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The governing equations

@ Isothermal flows of viscous incompressible (and homogeneous) fluids in
stationary regime:

@ Conservation of mass
divu=0 in QcR", (1)
o Conservation of linear momentum

diviu@u)=f—-Vp+divS in (2)

o Deviatoric part of the Cauchy stress tensor

S— (u1|D|W—2 +M2|D|"(x)_2) D, D= (Vu +VuT) SN )

N —

o Boundary conditions
u=0 on OQ. (4)

@ Unknowns: u € RN — velocity field; p € RV — pressure;
@ Problem data: f € RV;
@ Remark: Dimensions of interest in the applications are N =2, N =3
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Motivation: Sustaining fluids

@ The simplest model of Fluid Mech. is the Newtonian fluid: Stokes (1845)
S =2uD, u = Const.>0;

@ Examples: water solutions, gasoline, vegetal and mineral oils, ..
o Inadequate to model fluids that exhibit varying viscosities;
@ Real fluids: © may depend on temperature, shear rate |D|, time, pressure;
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Motivation: Sustaining fluids

@ The simplest model of Fluid Mech. is the Newtonian fluid: Stokes (1845)
S =2uD, u = Const.>0;

@ Examples: water solutions, gasoline, vegetal and mineral oils, .

o Inadequate to model fluids that exhibit varying viscosities;

@ Real fluids: © may depend on temperature, shear rate |D|, time, pressure;
@ Ostwald (1925) — de Waele (1923) simplest non-Newtonian model:

Bingham (1921) n=0 & =1,

_ n—1p — Y2 pseudo-plastic 0O<n<l & 1<vy<2,
S=pD" D =puDI""D = Newtonian n=1 & 7 =2,
dilatant n>1 &y > 2,

@ Examples: Bingham toothpaste, mayonnaise; Pseudo-plastic milk fluids,
varnishes, shampoo, blood; Dilatant polar ice, volcano lava, wet sand.

The viscosity depends on the shear stress (generalized Newtonian fluids);
Proposed for modeling pseudo-plastic fluids; it has been used also for dilatant;
Fails at high shear rates where the viscosity must ultimately be a constant;

¢ ¢ ¢
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S =2uD, u = Const.>0;

@ Examples: water solutions, gasoline, vegetal and mineral oils, ...;
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@ Real fluids: © may depend on temperature, shear rate |D|, time, pressure;
@ Ostwald (1925) — de Waele (1923) simplest non-Newtonian model:

Bingham (1921) n=0 & =1,

_ n—1p — Y2 pseudo-plastic 0O<n<l & 1<vy<2,
S=pD" D =puDI""D = Newtonian n=1 & 7 =2,
dilatant n>1 &y > 2,

@ Examples: Bingham toothpaste, mayonnaise; Pseudo-plastic milk fluids,
varnishes, shampoo, blood; Dilatant polar ice, volcano lava, wet sand.

o The viscosity depends on the shear stress (generalized Newtonian fluids);

@ Proposed for modeling pseudo-plastic fluids; it has been used also for dilatant;

@ Fails at high shear rates where the viscosity must ultimately be a constant;

@ The Sisko (1958) model: rectifies the failure of the Ostwald-de Waele
S = (u1 + p2|D["?) D

@ It was originally proposed for high shear-rate measurements on some comercial
greases (mixtures of petroleum with thickening agents).

H.B. de Oliveira (holivei@ualg.pt) Existence for a mixture of two power-law fluids Cortona, September 21st, 2012 3/ 20



Motivation - Smart fluids (trembling fluids)

@ Cannot be cataloged into a single class.

@ Ability to achieve a wide range of viscosity in a fraction of millisecond.

@ The viscosity can be changed by applying an electric or magnetic field, or by
changes in the temperature.
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@ Cannot be cataloged into a single class.

@ Ability to achieve a wide range of viscosity in a fraction of millisecond.

@ The viscosity can be changed by applying an electric or magnetic field, or by
changes in the temperature.

@ Electro-rheological fluids:

S= (ul + u2|D|‘7(E)_2) D, E — electric field;

@ Typical ERF: suspensions dispersed with some polymeric colloids (see e.g.
Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
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Motivation - Smart fluids (trembling fluids)

@ Cannot be cataloged into a single class.

@ Ability to achieve a wide range of viscosity in a fraction of millisecond.

@ The viscosity can be changed by applying an electric or magnetic field, or by
changes in the temperature.

@ Electro-rheological fluids:

S= (ul + u2|D|‘7(E)_2) D, E — electric field;

@ Typical ERF: suspensions dispersed with some polymeric colloids (see e.g.
Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
@ Magneto-rheological fluids:

S= (ul + u2|D|"(B)’2) D, B - magnetic field;

o Typical MRF: made of very small solid particles that are suspended in a liquid
(see e.g. Magnetorheological fluids by Henrie and Carlson (2002)).
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@ Cannot be cataloged into a single class.

@ Ability to achieve a wide range of viscosity in a fraction of millisecond.

@ The viscosity can be changed by applying an electric or magnetic field, or by
changes in the temperature.

@ Electro-rheological fluids:

S= (ul + u2|D|‘7(E)_2) D, E — electric field;

@ Typical ERF: suspensions dispersed with some polymeric colloids (see e.g.
Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
@ Magneto-rheological fluids:

S= (ul + u2|D|"(B)’2) D, B - magnetic field;

o Typical MRF: made of very small solid particles that are suspended in a liquid
(see e.g. Magnetorheological fluids by Henrie and Carlson (2002)).
@ Thermo-rheological fluids:

S = (ul + u2|D|‘7(9)_2) D, 0 — temperature

@ Are being used: nanometer-sized particles dispersed in liquids (see e.g.
Nanofluids: Science and Technology by Das, Choi, Yu and Pradeep (2007)).
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Motivation - Smart fluids (trembling fluids)

@ Cannot be cataloged into a single class.

@ Ability to achieve a wide range of viscosity in a fraction of millisecond.

@ The viscosity can be changed by applying an electric or magnetic field, or by
changes in the temperature.

@ Electro-rheological fluids:

S = (ul + u2|D|‘7(E)_2) D, E — electric field;
@ Typical ERF: suspensions dispersed with some polymeric colloids (see e.g.
Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
@ Magneto-rheological fluids:

S= (ul + u2|D|"(B)’2) D, B - magnetic field;
o Typical MRF: made of very small solid particles that are suspended in a liquid

(see e.g. Magnetorheological fluids by Henrie and Carlson (2002)).
@ Thermo-rheological fluids:

S = (ul + u2|D|‘7(9)_2) D, 0 — temperature
@ Are being used: nanometer-sized particles dispersed in liquids (see e.g.
Nanofluids: Science and Technology by Das, Choi, Yu and Pradeep (2007)).
@ Applications: automobile industry, e.g. clutches (ERF) and shock absorbers
(MRF), and modeling e.g. the cooling process of volcano lava flow (TRF).

H.B. de Oliveira (holivei@ualg.pt) Existence for a mixture of two power-law fluids Cortona, September 21st, 2012 4/20



The constitutive equation

@ Trembling Sisko model:

S= (Ml + N2|D|q(x)_2) D. (5)

2In the linear viscoelastic regime the stress responses to successive deformations are
additive.
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The constitutive equation

@ Trembling Sisko model:

S = (lu]_ —|— M2|D|q(x)_2) D (5)
@ Superposition of a sustaining power-law with a trembling one:

S = (D2 + 12D 2) D. (6)

2In the linear viscoelastic regime the stress responses to successive deformations are
additive.

H.B. de Oliveira (holivei@ualg.pt) Existence for a mixture of two power-law fluids Cortona, September 21st, 2012 5/ 20



The constitutive equation

@ Trembling Sisko model:

S = (lu]_ —|— M2|D|q(x)_2) D (5)
@ Superposition of a sustaining power-law with a trembling one:

S = (D2 + 12D 2) D. (6)

@ Justification of the model:

@ The object of superposition of generalized fluids is to produce flow patterns
similar to those of practical interest;

o The best example are polymer solutions in which the polymer segments tend
to repel each other, since they prefer contact the solvent molecules rather then
among themselves (see e.g. Rheophysics by P. Oswald (2009));

o Superposition of fluids is justified, in the light of theoretical mechanics, as a
powerful tool to replace the Boltzman superposition principle? in the case of
materials with nonlinear behavior (see e.g. Nonlinear vsicoelasticity by
J.M. Dealy (2009)).

o Sisko's model has been checked experimentally to fit accurately the viscosity
data of many mixtures (see e.g. An introduction to rheology by Barnes,
Hutton and Walters (1993));

2In the linear viscoelastic regime the stress responses to successive deformations are
additive.
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Mathematical analysis in Orlicz spaces

@ P(Q) the set of all measurable functions g : Q — [1, o0];
@ LI0)(Q) the space of all functions f € P(Q) such that

f
Aqy(f /|f |‘;’(X dx < oo, ||f|lpac Q) |nf{/~€>0 Aq()( )<1};
Wha0)(Q) := {f € LI)(Q) : D*f € LI)(Q), 0 < |a < 1};

©

@ Inherit aImost properties of classical Lebesgue and Sobolev spaces, provided
1< a:=essinfq(-) <q(:) <esssupq(:) :=p < oo; (7)
@ Orlicz-Sobolev space with zero boundary values:

WOLQ()(Q) — {f‘ c Wl’q()(Q) supp fcc Q} II ”Wl q(:)(Q)

One problem:

[

C$°(Q) is not necessarily dense in Wi9)(Q)

o The closure of C3°(2) in WH90)(Q) is strictly contained in W(I,’q(')(Q);
@ A necessary condition for the equality is the globally log-H continuity for g = %
(locally log-H continuous + log-H decay):

G G

lg(x) —g(y)l < et 1/x—y])’ lg(x) = goo| < Tn(e + W) Vx, yeQ (8)
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Weak Formulation

@ Spaces of Fluid Mechanics
o V :={veCyQ):divv=0};
o V., := closure of V in W"7(Q). The power-law index v = Const ;
o V() := closure of V in W-9)(Q).  Requires (8);
2 Wy := closure of V in the [[D(v)||_a()(g)— norm.
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Weak Formulation

@ Spaces of Fluid Mechanics

V= {veCy(Q):divv=0};

V., := closure of V in W7(Q). The power-law index v = Const.;
V() := closure of V in W-0)(Q).  Requires (8);

W) := closure of V in the ||D(v)||_q()(q)— norm.

(9

¢ ¢ ¢

Definition

Let Q be a bounded domain of RV, with N > 2. Assume that f € L1(Q), v is a
constant such that 1 <y < co and g € P(Q) is a variable exponent satisfying to
(7). A vector field u is a (very) weak solution to the problem (1)-(3), if:

e uc Wq(.) NVy;
s For every ¢ € W,y NV, (For every p € V)

/Q (1 D@) ™ + 2D —w @ u) : D() dx = / frpdx
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Weak Formulation

@ Spaces of Fluid Mechanics

V= {veCy(Q):divv=0};

V., := closure of V in W7(Q). The power-law index v = Const.;
V() := closure of V in W-0)(Q).  Requires (8);

W) := closure of V in the ||D(v)||_q()(q)— norm.

(9

¢ ¢ ¢

Definition

Let Q be a bounded domain of RV, with N > 2. Assume that f € L1(Q), v is a
constant such that 1 <y < co and g € P(Q) is a variable exponent satisfying to
(7). A vector field u is a (very) weak solution to the problem (1)-(3), if:

e uc Wq(.) NVy;
s For every ¢ € W,y NV, (For every p € V)

/Q (1 D@) ™ + 2D —w @ u) : D() dx = / frpdx

@ Remark: Note that if o > 7, then W,y — V., and therefore it is enough to
look for weak solutions in the class W,y and if 7 > 3, then V., — W,
and therefore it is enough to look for weak solutions in the class V..
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Historical background - existence for constant power-law indexes

@ Navier-Stokes : Hopf (1951) (Leray (1934) for the Cauchy problem).
@ Ladyzhenskaya (1967), Lions (1969): f € V/, and

3N
> —. 9
T2 N3 (9)
o Ladyzhenskaya: S = (11 + p2|D[”"?) D and N = 3, and Lions: S = x|D|"~?D
@ Proof: Theory of monotone operators together with compactness arguments,

o The lower bound: v > 2% = u®u: D(y) € L'(Q) foru, ¢ € V,.
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@ Navier-Stokes : Hopf (1951) (Leray (1934) for the Cauchy problem).
@ Ladyzhenskaya (1967), Lions (1969): f € V/, and

3N
vt (9)
o Ladyzhenskaya: S = (11 + p2|D[”"?) D and N = 3, and Lions: S = x|D|"~?D
@ Proof: Theory of monotone operators together with compactness arguments,
o The lower bound: v > 2% = u®u: D(y) € L'(Q) foru, ¢ € V,.

o Frehse, Malek and Steinhauer (1997): f € L7 (Q); Ruzicka (1997): f € Vi,

2N
T N+1
o Proof: In addition, it was used the L>°-truncation method.
o The lower bound: 7 > 22 = (u-V)u-p € L}(Q) for u € V,, and ¢ € V.

(10)

= N+1
o Frehse, Malek and Steinhauer (2003): f € L' (Q) and
2N
. 11
" Nt2 (1)

@ Proof: It was used the Lipschitz truncation method instead.
o The lower bound: v > N+2 =u®u:D(p) €LYQ) foruecV, and p € V.

o The strict inequality v > 2% is due to V., <> L*(Q).
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@ Ladyzhenskaya (1967), Lions (1969): f € V/, and

3N
vt (9)
o Ladyzhenskaya: S = (11 + p2|D[”"?) D and N = 3, and Lions: S = x|D|"~?D
@ Proof: Theory of monotone operators together with compactness arguments,
o The lower bound: v > 2% = u®u: D(y) € L'(Q) foru, ¢ € V,.

o Frehse, Malek and Steinhauer (1997): f € L7 (Q); Ruzicka (1997): f € Vi,

2N
T N+1
o Proof: In addition, it was used the L>°-truncation method.
o The lower bound: 7 > 22 = (u-V)u-p € L}(Q) for u € V,, and ¢ € V.

(10)

= N+1
o Frehse, Malek and Steinhauer (2003): f € L' (Q) and
2N
. 11
" Nt2 (1)

@ Proof: It was used the Lipschitz truncation method instead.
o The lower bound: v > N+2 =u®u:D(p) €LYQ) foruecV, and p € V.
» The strict inequality v > 2% is due to V,, << L*(Q).

2
@ Open problem: 1<7<N+ and N >2.
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Historical background - existence for variable power-law indexes

@ Ruzicka (2000): f € V/, and
- 3N
=N +2°

o The test functions p € Wg(,).
@ Proof: follows the approach of Ladyzhenskaya-Lions and uses W) — Va.

(12)
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Historical background - existence for variable power-law indexes

o Ruzicka (2000): f € V/, and

o> —. (12)

o The test functions p € Wg(,).
@ Proof: follows the approach of Ladyzhenskaya-Lions and uses W) — Va.

o Huber (2011): f € (Ws9)(Q)) and

S 2N
o> —.
“N+1
o The solution u € Vg(,y (requires (8)) and the test function ¢ € V;

o Proof: combines Bogowski (1979) results on divergence problems in
Orlicz-Sobolev spaces with the L*°-truncation method.

(13)
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Historical background - existence for variable power-law indexes

o Ruzicka (2000): f € V/, and

o> —. (12)

o The test functions p € Wg(,).
@ Proof: follows the approach of Ladyzhenskaya-Lions and uses W) — Va.

o Huber (2011): f € (Ws9)(Q)) and

2N
o The solution u € Vg(,y (requires (8)) and the test function ¢ € V;
o Proof: combines Bogowski (1979) results on divergence problems in
Orlicz-Sobolev spaces with the L*°-truncation method.
@ Diening, Malek and Steinhauer (2008): the same assumptions of Huber,
2N

@ The solutions satisfies to the energy relation:

/(S(D(u))—u®u) : D(p) dx:/pdivgodx—i—/prdx Vo€ We™(Q) (15)
Q Q Q

@ Proof: uses Lipschitz-truncations of functions in Orlicz-Sobolev spaces.
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First Result

Theorem

Let Q be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundary

0. Assume that 1 < y < oo, q € P(Q) satisfies to (7) and f € (V, N Wq(.))/.
Then, if

3N
N+2’
there exists a weak solution to the problem (1)-(3).

min {v, a} >
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First Result

Theorem

Let Q be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundary
0. Assume that 1 < y < oo, q € P(Q) satisfies to (7) and f € (V, N Wq(.))/.
Then, if

3N
N+2°
there exists a weak solution to the problem (1)-(3).

min {v,a} >

Proof.

The proof combines the results of Ladyzhenskaya and Lions for the constant
power-law index v with the existence result of Ruzicka for the variable power-law
index q. O

v
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First Result

Theorem

Let Q be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundlary
0. Assume that 1 < v < oo, q € P(Q) satisfies to (7) and f € (V, "W).
Then, if

3N

N+2’
there exists a weak solution to the problem (1)-(3).

min {v,a} >

Proof.

The proof combines the results of Ladyzhenskaya and Lions for the constant
power-law index v with the existence result of Ruzicka for the variable power-law
index q. O

v

Remarks

@ If v =2, it extends the existence result established by Ladyzhenskaya (1967)
to the case of a variable exponent q;

@ Since Vg.y S Wy.y, this result is obtained in a larger class.
q() Z "Wa()

y
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Theorem

Let Q be a bounded domain in RN, N > 2, with a Lipschitz—contl;nuous boundary
9. Assume that q € P(Q) satisfies to (7) and f € (V, "W). Then, if for
any d >0

2N
’YzmaX{N—_’_Q—’—éaﬁ}v (16)

there exists a very weak solution to the problem (1)-(3).

@ For the trembling Sisko model we have existence of very weak solutions

S= (m +u2|D|‘7(X)‘2) D forl<a<fB<2. (17)
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Theorem
Let Q be a bounded domain in RN, N > 2, with a Lipschitz-continuous boundary

0. Assume that q € P(Q) satisfies to (7) and f € (V, N Wq(,))/. Then, if for
any d >0

2N
’YzmaX{N—_’_Z—’—(Saﬁ}v (16)

there exists a very weak solution to the problem (1)-(3).

@ For the trembling Sisko model we have existence of very weak solutions

S= (u1+u2|D|q(x)‘2) D forl<a<fB<2. (17)

@ In order to make the proof as transparent as possible, we shall assume that
f=—divF, FelMl , FelL70(Q). (18)
o The assumption (18) does not restrict the result's extent, because f = —divF

and F € L90)(Q) implies that f € W/, and W/,) < (V, N W,(,)".
@ The assumption F € ]M:’;\;,m is made in order to avoid unnecessary calculus.
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Proof: 1st step — Regularized problem

o Let € C°°([0,0)) be a non-increasing: 0 < ® < 1in [0,00), P =1 in
[0,1], #=01in [2,00) and 0 < —®’ < 2. For € > 0, we set

D (s) := P(es), s € [0,00). (19)

We consider the following regularized problem in Q:

divu, =0, (20)

div(uc © O (Ju])) = f = Vp + div [ (5D )] + #2|D(u,)| %) D(u,)]
(21)

u =0 on 0. (22)

Proposition

... Then, for each € > 0, there exists a weak solution u. € V., to the problem
(20)-(22). In addition, every weak solution satistfies to the following energy
equality:

/Q (1ID@AP + 2D () %) = /Q F - D(u,)dx. (23)

y

@ The proof is based on Schauder's fixed point theorem.
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@ From (23), we can prove that

[ (I)r + ID(u)) dx < c. (24)
Q
@ By Sobolev’s inequality, and due to the definition of ®., we have

* <C.
lue @ ucc(ju)f o <€ (25)

@ From (24)-(25), there exists €p, > 0 such that ¢, — 0, as m — oo, and
u.,, —u weaklyin V,, as m— oo,
ID(uc, )" ?D(u.,) —S1 weaklyin LY (Q), as m— oo,
ID(uc,,)|9®2D(u,,,) = S> weaklyin L7(Q), as m— oo,
u.,, u., ., (Ju,|) = G weaklyin L%(Q), as m — oo.
@ Using (27)-(29), we can pass to the limit m — oo in
[ (1D )72+ 2l (e ) 792) Dlte) : D) i = [ e © e B e ) + F : DY)

(30)
valid for all ¢ € V, to obtain

/(u151+uzsz—G—F):D(cp)dx:O Yoel. (31)
Q
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Proof: 3rd step — Convergence of the convective term

@ Due to (26), the application of Sobolev’s compact imbedding theorem implies
u.,, — u strongly in L"(Q), asm — o0, foranyk:1<k<~* (32)

@ Since (16) implies 2 < v*, it follows from (32) that
u.,, — u strongly in L2(Q), as m — cc. (33)

@ Using (19)) and the result (33), we can prove that
u.,, @u., ®, (Ju,|) > u®u strongly in LY(Q), as m — cc. (34)

@ Then gathering the information of (29) and (34), we see that G =u ® u.
@ Now in the limit (m — oo) of the integral equation, we have

/(u1$1+u252—u®u—F):D(gp)dx:O Vel (35)
Q
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Proof: 4th step — Determination of the pressure

@ Since we shall use test functions which are not divergence free, we first have
to determine the approximative pressure from the weak formulation (30).
@ First, let w’ be a fixed but arbitrary open bounded subset of Q such that

W' cCcQ and 9w’ is Lipschitz (36)

@ We use a version of de Rham's Theorem?® (Bogovskii (1980) and Pileckas
(1983)) to prove the existence of a unique function

Pe., € L’,(w’), 1<r<ry:=min {fy’, %} , with pe,.dx =0 (37)
and such that (for all ¢ € W(l)", (W)
/, (M1|D(uem)|V72 + /‘2|D(“6m)|q(X)72) D(u.,,) : D(p) dx =

/ F:D(p) dx—|—/ u.,, @u., . (Juc,]): D(p) dx—|—/ Pe,, divep dx.
@ Passing to the limit m — oo, we obtain (for all ¢ € W(l)",(w’))

/ (11181 + 112S2 —u®@u — F) : D(p) dx = / po divp dx . (38)

w’

3de Rham (1931):g = V
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Proof: 5th step — Local decomposition of the pressure

@ Let w be a fixed but arbitrary domain such that
wCCWw cCc and Owis C2. (39)

@ By Simader and Sohr (1996) and Wolf (2007), there exist unique functions
phoEAT (@), P, e AT (W), (40)
where AS(w) ;= {a€ L°(w):a=Au, ue Wy*(w)} such that
HP&,,,HLM(@ <G|lID(ue,,)" " *D(u.,,) — Sl”L"f'(w)_'_

. (41)
C2H|D(u5m)|q( ) 2D(u5m) - S2HLW’(W)7
2 s < Gllue, Que P (Ju|) —u@ul| 4« . 42
82,1, ) < Gllten @ wep@cp(ucy) —uul o (42)
and
Pem — Po = PL, + P2, -
@ Then
div (|D(u.,,)|""*D(u.,) - S1 + [D(u,,)"*D(u,,) ~S2) =
in D'(w).
div (ufm ® u5m¢5m(|u5m|) —u ® u) = V (pim + p62m)
(43)
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@ Using the Hardy-Littlewood maximal operator, we can prove that for all
m € IN and all j € INy there exists Ap, j € {221, 22”1) such that

,CN (FmJ) < 271’)‘;5 HWE.,.HL*‘(]RN)’ for any - 1 Sh< ’Y*’ (44)

Ly (Gmj) < 2_1')‘;;,7] IVwe,, |l (rn), (45)
where

Fmj:={xe€R": M(lwe,[)(x) > 2Am;}.
Gmj = {x € RN : M(|Vw,,[)(X) > 2Am;}.

M(we, D) = sp s BIR(X)) / )]y

1
M(|Vwe,|)(x) == su 7/ Vw,, dy.s
(Ve D00 3= 520 Zn (Bl oy~ P

@ Setting Ry j := Fpj U Gpj, we can prove that

limsup Ly (Rmj) < IiIT_:sgop C2*j/\;,3.. (46)

m— 00
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@ By Acerbi and Fusco (1988), there exists

0o W, inw\An;
Zm,j € wt (]RN)a Zm,j = { 0 ]R,N\\ urjnj ) (47)
Amj ={x€w:znj(x)#w,(x)}, (48)
such that
lzm jllLew) < 2Am,, (49)
||vzm’j|‘|_oo(w) < C)\mJ, C= C(N,OJ). (50)
@ By Landes (1996),
Amj CwN Ry j. (51)
@ As a consequence,
limsup Ly (Am,j) < limsup C2*j)\;7j. (52)
m— o0 m— oo ’
@ We can prove, successively, that for any j € INg
Zm; — 0 weakly in W37 (w), as m — oo, (53)

Zmj — 0 strongly in L®(w), asm — oo, forany k:1 <k <~*,
Zmj— 0 strongly in L°(w), asm — oo, foranys:1<s<oo, (54)

Zmj — 0 weakly in W3*(w), asm — oo, foranys:1<s<oo. (55)

H.B. de Oliveira (holivei@ualg.pt) Existence for a mixture of two power-law fluids Cortona, September 21st, 2012 18 / 20



Proof: Bth step — Convergence of the approximative extra stress tensor

@ We prove that

(ID(ue,,)|""?D(uc,,) — |D(u)|"~?D(u)) : D(zm;) dx+
(ID(u.,)|"®)~*D(u,,) — [D(w)| " ~2D(u)) : D(zm,) dx =
(51 — |D(u)|"?D(u ) : D(zm,j) dx+

(2 - ID()|")-2D() ) : D(zm,) dx+

div Zpm j dx+

(ue,, @ ue, P, (Jue,|) —u@u+ pezml) : D(zmj) dx

= Jh SRS Jh < €270 (as m — o0).
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Proof: Bth step — Convergence of the approximative extra stress tensor

@ Using an argument of Dal Maso and Murat (1998), we start by proving, for
any 6 € (0,1), that

lim sup/ gfm dx < C1279% + C2279%7(179)j —0(asj—o0), (57)

m— 00
gn =1 ||D(uc,,) "D (u,,,) ~ [D(u)|"*D(w)| +
2 |ID(u,,)|*®)"2D(u,) — [D(w)|"-2D(u)
@ Then for any 0 € (0,1)

lim sup/ g’ dx=0.
m—o0o Jo
@ Passing to a subsequence,
8em =+ 0 ae inw, asm— oo (58)
@ Using the monotonicity and continuity on D(u),
D(u.,,) - D(u) ae inw, asm— co. (59)

@ Vitali's theorem allow us to conclude that S; = |D(u)|”~2D(u) and
S2 = [D(u)|7¥)~2D(u).
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