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THE TWO-PHASE CAHN-HILLIARD EQUATION

PRINCIPLE OF THE DIFFUSE INTERFACE MODELING
@ One unknown : the order parameter ¢ (concentration of one phase)

o The surface tension 012 > 0 is given.
o Interfaces have small but positive thickness € > 0 which is fixed.

c(z) =1, for z € phase 2, teo
0<c(xz) <1, forax € interface,
c(z) =0, for x € phase 1. U [ :
sl
0.0 L
R

Interface : €

/—\ fe) = (1 —¢)?

o 3
.7-—5[ 12](0) :/ (12E fle) + 75012\Vc|2) dx.
Q € 4

THE TWO-PHASE TOTAL ENERGY

1 + tanh(2
1D EQUILIBRIUM : Ceq(z) = w and ]—'5[012](ceq) =0192.
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THE TWO-PHASE CAHN-HILLIARD EQUATION

lo12l .y 12 2 2
Fe P (e) = /Q( 2—f(e) + 50’12|Vc| ) dx.

D. . -
EVOLUTION EQUATION (GRADIENT STRUCTURE) E:funcmonal derivative
atc = MO AM/

[o12] 12
= %(c) = —gaalgAc—‘r 912 f' (o),
ﬁ = % =0, on 0.
on  On

REMARKS

o 1 — c satisfies the same equation.

o The total energy is dissipated

d
Z L2l ey 4w / |V |2 dz = 0.
dt Q
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BUILD N-PHASE CAHN-HILLIARD SYSTEMS WHICH ARE ABLE TO COPE WITH
TWO-PHASE SITUATIONS

NoOTATION

o Constant vector 1 = (1,...,1)* € R™,
o n order parameters ¢ = (c1,...,¢n)" € R"

o We shall require that
1= Z c;=c-1.
i

SURFACE TENSIONS ARE GIVEN

o= (Uij)lgi,jgn’ o' =o,

with 0;;, =0, V1 <i<n.

APPLICATIONS TO MULTIPHASE FLOWS THROUGH THE COUPLING WITH NS
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_ t __ (0 o2
FORMULATION WITH TWO ORDER PARAMETERS ¢ = (c1,¢2)", o = 019 0

12
Total energy .7-'5[61(c) = / ?F["] (c) — %50‘12(VC1,VCQ) dz,
Q

Potential F[7)(c) = ‘%( Fle1) + fle) — fle1 + e2).

N.B. : For any c we have, .7-'5[0] (¢,1—¢)= ,7:5[612](0).
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THE TWO-PHASE CAHN-HILLIARD EQUATION

... REVISITED

o t (0 o2
FORMULATION WITH TWO ORDER PARAMETERS ¢ = (c1,c2)t, o = o 0
12

Total energy ]-—E[a](c) = / EF[a](c) — ZEO’]Q(VC],V(Q) dz,
Q€
Potential F[7)(c) = E(f(q) + f(c2) — fle1 + 2)).
N.B. : For any ¢ we have, .7 (c,1 — ¢) = FL12](¢).

THE EVOLUTION SYSTEM

Orc1 = Mo A (1111 + ai2p2) ,
Orcag = Mo A (1211 + a2p2) ,

lo] [o]
DF; 3 12 OF'e
= — A —
J751 Dex (c1,c2) = 48012 c2 + = 0e (c1,¢2),
D]:[o'] 3 12 aF[G]
M2 = = (c1,¢2) = —eo12ler + — (c1,c2).
Dco 4

FIRST CONSTRAINT :
We require ¢ -1 =rc¢1 +c2 = 1, V¢, z as soon as ¢1(0,.) +¢2(0,.) =1

8(c1 <+ CQ)
ot

a1 +aiz2 =0

= {0412 + a2 =0

= MoA((ca1 + c12)p1 + (2 + ao2)pz),

} :>‘ —Q12 = (11 = Q22 ‘
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THE TWO-PHASE CAHN-HILLIARD EQUATION

... REVISITED

o t (0 o2
FORMULATION WITH TWO ORDER PARAMETERS ¢ = (c1,c2)t, o = o 0
12

Total energy ]-—E[a](c) = / EF[a](c) — ZEUQ(VC],V(Q) dz,
Q €

Potential F[7)(c) = g(f(cl) + f(c2) — fle1 + 2)).

N.B. : For any ¢ we have, .7 (c,1 — ¢) = FL12](¢).
THE EVOLUTION SYSTEM

Ocy = My A(,ul *//«2)7
Orcy = My A(M2 */111)7

[o] [o]
DF; 3 12 OF'e
= — A —
J751 Dex (c1,c2) = 48012 c2 + = 0e (c1,¢2),
D]:[o'] 3 12 aF[o']
M2 = = (c1,¢2) = —eo12ler + — (c1,c2).
Dco 4
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THE TWO-PHASE CAHN-HILLIARD EQUATION

... REVISITED

o t (0 o2
FORMULATION WITH TWO ORDER PARAMETERS ¢ = (c1,c2)t, o = o 0
12

Total energy ]-—E[a](c) = / EF[a](c) — ZEUIQ(VCI’VCQ) dz,

0 €
Potential F[7)(c) = B(f(cl) + f(c2) — fle1 + 2)).

N.B. : For any ¢ we have, .7 (c,1 — ¢) = FL12](¢).
THE EVOLUTION SYSTEM

Orcp = My A (m - ,U«Q) B

c2=1-—ci,

[o] . o]
DF; 3 12 OF
p1 = Der (c1,¢2) = *18012AC1+? o1 (c1,1 —c1),
DFlel 3 12 oFlel
H2 = = (c1,e2) = +-e012Ac1 + — (e1,1—c1).
Dcs 4 e Oca
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THE TWO-PHASE CAHN-HILLIARD EQUATION

... REVISITED

o t (0 o2
FORMULATION WITH TWO ORDER PARAMETERS ¢ = (c1,c2)t, o = o 0
12

Total energy ]-—E[a](c) = / EF[a](c) — ZEUIQ(VCI’VCQ) dz,
Q€
Potential F[7)(c) = B(f(cl) + f(c2) — fle1 + 2)).
N.B. : For any ¢ we have, .7 (c,1 — ¢) = FL12](¢).

THE EVOLUTION SYSTEM

Oiep = My A (ul - /1«2) 3

c2=1-—ci,

[o]
DF; 3 6.
1 = (c1,02) = —“earaler + 2 (f'(e1) — f'(1)),
Dcy 4 € ——
H2 = —pi1.
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THE TWO-PHASE CAHN-HILLIARD EQUATION

.. REVISITED

o t (0 o2
FORMULATION WITH TWO ORDER PARAMETERS ¢ = (c1,c2)t, o = o 0
12

Total energy ]-—g[a](c) = / EF[a](c) — ZEUQ(VC],V(Q) dz,
Q€
Potential F[7)(c) = g(f(cl) + f(c2) — fle1 + 2)).
N.B. : For any ¢ we have, .7 (c,1 — ¢) = FL12](¢).

THE EVOLUTION SYSTEM
Orcr = Mo A (2u1),
c2=1-c,

12012

——=F (1),

3
2u1 = — 550'12 Acp + ——=

B2 = —p.
CONCLUSIONS
@ We recover the usual CH equation (one single equation!).
e We can eliminate a posteriori and arbitrarily one of the order parameters
without breaking symmetry.
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In (Kim-Lowengrub, IFB ’05) we find the following Cahn-Hilliard system

Orcr = MoApa,
Orca = MoApa,

c3=1—c1 —cg,

(6F0( - aF, (C)> ey — gAcz,

o | =

= dcy

OF, OF,
p2 = ( °( )——°< )> — ZAci —chez,

with the three-phase potential

™| =

- 2 2 2 2 2 2
Fy(c) = o12¢ics + o13¢ics + o23c5c5.

THIS MODEL IS NOT SUITABLE FOR OUR PURPOSES

The equation satisfied by c3 is not formally the same as the one for ¢; and ca.

If ¢; =0 at ¢ = 0 then ¢; is in general not 0 for ¢t > 0.
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THE CONSISTENCY ISSUE FOR THREE-PHASE SYSTEMS

We proposed in (B.-Lapuerta, '06) to consider

602- . 1 .
ot = My div (EVui) , Vi
(CH) 45 1 3
T - - .
i = z E , (EJ (81F[ ](C) — 8jF[ ](C)>) — ZEEiACia Vi.
J#i
where

Y1 =012 + 013 — 023,
Spreading parameters are given by Yo = 012 + 023 — 013,
Y3 =013 + 023 — 012,
11111
Sr 3 (i e 5) ’

and our potential is defined by

F["](c) = lec%c% + Jlgc%cg + 023c§c§ +cicacz(Ticr + Xaco + Bacz).

=Fp(c),non-consistent

11/ 30
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THE CONSISTENCY ISSUE FOR THREE-PHASE SYSTEMS

We proposed in (B.-Lapuerta, '06) to consider

de; . 1 .
81: = My div (EVui) , Vi
(CH) 45 1 3
Hi = ET Z (EJ (81F[U](C) — 8]F[U](C)>) — ZEEiACia Vi.
J#i
where
Y1 =012 + 013 — 023,
Spreading parameters are given by Yo = 012 + 023 — 013,

Y3 =013 + 023 — 012,

11 ( Lo 1)
Sr 3\%; % 23/
and our potential is defined by

F["](c) = lec%c% + Jlgc%cg + 023c§c§ +cicacz(Ticr + Xaco + Bacz).

=Fp(c),non-consistent

EQUIVALENT FORM OF THE POTENTIAL fe) = (1 —¢)?

Fl7)(e) = 22 [f(er) + flea) = Fler + c2)]

013

+ T[f((n) + fles) — fe1 +e3)] + %[f(@) + fles) — f(ea +c3)].

11/ 30
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THE CONSISTENCY ISSUE FOR THREE-PHASE SYSTEMS

ILLUSTRATIONS
:

YOUNG’S LAW

sin 01 sin Oy sin 03

023 013 012

phase 2

EXAMPLES FOR VARIOUS VALUES OF (012;013;023)

(1;0.8;1.4) (1;1;1) (1;0.6; 0.6)
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THE CONSISTENCY ISSUE FOR THREE-PHASE SYSTEMS

ILLUSTRATIONS

P | |
08
06
04
02
0 T 0 —
002 003 004 005 006 0.07 0.0 002 003 004 005 006 0.07 0.0 002 003 004 005 006 0.07 0.0

0.08 0.08, 0.08,

0.02 0.02 0.02
0.0 0.1 0.0 0.1 0.0 0.1

(Kim—Lowengrub, ’05) Our model using Fo Our model using Flol

IN EACH CASE, NUMERICAL CONVERGENCE IS ACHIEVED

12/ 30
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A TWO-PHASE CH/NS COMPUTATION WITH A THREE-PHASE MODEL
phase 1 = bubble
phase 2 = liquid

phase 3 = virtual ...

012 = 007
g13 = 0.07
23 = 0.05
2 _10°
P1

P3 _ 10
P1

B2 _ 1073
H1

B3 _ 51073,
M1

~~ Using a non-consistent potential leads to c3 ~ 15% instead of c3 = 0!
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THE CONSISTENCY ISSUE FOR THREE-PHASE SYSTEMS

ILLUSTRATIONS

ISOLINES OF THE POTENTIAL F ON THE (GIBBS TRIANGLE

Y1 =3 =33 =4, Y1 =35 = X3 =4, Y1 =6,Y2 =8,X3 =4,
non-consistent Fy consistent F[7) consistent F[%)
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THE CONSISTENCY ISSUE FOR THREE-PHASE SYSTEMS

ILLUSTRATIONS

non-consistent ﬁo consistent F[]
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(B.-Minjeaud, ’12)

F[a] (C) = i Zaij (f(cz) + f(cj) - f(cz + Cj)) + Z CsCtCquHstuu(c)-
0,7

s<t<u<wv

o For n = 2 : we recover the usual Cahn-Hilliard potential (no term in H,)
e For n = 3 : we recover the 3-phase potential proposed in (B.-Lapuerta, '06)
(no term H,)

o For n > 4 : we will see that the terms Ho are necessary for consistency to
hold.

For any I, we have Fl7l(c) = F[il](ﬁl), as soon as ¢; = 0.

NOTATION : Removing the phase number [ from the system

& = (0ij)1<i,j,<n € Mn—1(R),
i#LgFL

~1 t -1
¢ =(c1y.sCl—1,Cl41, -y Cn)  ERTTHL
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- 12 3
FLol(e) =/Q?F[ I(c) — - (Zaij(vq,wj)> dz.

i,

We assume that the matrix —o is definite positive in {1} that is

(C1) > (=0ij)&i&; > 0, V€ € R™\ {0}, such that &1 =0.
)

o Condition (C1) depends only on physical parameters.
o Moreover, if o satisfies this condition, so does &' for any [.
e Forn =2,

(C1) & o012 > 0.
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- 12 3
.7:5[ ](C) :/Q?F[ ](c)— g{-: <ZU¢j(VCi,VCj)) dx.

i,

We assume that the matrix —o is definite positive in {1} that is

(C1) > (—0i;)&€; >0, V¢ € R™\ {0}, such that £-1=0.
iJ

e For n = 3, we have

o2 =1
023

o12 > 0,013 > 0,023 > 0,
A =% +31X3+ X233 >0,

(C1) & {

where ¥; = ;4051 —0 is the spreading
parameter of phase 1.



Fl(e) = /Q I?ZF[U](C)— %e (Zaij(vci,vcj)) i,

]

We assume that the matrix —o is definite positive in {1} that is

(C1) > (—0i5)&€; >0, V& € R™\ {0}, such that &-1=0.
ij

o For n = 4, we introduce
Eé =0ij + 0ik — 0jk, the spreading coefficient of ¢ among {1, j, k} # [,
Al =xist +winl + 545, vie{l,..,4}
Then, we have
oij >0, Vi#j,
(C1) & J Al >0, W,
AFAL > (20455 — SER)2 vk VL

17i 30



féo'](c) _ ‘/Q —Z plo] (c) — gg (Z Oij (VCZ,VCJ))

2]

EVOLUTION SYSTEM TAKING INTO ACCOUNT ¢-1=» ¢; =1

i

Oici = Mo A (ZO‘ (ps — ) )
(CH[O’]) J#i
12 BF["’]
pi=—=7 —sZa”AcJ
J#i
We assume that ol is symmetric and we set a Z a,;' so that

J#i

(Z a[a] =0, Vz) , that is al?l1=0.

HOW TO DETERMINE THE MATRIX o] = (o [”])w
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féo'](c) _ ‘/Q —Z plo] (c) — gg (Z Oij (VCZ,VCJ))

2]

EVOLUTION SYSTEM TAKING INTO ACCOUNT ¢-1=» ¢; =1

i

Orc; = — Mo A (ZOCE‘;]#]‘) s
(cHll)
12 BF[
Pi=— _5ZUWACJ
J#i
We assume that ol is symmetric and we set a Z a,;' so that

J#i

(Z a[a] =0, Vz) , that is al?l1=0.

HOW TO DETERMINE THE MATRIX o] = (o [”])w
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[o] 3
(cHIol Btci——MoA<Za£§]m), B = EBF_ (c) +ZEZUUACJ'
T

Solutions of System (CHI?!) should satisfy for any I

c(t=0,.) EOéCl(t,.)EO, Vvt > 0.

o For any ! we need ZGEZ]#k =0 as soon as ¢; = 0.
k
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N-PHASE CAHN-HILLIARD SYSTEMS

12 §Fle]
(CHY  Brei = —Mo A Zo‘w i), = — c
€ 801'

e For any ! we need

E alk Hk = 0| as soon as ¢; = 0.
k

o Let us first look at capillary terms

.: Z (Zalk Uk]) Ac; =0, assoonasc =0

If the red coefficient does not depend on j(# ) then C is proportional to Ac;

ci1+..+en=1= Zch = —Agq.
J#l

19/ 30
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N-PHASE CAHN-HILLIARD SYSTEMS

12 aFle]
(CHIY  pci = —Mo A ZOLE?]M]' o K= — c
J

€ 801'

e For any ! we need

E alk Hk = 0| as soon as ¢; = 0.
k

o Let us first look at capillary terms

.: Z (Zalk ng) Ac; =0, assoonasc =0

~~ The problem is then to find a symmetric matrix al?] such that

alfll= 0,
avlo=—I+y®1,
for some « € R™. Assuming that the coercivity condition (C1) holds, we can

show that there is a unique solution (al?! v).
19/ 30
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N-PHASE CAHN-HILLIARD SYSTEMS

12 Fl
9 ()| ++ EZU”ACJ

(CHI?))  Be; = —Mo A Z% wy |
Jdc; )

DEFINITION (SECOND CONSISTENCY AS$UMPTION)
Solutions of System (CHI?!) should satisfy for any I

cq(t=0,.)=0=¢(t.) =0, Vt>0.

e For any [ we need ZQEZ]M@ = 0| as soon as ¢; = 0.

o Let us look now at poteptial (nonlinear) terms

Using that al®l.oc = - T+ y® 1 and Zf (c;) =12 Z cjcpcr, we get
I<k<l

oFle
:g aa] (c) =0, assoonasc =0
lk
Ocy,

aFe] 1 )

E E:] 3 (c) = 5 flla) + E Aftjk cicjck + terms in H,.
% Ck —— i<j<k =~~~
=0,for ¢; =0 explicit
formula

19/ 30
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N-PHASE CAHN-HILLIARD SYSTEMS

12 Fl
O (0| += EZ"UACJ

(CH["]) Orc; = —Mo A Za” il
Jdc; )

DEFINITION (SECOND CONSISTENCY AS$UMPTION)
Solutions of System (CHI?!) should satisfy for any I

cq(t=0,.)=0=¢(t.) =0, Vt>0.

e For any [ we need ZQEZ]M@ = 0| as soon as ¢; = 0.
o Let us look now at poteptial (nonlinear) terms
oFle
.:Zala] 3 (c) =0, assoonasc =0
Ccr,

For n > 4, we need to compensate (as soon as ¢; = 0!)

Z Ai‘jk cicjck + Z cicjcy Z Oc][:]HH,;jk(C) + ...

i<j<k S~~~ i<j<k s¢{i,j,k}
#l  explicit #1
formula

19/ 30
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N-PHASE CAHN-HILLIARD SYSTEMS

GoAL
Find functions He such that, for any [ and any i < j < k different from [, we have

Z aE:]Hsijk(c) = Aéjk, as soon as ¢; = 0.
sg{i,5,k}
CASE 1 : FOR ANY n > 4 AND 0;; = 0
We can show that the value Aé]‘k is independent of i, j, k,l and we find that

Hg i 5,1(c) = 140,
fulfills the conditions, and System (CHI®!) then reads

Ore; = Mo A _ZQ’E;’]‘Uj R
J

=/

~ 3e 6 24
iy = no? _ZACi + 7f/(ci) - — E ciciey
€ © <k
Ai

20/ 30
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N-PHASE CAHN-HILLIARD SYSTEMS

GoaL
Find functions He such that, for any [ and any i < j < k different from [, we have

Z aE:]HS”k(c) = Aéjk’ as soon as ¢; = 0.
s¢{i,j,k}

CASE 2 : FOR n = 4 AND o GENERIC : Only one function Hy234 to determine

Az
Hi234(c) = , fore; =0,
kel
11
A2
Hiaza(c) = —3% ) for ¢y =0,
o]
22
A3
Hiosa(c) = —24 for ¢3 =0,
o]
33
A4
Hi234(c) = ?3]3, for cq4 = 0.
Qyq

Such a function cannot be continuous but we can choose for instance

4 Ad 4
Hiaza(c) = (Z ff]l ¢(ci,cj-ckcl)> / <Z ¢(Ci,0j0kcz)> , with ¢(a,b) = ﬁ.

i=1 Q4 i=1

NB : The function ¢ — cjcaczcaHiaza(c) is Ct!

20/ 30
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Otc; = Mo A ( Zai‘?;@) s
(cHlel)
i = 152 oFle JAc.

J#i

Assuming the coercivity condition (C1), the system satisfies the energy dissipation
equality

d
4,3

~~

>0
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ISOLINES OF POTENTIALS ON THE GIBBS SIMPLEX .
Consistent Non-consistent (with He = 0)
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1D NUMERICAL SIMULATIONS
‘We choose ¢4 = 0 at the initial time.

0 1 09 14
1 0 06 1

77109 06 0 1
1.4 1 1 0
Consistent potential Non-consistent potential (that is He = 0)
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AT A GIVEN At, THE COMPUTATION BLOWS UP FOR A NON-CONSISTENT POTENTIAL
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oij = 0.05
p1=1
p2 = 1000
p3 = 1100
pa = 1200
py=10"*
p2 = 0.1
pn3 = 0.01
Hn4 = 1073
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o COUPLING WITH THE NAVIER-STOKES SYSTEM
We mainly use P?/P* or Q?/Q! element for (u,p) and P! or Q* for (c;, pi).
e Projection method (velocity prediction, pressure correction) to solve the
Navier-Stokes system.

e An unconditionally stable and fully uncoupled CH / NS method.
(Minjeaud, ’12)
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AN OVERVIEW

o COUPLING WITH THE NAVIER-STOKES SYSTEM
o ADAPTIVE LOCAL REFINEMENT

based on conforming approximation spaces : CHARMS method.

)
hint = 1 IIIIIIIH“
a s

a

o a”

28/ 30
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AN OVERVIEW

o COUPLING WITH THE NAVIER-STOKES SYSTEM
o ADAPTIVE LOCAL REFINEMENT
@ SUITABLE TIME DISCRETISATION FOR CAHN-HILLIARD SYSTEMS
e Explicit or convex-concave schemes are very robust but inaccurate.
e Implicit schemes are much more accurate but lead to instabilities.
o ~» Development and analysis of adapted semi-implicit schemes.
(B.-Minjeaud, ’08)

28/ 30
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COUPLING WITH THE NAVIER-STOKES SYSTEM

ADAPTIVE LOCAL REFINEMENT
SUITABLE TIME DISCRETISATION FOR CAHN-HILLIARD SYSTEMS

BuUT ALSO ...

o Multigrid solvers.
e Outflow boundary conditions.

28i 30
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CONCLUSION AND PERSPECTIVES

SUMMARY AND COMMENTS
o We build n-phase CH systems which are consistent with 2-phase systems.
o Suitable for phase-field modelling through a coupling with the NS equations.

o Well-posedness of such systems can be shown with suitable assumptions (for
the three-phase case, see (B.-Lapuerta ’06))

o The overall strategy can be extended to two-phase potentials other than
f(c) = 2(1 — ¢)? provided that

f(C) = f(l - C)v VC,
f(©)=o.
OPEN PROBLEMS
e What to do when the coercivity condition is not satisfied (even for n = 3)?

o Numerics : how to solve efficiently the system with the singular terms He 7
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