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1. Mechanism of concrete corrosion
Initial state: On Ceiling: Bacteria B (Sulfur oxidiz-

Concrete ing bacteria) produces sulfuric acid:
H>S(ag) + O — HySOy

Gypsum is produced from sulfuric acid
and concrete:

Sewer water

At Bottom: After a while, sludge is Water
piled up and becomes anaerobic. ,/
0900 0GC
@) OOO%OO
Vaporization o %
/

Sludge (night soil, deter Cement( CaCOy)

gent) +Bacteria A HoSO4 — 2H1 + SO, 2,

2H,0 + Ht + SO, % + CaCO3 —
CaSOy4 - 2H,O 4+ HCO3

Oy4 - 2H-0O: (Gypsum)

Volume expansion by product of Gyp-
sum = concrete degradation

Bacteria A: sulfate reducing bacteria
) —
SO4 +2C+H>O — HQS(aq)+2HCO3 CaS

HoS(aq) = HoS(9)
H->S (hydrogen sulfide)
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2. Two-scale modeling

Y Yo

Y, |
Assumption 1. ¢: Time variable For each =z € €2, Y corresponds.
macro-domain 2 ¢ R3 H-S(g) diffuses through Y5 and
Hydrogen sulfide H>S(g) diffuses in 2. w3 is a constant in Y5.
ws: Concentration of H>S(g) wq: Concentration of H>SO4(aq)

w3z = w3z(t,z) for x € Q wo: Concentration of HyS(aq)

Assumption 2. w1 = wi(t,z,y) for (x,y) € Q x Y7,
micro-domain Y ¢ R3 wo = wo(t, z,y) for (z,y) € L x Yy

Y = YouUYiUY5, Yo Region of Cement,
Y1: Water Region, Y>: Air region
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Mass conservation laws
Assumption 3. w; [H>SO4(aq)] diffuses in Y7,
wyp [HoS(aq)] diffuses in Y;.

(bacteria B) H>S(aq) + O — HsSOyq4.

Orwy — Vy - (d1Vywi) = folwo)—f1(w1) in 2 x Yy

Orwo — Vg - (doVywo) = — fo(wo)+f1(w1) in QX Yy,

Vy denotes derivative w.r.t. y € Y7
f1. f2: continuous, increasing f1(0) = f2(0) =0

Examples of f1, fai fi(r) = alr]*, fa(r) = b[r]T
Assumption 4. w3 [H»S(g)] diffuses in 2 and
for each = € 2 Henry’s law holds.

Jywz — V - (d3Vwz) = —Oz/r (hows — wo)dyy in €2,
2

d3Vw3z-v(z) =0 on Iy, w3 = ’wé) on [ p.

V denotes derivative w.r.t. x € 2



Boundary conditions for w; and w»

[y I3 Example of R and Q:
Yo \A

(Wy) R(wy)
[

>

Assumption 5. On "1 H2504(ad) assumption 6. H>SO4(aq) can not
and CaCOg3 react and produce Gypsum. move over M, 3.

n. rate of this reaction d1Vywi -v(y) =0 on M U3
wga:. Concentration of Gypsum Assumption 7. H,S(aq) can not
d1Vywy -v(y) = —n(w1,wa) ON 1, move over My, M.
Oywa = n(wi,ws) on Iy, doVyws - v(y) =0 on M1 UT3
Moreover, (Gypsum inhibits the prod- Assumption 8. H»S(aq) w- satisfies
uct) Henry's law on [».
n(wy,ws) = R(w1)Q(ws), doVyws - v(y) = a(hqwz — wp) on I
R'>0,Q"<0, R>0 on (0,00), Assumption 9. The boundaries of
Q@ = 0 on (Bmax, 0) Q2 and Yj are Lipschitz continuous.

( Bmax iS a positive constant.) 5



Our model We denote by P the following system:

Opw1 — Vy - (d1Vywy) = —f1(w1) + fo(wz)  in (0,T) x £ x Y7,
Opwp — Vy - (doVyws) = f1(w1) — fo(wz)  in (0,T) x 2 x Y7,
w3 — V - (d3Vws) = —a/ (h0w3 — wg)dfyy in (0,7T) x €,

2
Orwag = n(wi,wg) on (0,7T) x Q2 x 7.

w;(0,z,y) = wjo(z,y), jc{1,2} in Q x Y7,
{w3(0,x) = w3zp(x) in L, wa(0,z,y) = wag(z,y) on Q2 x I,
(dlvywl v(y) = —n(wq,wg) on (0,T) x Q2 x4,

diVywy -v(y) =0 on (0,7) x 2 x> and (0,7) x Q2 x I3,
doVyws -v(y) =0 on (0,7) x 2 xT1and (0,T) x 2 x I3,
doVyws - v(y) = a(hows — wg) on (0,7) x Q2 x [,

d3Vws3 - V(:C) =0 on (O,T) X I,
\w3=w:? on (0,7T) x Ip,

N\




Related topic 1 Friedman-Tzavaras (1987) (Catalytic reactor with bed):
u(t,z), v(t,z) in : macro, v/(¢t,z,z'), V/(¢t,z,z') in Q': micro

ut =V - (a(u)Vu) — V7 - Vu — /89’ B1(u —u') in Q,

v =V - -(B(w)Vv) — Vo - Vv — /89’ Bo(v —v") in Q,

up = V' (o' (u)V'W) = y(u)p(v') in &,
v, =V (B (W)VV) +y@W)p(v') in
ou

oz——|—,uu=F,B@—|-m)=Gon 0S2,
on on

/ /
a’(u’)ﬁ—u + /(v —u) =0, B’(v’)a—v + o' (v —v) =0 on 9,
on/ on/

EXxistence, uniqueness and Large time behavior
~v(r) =crP, 0 <p <1, V7 and V5 are constants

C C C
B < 3520 1P| < 1520 |G < 15

Then (u,v,u’,v") — (0,9,0,7") uniformly.
(Holder continuity of solutions of parabolic equations)



Related topic 2.
A. Muntean - M. Neuss-Radu (2010):

Up(t, z) — DAU(t, z) = _/rk b(U(t, ) — u(t, x,y))dyy in S,

u(t, z,y) — di1Dyu(t, x,y) = —kn(u(t, z,y),v(t, z,y)) in 2 XY,
vi(t, z,y) —doDyv(t,z,y) = —akn(u(t, z,y),v(t, z,y)) in Q2 XY,
U =UP on 80,
Vyu-ny =0 on Iy,
—d1Vyu - ny = —b(U(t,x) —u(t,z,y)) on g,
Vyv - ny = 0 on 0€2,
b R—-R, n:RXxR— R are Lipschitz continuous.
Assumptions: Uy € H2(2), ug,vg € L2(2; H2(Y)) N HI(Q2 x Y)
Existence, uniqueness and positivity of a solution



Related topics 3. Aims of this talk
T. Fatima, N. Arab, E. P. Zemskov, 1. EXistence, uniqueness and positivity

A. Muntean (2011): under

Derivation by homogenization w10, woo € L2(2; HY(Y1)) N L°(Q x
V. Chalupecky, T. Fatima, A. Y1)

Muntean (2011): wag € HY(Q) N L>®(N)

Existence and uniqueness, numerical 2. Large time behavior

simulation with constants d; w1 (t) = w1 Weakly in L2,

f1, fo are linear. wo (1) — wose Weakly in L2,
n(r1,m2) = crf(a — 1)1 w3(t) — w3so IN L2,

w10, w0 € L2($2; H2(Y1))NH (2 x Y1) wa(t) — wase iN L1,

w3 € H?() if f1(r1) — fo(r2) = ¥(ry —r2) |

Y. proper, |l.s.c. convex on R.

Analytical tools

1. Theory of evolution equations gov-
erned by sub-differential without
compactness

2. Maximum principle 9



3. Definition of a solution and main results

X ={ze H(Q)|z=0o0n Np}.

Definition 3.1 For T > 0 (w1, wo,w3,w4) iS a solution of P on [0,T], if (S1) ~
(S5) hold.

(S1) wi,ws € HY(O,T; L2(2xY7))NL>®(0,T; L2(2; HY(Y1)))NL>®((0,T) x2xY7),
w3z € HY(0,T; L?(R2)) N L>®((0,T) x ), wz —wk € L>(0,T; X),
wa € HY(0,T; L2(Q2 x 1)) NL>®((0,T) x 2 x 1),
w1(0) = w10, w2(0) = wpg, w3(0) = w3zg, wa(0) = wso.

(S2) It holds that
/ Orwqv1dxdy + / d1Vywi - Vyvidaedy + Q(wq)R(v1)dzdyy
QXYl QXY]_

Q><|_1
= Jopy 101 + fa(w)yvrdrdy
for v; € L?(2; HY(Y7)) a.e. on [0, T].

10



(S3) It holds that
/ (Brwovo + doVywso - Vyvo)dzdy — a/ (hows — wyp)vadxdyy
QXYl )

><|_2

= /Qxyl(fl(wl)—fz(wz))vzdwdy for vy € L2(2; H'(¥1)) a.e. on [0,T].

(S4) It holds that

/Q Orw3vzdx + /Q d3Vws3z - Vuzdx

= —a/ (hows — wp)vadxdyy  for vz € X a.e. on [0,T].
QXI_Q

(S5) drwg = n(w1,w4) holds a.e. on (0,T) x 2 x M.

11



Assumptions

(Al) d; € L®°(Q2 x Yq7),i = 1,2, d3 € L°°(2) satisfies
d;(x,y) > d? for a.e. (x,y) € 2 x Y7 and 7 € {1,2},
dz(x) > d3 for a.e. z € Q,

where dY > 0 is a constant for each i = 1,2, 3.

(A2) n(a,B) ;= R(ax)Q(B), where R, @Q are locally Lipschitz continuous and
satisfy

R'>0and @’ <0a.e. on R, R>0on (0,00) and R =0 on (—o0,0],

Q@ > 0 on (—o0, Bmax) and @ = 0 on [Bmax, o), where Bmqq iS a positive constant.

(A3) For i = 1,2 f; is locally Lipschitz continuous and increasing, f;(0) = 0.

(A4) For i = 1,2, wjg € L2(2; H1(Y1)) N L>®(2 x Y1), w;o > 0 on Q x Y7,
w3 € Hl(Q), w30 —’wg(o,-) e X, wzg >0 on €,
wag € L°(2 x 1) with wag >0 on Q2 x M.

(A5) w¥ € L2(0,T; H?(2)) n HY(0,T; L?(2)) N L>®((0,T) x Q))
with Vwf -v =0 on (0,T) x My, w3 >0 on (0,T) x Q.

12



Theorem 3.1 (existence, uniqueness). (T. Fatima- A.Muntean - A, 2012)
Let T"> 0. If (A1)~(A5) hold, then P has a unique solution (wq,ws, w3, ws4) ON
[0,T] and

0 <wi; <Mq,0<wy < Myon (0,T) x 2 x Yy,

0<wz < Mzon (0,T) x 2,0<wg < Mygon (0,7) x 2 x 7.

where a positive constant M; depends only on maximum values of initial and
boundary functions, and Bmaz-
(Sketch of the proof).

e Solve the problem with given functions in right hand sides by the Galerkin
approximation.

e Solve the problem with Lipschitz continuous f1, fo, R, @ by Banach’s fixed
point theorem.

e Estimate maximum values of solutions by choosing [w; — M;]T as a test
function.

e Show existence of a solution, even if fq1, fo, R, @ are locally Lipschitz
continuous.

13



4. Large time behavior
Let ¢ be a locally Lipschitz continuous and increasing function with ¢(0) =0
and substitute ¢ (r1 — yro) instead of f1(r1) — fo(r2). Thus we consider

Opw1 — Vy - (d1Vywy) = —9(ry —ar2)  in (0,T) x 2 x Y7,
Opwp — Vy - (doVyws) = (ry —yrp)  in (0,T) x 2 x Y7,

Example. If f1(r1) = b1[r1]T and fo(rs) = bso[ra] T, then we put
¥(r) = byr for r e R and v = 2.

Then we can have w; > 0 for i = 1,2 and fi(wy) — fo(ws) = Y (w1 — ywo)

Moreover, we put W3 = w3 —w¥ and H = L?(Q2 x Y1) x L?(Q2 x Y1) x L?(S2) in
order to apply the abstract theory.

14



Theorem 4.1 (A.Muntean - A, 2012)

(A3'): w is a locally Lipschitz continuous and increasing function with (0) = 0.
(A5") w3 e L2 (0, o0; HQ(Q)) N HE (0,00; L2(2)) N L®((0,00) x Q)

Wlthw >Oande z/—Oon(Ooo)xFN

If (Al) (A2), (A3’ ) (A4) (A5") hold, dw? — Vd3Vws € L>(0,00; L1(R2)),

(B¢ (Opwy — Vd3VwE) € L1(0, oo; Ll(Q)) 8tw3 e L1(0,00; L1(2)), then

(1) P has a unique solution (w1, wo, W3,ws) on [0,00) with 0 < w; < M;,
0 < W3 < Ms.

(2) wa(t) = wase In LI(Q x 1) as t — oo and dwa € L1(0,00; L1(Q2 x 1))

(3) There exists a subsequence {t,} with t, = oo as n — oo such that

w(tn) = woo Weakly in H as n — oo

for some woo = (Wiee, Wose, Was) € H and weo iS a solution of the stationary
problem, where w(t) = (w1 (t),wo(t), W3(t)) € H. Moreover, if
(Y(r) — () (r — ") > plr — ¢'|PTL for r,7' € R, where 1> 0 and p > 1, then

w(t) — weo Weakly in H, Ws(t) — Was, in L2(2) as t — oo.

15



Main idea of the proof of Theorem 4.1

Furuya, Miyashiba, Kenmochi (1986)
Asymptotic behavior of solutions to a class of nonlinear evolution equations,

Journal of Differential Equations, 62, 1986, 73-94.
H=IL2%(Q2xY1) x L?(2 x Y1) x L?(),

(w,v)g = (u1,v1) [ 2(0xyy) T Y(U2,v2) 120 xyy) T ho(u3,v3) 12(0);
for u = (uy,up,uz),v = (vy,v2,v3) € H.
For given wg € L2(Q x 1) we define o' (wga:-) : H — (—00, ] in the following
way:

o' (wa; w)
1 2 ~ Y 2
— = 1|V dad / RB(w)dxd —/ do|V dad
2 Jaxy; 1| Vywi|“dzdy + erlQ(sz) (wq)dzx ’Yy‘|‘2 v, 2| Vywo|“dzdy
_ v D >
_ dody 4 1 / ho (W _ wol2dzd
[y P01 = ywaddody + Jo [ ho(Ws + wh) — wp|dad,

h
+22 /Q d3|VW3|2dz — hg /Q F(OWade i w= (wy,ws, W3) € K,

where K = L2(Q; H1(Y7)) x L2(2; HY(Y1)) x X, R and ¢ are primitives of R

and v, f(t) = o (t) — VdsVw’ (t).
16



Lemma 4.1. ¢! (ws(t); w) is proper. l.s.c. and convex on H. 0ot (wa(t); w) is
single-valued and w* = (w}, w}, w}) = 9¢'(w4(t); w) if and only if w* € H and

(w1, v1) 2(0xyy) = /QxYl d1Vywy - Vyvidzdy + /erl Q(wa) R(w1)vidzdyy

_ dady,
+ Qxylw(wl ywop)vidrdy

(w3, v2) 12(0xv7)
— / doVywy - Vyvodrdy — a/ (ho(W3 + wé)) — wo)vodxdyy
QXY]_ Q

X | 2
—|— w1 — )/’w (V) dZEd 5
QXYl w( 1 2) 2 y

(w3va)2() = [, daVws: Vvsdady — [ f()vsda
o [ (ho(Ws +wh) — w)vsdudy,
QXFQ

for (vy,vo,v3) € L2(Q; H1(Q)) x L2(Q2; HI(Q)) x X.

17



Lemma 4.2. Forw e K

o' (wa(t); w) — o (wa(s); w)
< C(lwa(t) — wa()|p2(axryy + 17O = F()]p2a)) (1 + o (wals); w))

Sketch of the proof of Theorem 4.1
1st step. For given wy € WH1(0,7; L2(Q x 1)) we solve

wi + 00t (wa(t); w) = 0, w(0) = wo.

2nd step. By Banach’s fixed point theorem we show existence and uniqueness
of a solution of P. dyws = n(w1,wa)

3rd step. We obtain positivity and maximum values of a solution.

4th step. Since wy; = R(w1)Q(ws) > 0, Lebesgue monotone convergence
theorem implies

wa(t) — Wase IN LY(2 X 1) @s t — oo, way € LY(0,00; LY (2 x T1)).

5th step. We show w; € Wh2(0, 00; H), ¢t(wa(t),w(t)) € L°(0, o).
18



6th step.
ww(wg) = {z € Hlw(tn) — z weakly in H for some {t,}},

QOOO (w4oo; w)

1 R )
- - d|V drd / R(w+)dzd
> Jasy, 1| Vyw1|“dzdy + erlQ(’szoo) (w1 )dadryy

Y 2
— do |V, wo | “dxd
-I-2 oy, 2| Vywo| Y

—~ Y 2
_ dadrn 4 / ho (W, — wo|2dxd
+ QXY1¢(w1 ywo)d T+ S Q><r2| 0(W3 + w3s0) — wo|“dzdy
h
+20 /Q da|VWa|2dz — hg /Q FooWadz i w = (wy,wn, W) € K.

F(¢™) ={z € H|p(Waco; 2) = Min > (wace; -) }-

19



7th step.
lim @' (wa(t); w(t)) = mo.
t—o0

8th step. There exists woo € H such that w(t,) — weo Weakly in H, namely,
Woo € ww(’wo)

Moreover, since o (Waeso; Woo) < Mo, Weo € F(°°). Hence, wso is a solution of
the stationary problem.

o9th step. Under (¢(r) — (")) (r — ") > p|lr —¢/|PTL for r,7’' € R

for each wga,, the stationary problem has a unique solution.

| ot (w(l) (1) (1)) (w (2)  (2)

loo? 200’ W1 600 200’

(1) (2) (1) (2)

PUt wis = Wil — Wi W2eo = Wo L — W5 2, Wiy

(2)) be solutions of the stationary problem.
(1) (2)

~Vy - (d1Vyw1se) = —(P(wil) — ywi)) - wwloo yw$2))) in @ x vy, (1)
~Vy - (d2Vywase) = (wis) —ywss)) — p(wiZ) —ywid) in @x vy, (2)

_V - (d3VWay) = —a/ (hoW3oo — waso)dyy  In (3)
o
By (1) Xwice, (2) XYWose, (3) XvhoW3s
20



> N
1 (2
Qxyl(w(wloo ywSy — o (w$?) — 4w§D)) (wrae — Ywane)dady

+704/ [hoW300 — wono| dadyy + de/ [V W3eo|?da.
QXFQ Y

By VW3, =0 on 2 and W3, =0 on I p we have W3,, = 0 on €2.

0 > & [ |VywisoPdudy + a3 [ [Vywon|Pdudy
QxY; Q%

Hence, fQXI_Q |hOW3oo — w200|2d:13d7y, fQXYl |Vyw200|2d:cdy = 0 imply
Woso = 0 ON €2 X Y7. By the assumption

(p(wE) — ywl)y — (w2 — w$2))) (w100 — YW200) > plwree — YWwosePTL.

Then wise =0 0n 2 X Y.

final step Since the stationary solution is unique, w(t) — weo Weakly in H as
t — o0

Moreover, by W3 € L>®(0,00; X) we have W5(t) — Wa, in L2(Q).
21



5. Future problems

1. Strong convergence of wi, wp, the difference of the convergence rates
between macro and micro parameters.

2. No neglect of change of water mass.

3. To find natural boundary condition on [ 3.

22



