) =0, oo =,

and let G be a smooth function s.t. G’ = g. If we define the free
energy

(0, 1) = /Q {; IV 4 6(u) + Glu) — 50 - 9u} ,
then the equation (2) follows from
O +dyp(0, u) =0.
e The equation (1) expresses the energetic balance
O (0 +u)+divg =f,

where 6 + 1 = —dgip(0, u) is the enthalpy and q the thermal flux.



Description of the model

Some examples for the bulk potential ¢ + G:

o the Caginalp “double well” potential

o(u) +Gu) = (1 —u?)?, uek;
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o the logaritmic potential, defined on (-1, 1) by

v(u) =log(l+u) —log(l —u), g(u)=—2u;



Description of the model

Limitas o N\, 0

Study of Problem P, g Limitas 8 N\, 0
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¢ the “double obstacle” potential, s.t.

v=0T_1,1,

g(u) = —2u.

Final remarks



Description of the model

Some constitutive assumptions for the thermal flux q, according to
the Green and Naghdi’s theory, in the linearized versions:

e Type I (Fourier)
q=—-aVow, a>0

e Type II (Gurtin—Pipkin)

o Typelll
q=—-aVow— pVuw, a,B>0.

In this work, we consider:

Problem P, 3 Type Il
Limitas 8 \,0 Typel

Limitas a0 Typell



Description of the model
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Study of Problem P, 3

Set
V=H(Q), H=IXQ),

W= {veH*Q): 9,0=00n0Q} .

Problem P, 3. Finding (w, u, {) which satisfies, for all v € V and a.a.
telo, T],

we W10, T; VynWh (0, T; HYNH (0, T; V)
uecH (0, T; V)nC®([0, T}; H)NL*(0, T; V)
€cL?([0, T xQ), uecD(y)and ¢ € y(u) ae.
<6t2w(t), v) + a (Vouw(t) + BVw(t), Vo), + (Gu(t), v) = (f(t), v)
(Opu(t), v) + (Vu(t), Vo) + (§(t) + gu)(t), v)y = (Ow(t), v)y .
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We assume
feL*(0,T; V') + L' (0, T; H) 5)

wp eV, wv€eH, uy € H, d(up) € LY(Q) . (6)
Theorem (Existence and uniqueness for Problem P, 3)
Under the assumptions (5)—(6), Problem P, g admits a unique solution.

The proof is based on
o the Faedo-Galerkin approximation scheme;

e the Yosida regularization of

1 1
= — —_ <
Ve 5{Id (Id + &) }, 0<e<1.



Study of Problem Pa, B

Theorem (Regularity and strong solution)

If the hypotheses
fEeL*(0, T; H)+ L' (0, T; V) 7)

weW, weV, uweV, ¢u)el(9), 8)
hold, then the solution (w, u, &) of Problem P, s fulfills

we W10, T; H n WY (0, T; V)N H (0, T; W)

uec H (0, T; H NnC°([0, T); V)N L2 (0, T; W)
and, in particular, it is a strong solution, i.e., it satisfies the equations (1)—(4)

pointwise a.e.

The two results above hold true when Q@ C RV, forall N > 1.
On the other hand, the assumption N < 3 will be exploited in the
sequel.



Study of Problem Pa, B

Theorem (L estimates)

Let v°(s) denote the unique element of ~(s) having minimal modulus, for all
s € R. In addition to (7)—(8), we assume

ug €W, u €D(y) go, 7°(w) € H; )
then, we have
ue Whee (0, T; HYnH' (0, T; V) N L>® (0, T; W)
and, in particular, u € CO ([0, T] x ﬁ) Furthermore, if the assumptions
feLl>®(,T;H)+L" (0, T; V) for somer > 4/3 (10)

7 (uo) € L™(Q) (11)
hold, then

Jw e L=®((0,T) x Q), €eL®(0,T)x Q).
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Limitas § \,0

In this section « > 0 is fixed. We denote by (wg, ug, £g) the solution of
Problem P, 3.

Question. We ask whether, as 5\, 0, there is any convergence
(wg, ug, &) — (w, u, €),
where (w, u, £) is a solution of Problem P,:
Rw—aldw+du=f on0,T] xQ
O — Au+ & + g(u) = ow on [0, T] x 2
ueD(v), Eevy(u) ae onf0,T]xQ
Ow =0, Ou=0 on [0, T] x 02

w(-, 0) =wy, Ow(-, 0) =g, u(-, 0) = ug on ).
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Theorem (First error estimate as 5\, 0)

Under the assumptions (5)—(6), Problem P, has a unique solution; that is,
there exists a unique triplet (w, u, &) fulfilling

we W1 (0, T; VynWh (0, T; HYNH (0, T; V)
ueH (0, T; V')nC®([0, T}; H)NL*(0, T; V)
£eL*(0, T] x Q), u e D(y)and § € y(u) ae.
(OFw(t), v) + o (VOw(t), Vo), + (Guu(t), v) = (f(t), v)
(Opu(t), o) + (Vu(t), Vo) + (§(t) + gu)(t), v)y = (Ow(t), v)y

forallv € Vanda.a. t € [0, T|. Furthermore, there is a constant c
independent of (3 s.t.

l|wg — wHHl(O, Ty H)NL=(0,T; V) T s — u||L°°(0,T;H)ﬂL2(O, vy = cB.



Limitas 8 \ 0

We have better estimates on the convergence error when v is a
single-valued, smooth function (e.g.: “double-well" or logarithmic
potential).

Theorem (Second error estimate as 5\ 0)
Suppose that y : D(y) — R is a single—valued, locally
Lipschitz—continuous function, and that f and the initial data fulfill the
strongest hypotheses. Then, the estimate
lws — w”wl:oo(o, T, V)nH! (0, T; W) T
llug — uHHl(o, T; H)nLe (0, T; V)NL2(0, T; W) < B,

holds true, for some constant c independent of (.
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Limitas o \ 0

Let us fix 8 > 0 once and for all. We denote by (wq, 4, &) the
solution of Problem P, g.

Question. As a ™\, 0, we ask whether the convergence
(Wa, Ua; €a) — (w, u, §), (12)
holds in some sense, where (w, u, £) is a solution of Problem Ppg:
Fw—BAw+du=f on[0, T] xQ

ou—Au+&6+gu)=0w  onl0, T] x Q
u e D(y), ¢ey(u) aeonl0, T]xQ
Oyw =0, Ou=20 on [0, T] x 982
w(-, 0) =wp, ow(-, 0) =g, u(-, 0) = ug on ).

The well-posedness of Problem Pg is already proved in literature.



Limitas o \, 0

e Assuming (5)—(6), we can prove the weak convergence in (12).

e Under stronger hypotheses, we infer the strong convergence, with
an estimate on the convergence error.

Theorem (First error estimate as o \ 0)

If we assume (5)—(6), as well as
fel?(0, T; H)+ L' (0, T; V)
ZUOEW, UO€V7 uoeV, ¢(u0)€L1(Q),

then there exists a constant c, independent of «, s.t.

[wa — w||w1w°°(0, T: H)NL>= (0, T; V) 1

1/2
e = wll i 0, 7: 120, 13 v) < CX U,



Limitas o \, 0

e For the proof, it is convenient to introduce the new variable
t
y(t, x) == / u(s, x)ds + w(t, x) for (t,x) €0, T] x Q.
0

e We obtain better estimates on the convergence error when

v :R — R is a single-valued, (13)
locally Lipschitz—continuous function
(e.g.: the Caginalp “double well” potential).

e If (13) holds, we can prove regularity results for Problems P, g
and Pg, with a—independent estimates on the solution.
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Theorem (Second error estimate as a “\, 0)

In addition to (13), we require
feWs1(0, T; H) + Wh1 (0, T; V)
wgEW, voeW, u€cHQ)NW, alv+ LAy +f(0)eV.
Then, there exists a constant c, independent of o, which fulfills
|[Wa — wHWLOQ(O,T;H)ﬂLOO(O,T; V)t
l[ta — ”HHl(o, T; H)nL> (0, T; V)NL2(0, T; W) < €O

1/2
[a = Wllw1, 0, 7, vy (0, T; W) < € 2,



Final remarks

Final remarks

o All the results hold true when  C R3 is, for instance, a convex
polyhedron.

e Problem P, s can be exploited to approximate Problem P, via an
artificial viscosity method. The convergence results as a \, 0 can
therefore be interpreted as estimates on the consistency error.

e Possible generalizations of this model:

- Non linear coupling of 6 and u in the free energy functional

w0, u):/Q{%Wulz—i-qb(u)—&-G(u)—%Qz—h(u)e};

- Non linearized versions of the Green and Nagdhi’s constitutive
hypotheses.
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