RATE-INDEPENDENT PROCESSES IN SOLIDS:
combination with rate-dependent processes

Tomas Roubicek
(Sept.23, 2008, STAMM, Levico)

Charles University & Academy of Sciences, Prague

T.Roubitek (STAMM 08, Levico) RATE-INDEPENDENT PROCESSES IN SOLIDS



Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

rate-independent processes

0u€(t,u,z) =0, (1a)

dz

3%7—\{1 (Z7 dt

) + 0:E(t,u,z) 2 0. (1b)
with

u €U a “displacement” determined essentially by z

z € Z an “internal” variable with activated evolution,

E:U x Z— TRU{oo} the stored energy,

R1: Zx Z — IRU/{oo} the dissipation pseudopotential

Ri(z,-) (positively) homogeneous degree-1
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

Combination of rate-independent processes vs. rate-dependent processes.

d
R’zd—[tj +9,E(t,u,z) =0, (1a)

dz
02z Ra (2, E) +0,&(t,u,z) 3 0. (1b)

with

u €U a “displacement” evolving “viscously”

z € Z an “internal” variable with activated evolution,

E:U x Z— TRU{oo} the stored energy,

Ri1: Zx Z — IRU/{oo} the dissipation pseudopotential

Ri(z,-) (positively) homogeneous degree-1

R, :V — IR the dissipation pseudopotential of viscous forces, quadratic
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.

Approximate solution.

Combination of rate-independent processes vs. rate-dependent processes.

& d
T’d—t;’ + R’zd—[tj +9,E(t,u,z) =0, (1a)
d
04:Ra (2, d{) +9,E(t,u,2) 3 0. (1b)

with

u €U a “displacement” evolving “viscously” and “inertially”

z € Z an “internal” variable with activated evolution,

E:U x Z— TRU/{oo} the stored energy,

Ri1: Zx Z — IRU{oo} the dissipation pseudopotential

Ri(z,-) (positively) homogeneous degree-1

Ro :V — IR the dissipation pseudopotential of viscous forces, quadratic
T :'H — IR the kinetic energy, quadratic
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

Combination of rate-independent processes vs. rate-dependent processes.

& d
T’d—t;’ + R’zd—[tj +9,E(t,u,z) =0, (1a)
d
04:Ra (2, d{) +9,E(t,u,2) 3 0. (1b)

with

u €U a “displacement” evolving “viscously” and “inertially”

z € Z an “internal” variable with activated evolution,

E:U x Z— TRU/{oo} the stored energy,

Ri1: Zx Z — IRU{oo} the dissipation pseudopotential

Ri(z,-) (positively) homogeneous degree-1

Ro :V — IR the dissipation pseudopotential of viscous forces, quadratic
T :'H — IR the kinetic energy, quadratic

Functional-analytical ansatz: V, U/, Z Banach spaces, H a Hilbert space,
u:[0, T]—U, &[0, T]—V,
YV CU € H = H* densely,
Ro:V — IR and 7 : H — IR coercive.
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

Treatment of the general ansatz:
General theory of rate-independent processes based on
dissipation distance:

Di(20,21) ::inf{/ol Ra (2(1), g(t))dt;

ZeCH([0,1]; V), %(0) = 2, 2(1) = zl}

In principle, D; the dissipation distance can be treated as itself even
without referring to Ry and without any linear structure on Z.

But we will not pursue this high generality here.

Simplification: Rl(Z, %) = Rl(%) Then D1(20721) = Rl(Zl—Zo)
and we assume Rq : Z — IR U {co} homogeneuous degree-1 and coercive.
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

The philosophy of a suitable definition of a solution to (1) can be based
on the energetic-solution concept of A.Mielke at al. applied, for u
considered fixed, to the system (Z,Z,,R1) with (1b), by

Zu(t, z) := [Eou](t, z) = E(t, u(t), 2),

and further combined with a conventional weak-solution concept as far as
the “momentum equation” (1a) concerns.

We consider still initial conditions:

This leads to:
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

We call g = (u,z) : [0, T] — Q =U x Z an energetic solution to the
problem (1) with the initial conditions if

u € Cy([0, T; U),

% € L2(1;V)n Cu([0, T; H),

z:[0, T] — Z with z([0, T]) relatively compact,
Varg,(z;0, T) = (the variation of z over [0, T| w.r.t. R1) < oo,

t — 0:£(t, u(t),z(t)) is integrable on [0, T],

and if:
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Introduction, generalized standard materials, discretization

General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

@ the “momentum equation”

(1a) with the inital condition
44(0) = i holds in the weak sense, i.e

[ (g o800, v0) - (/e
+ (T’a(r)]v(r)) — (T"in|v(0)),
holds for all v € C([0, T];¢4) N CL([0, T]; V),

@ the energy inequality holds, i.e
T(GM) +E(TumT)
+ Varg,(z; 0, T)+2/R2( )dt

< T (i) + £(0, uo,zo) 0:E(t, u(t), z(t))dt,
@ the semi-stability holds for all v € Z and for a.a. te€/

5’(t7 u(t), z(t )) <5(t u(t), )—l—Rl(v—z(t))

@ the remaining initial conditions u(0) = up and z(0) = z are satisfied
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

Discretization in time by a fully implicit formula:

k oy k=1 k—2 k_ k=1
U — 2y ~ -+ ur + R, Ur=lr BuEX Uk, 24) = 0,
T T
k_ k=1
Ry (S ) + 0.EK(uk, 2K) 5 0
T

where EX(u, 2) := &, (kT, u, z) with &, (t,u,z) := %f_OTé'(t—l-& u, z)d¢,
for k=1,..., T/7 and using, for k =1,

0 _ -1 _ 5 0 _
u. = up, u.- = up — TUp, zZ. = 20,
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

The existence of the discrete solution (uX, z¥):

the direct method,

uk. zK) can be taken as a solution to:
T 4T
_oyk—14 k=2 k-1
minimize 7'27'(—u I 2+UT )—|— T'R,l(iz Zr )
T T
_ k=1 k
u—u
+TR2(7T >+E7’f(u,z) (Pr)
T

subject to  (u,z) € Q=U X Z.

It suggests a conceptually implementable numerical strategy.

A problem with deriving an energy balance:

the homogeneous-degree-1 term standardly rely on (PX)
the kinetic/viscous terms rely on optimality condition for (PX)
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

The existence of the discrete solution (uX, z¥):

the direct method,

(uk, zK) can be taken as a solution to:

_oyk—lg k-2
minimize 7'27'(%) I Rl(z—zf_l)
T
k=1
+7R2(7u - )+57’f(u,z) (Pr)
T
subject to (u,z) € Q=U X Z.

It suggests a conceptually implementable numerical strategy.

A problem with deriving an energy balance:

the homogeneous-degree-1 term standardly rely on (PX)
the kinetic/viscous terms rely on optimality condition for (PX)
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

Knowing already u¥, let us still consider
an auxiliary modlfled (partly linearized) minimization problem:

o k=1 k=2
minimize (T’u 20, Fuy ‘)—&—Rl z—zk o)
’7—
uk— gkt uk=1 _
+ 1=V ) (R == u) + 7 Re () (Y
+57(u,z)

subject to (u,z) € Q.

Let us denote by (%, 2%) a solution to (P¥).
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

This solution (i1, 2) to (PX) must satisfy

k k=1 | k=2
us =2ui" +u

k 1
7 T2 - (1 \f),R’, u + Ou gk( z ) =0,

IR, (zf—zﬁ—l) +9,EX (T, 24) 5 0.
@ subtract these equality and (in fact) inequality respectively from the
discrete fomulas for (uk, z¥),

@ test respectively by iiX — uX and 2k — zX,

@ sum it, and use degree-2 homogeneity of R,

2
e g T Raluk = 88+ Rk~ )

o+ (DEK(uk, 28) — DENE, ), (uf, 28) — (£, 20)) < 0.

Strict convexity of (u,z) — E(u,z) + ¢Rx(u) for some large ¢
2
= @bfk=ukand 2k =zkifr < %
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.
Definition of energic solution.

Approximate solution.

Abbreviate jﬁ := “cost functional of” ﬁf
Then

JE(uk, 2K) = JE(iik, 25) = min(PF) < JK(ukt, 2570,

It gives
(420 Ry (2 - 2570) 7 (27 ) Re (L) (o, 25)
< T(”I;_l;“ﬁ_Z) + g Uk, 2k
We further use:
£ (AT, 25T) = g4 1 (U, ) 4 / O (8, Uk, 25 V).
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

Summing it for k = 1,..., T /7, we get the approximate energy balance:
du,
T(S2(T)) + (T, ur(T), 2:(T))

dt
| Varg, (2,0, T) + (2—[)/ Rz(ddutr)dt

< T (o) + £(0, ug, 20) +/ 0:Er (t,u (t), z,(t))dt,
0

where
i . . . . . k T/T
ur := piecewise affine interpolation of {uy}, /0,
iU, := “forward” piecewise constant interpolation of {uk}kT/g,
u_ = "backward” piecewise constant interpolation of {u"}kT/g,

and similarly for z;, z;, and z,
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

k

Taking (uX, zX) a solution to (PX) and fixing uX, we can see that z¥

fulfills

EX(uk, 25) + Ra(2k — 270 < EX(uE,v) + Ra(v — 2577)

TYST

for all v € Z. Using the triangle inequality of R;, we also know
Ri(v — zk71) — Ry(2F — zk71) < Ryi(v — z¥). Altogether, we get
EX(uk, Z5) < EX(uk, v) + Ra(v — 29).

T 4T

After summation for k =1,..., T /7, we get the “integrated”
semi-stability for the discrete solution:

T_ T_
/&(t,DT(t),ET(t))dtg/ E(t,-(t), v(t)) + Ra(v(t) — 2z-(t))dt
0 0

holds for all v € L>=([0, T]; Z).
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Introduction, generalized standard materials, discretization. General ansatz for generalized standard materials.

Definition of energic solution.
Approximate solution.

We have also the following discrete analog of the momentum equation:

/OT< /deu‘r + 0y 5 (t o (t), 2.,.(1')), Vr(t)>dt—[— (T/ddu;.( ) ddt')dt

(T8 (T) (7)) = (T wr (7)),

holds for all v € C}([0, T];U/ N'V) where v, and v, are respectively the

piecewise affine and the piecewise constant intepolants of {v(k7) kT:/(T)
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Standard assumptions on coercivity, lower semicontinuity, etc.

An essential assumption:
existence of a joint recovery sequence in the sense

V(te, uk, z) — (t,u,2) VZE€Z  I(Zi)ken :
lim sup (g(tk, Uk,Ek)+R1(Ek = Zk)—g(tk, Uy, Zk))

k— o0

< E(t,u,2)+R1(z — 2)—-E(t, u, 2).

Possibly, we also benefit from assuming a uniform monotonicity of 9,E(t, -, z).
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 1: a-priori estimates: from the approximate energy balance by
Gronwall inequality:

HUTHLoo (10, T]20)) N Wr2([o, T]:v) = Gy (5a)
du,
H ¥ < G, (5b)
Loo([0, TI;H) N BV([0, T *+V™)
max & (t,Gr(t), 2:(t)) < G, (5¢)
te[0,T]
HZTHLOQ ([0,T]:2) < G (5d)
Varg,(z-;0,T) < Gs; (5e)

note that the BV-estimate in (5b) represents an estimate of the

acceleration dd;’{ as a measure M([0, T|;U*+V*).
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 2: selection of subsequences

weakly* converging (Banach's selection principle) to some u and z,

pointwise converging (Helly’s selection principle):

z.(t) — z(t) weakly in Z for all t.

in case of a uniform monotonicity of 9,&(t, -, z) also

u; — u strongly in LP([0, T];U).
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 3: limit passage in the stability:
using the joint recovery sequence condition for the approximate
semi-stability

T_ T_
/5.,.(t,l_17_(t),2.,.(t))dt§/ E(t,-(t), v(t)) + Ra(v(t) — z-(t))dt
0 0

to get the limit semi-stability

/5(r,u(t),z(t))dtg / E(t, u(t), v(1)) + Ra(v(t) — 2(8))dt
0 0

for all v € L>([0, T]; Z).
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 3: limit passage in the stability:
using the joint recovery sequence condition for the approximate
semi-stability

T_ T_
/5.,.(t,l_17_(t),2.,.(t))dt§/ E(t,-(t), v(t)) + Ra(v(t) — z-(t))dt
0 0

to get the limit semi-stability and desintegrating it
E(t,u(t),z(t)) < E(tu(t),v ) +Ri(v  —2z(t))

forallve Zand a.a. t €0, T].
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 4: limit passage in the upper energy inequality:

du,

T4

(7)) + (T, ur(T), 2:(T))

du,
dt

| Varg, (230, T) + (2ﬁ)/OTR2( )dt

< T(ijo) + 5(07 uo,zo) —1-/0 3t57(t, uT(t),zT(t))dt.
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 4: limit passage in the upper energy inequality:

T(S(T) + £(T,u (7). (7))
+ Varg, (z ; 0, T) + 2 /TRz(ddut)dt
< T(ijo) —+—<5’(07 uo,zo) —1-/0 0:E (t, u (t),z (t))dt

by lower semicontinuity in the I.h.s. and continuity in the r.h.s.
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 5: the lower energy inequality:

semistability (a.e.) and upper-energy inequality allows
by Riemann-sum approximation of Lebesgue integral to show

the opposite inequality = the energy equality!
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 6: Improved convergence.

Vte[0,T]: Varg,(z;[0,t]) — Varg,(z;[0, t]);
Vtelo, T]: &(t, u-(t), z- (1) — E(t, u(t), z(t));
0eE (-, (), 2:() = OeE(, u(), 2(-)) in L1((0, T)).
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 7: Convergence in the approximate momentum equation

/OT< éddu;+8u57(t,DT(t),ZT(t)), VT(t)>dt_/T ( duT( _T)’dv;>
(T (T) (7))
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Step 7: Convergence in the approximate momentum equation

/Or< ,2%+au5 (tou (t),z (1), v (t)>dt_/TT<T’OL”t ’%)

+ (T’%(T)‘v (T))

The only delicate point is to ensure

0uE: (t,0r,2;) — 9,E(t, u,z) weakly in L1(0, T;V*).
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Assumptions
Convergence analysis outlined Convergence.

Further results: stablity, thermodynamics

Stability under data perturbation:

I-convergence of £'s and R's and joint-recovery-sequence condition
= a modification of [A.Mielke, T.R., U.Stefanelli].

No convexity of £ + ¢R, for large £ needed now.

Thermodynamical expansion possible:

& temperature dependent,

@ fully implicit time discretization does not yield an incremental
problem with a variational structure (existence by Schauder fixed
point only)

@ energetic-solution concept important
(weak convergence of the dissipative heat source)

@ [!-theory for heat equation (Boccardo, Galouét, et al.) and
interpolation of the adiabatic-heat term (Gagliardo, Nirenberg)
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Linearized visco-plasticity with hardening at small strains:

Q c IR? a bounded domain,

u =displacement,

z = (m,n) =the plastic deformation and the hardening parameter,
U= w=2QR9,

Z =12 R x R),

sym,
with RO = {Ac R, AT = A, tr(A) = 0},
1
E(tyu,mm) = /EC(E(U)—W)Z(G(U)—W> + bn? — £(t) - udx,
Q

with b > 0, e(v) = 3(Vu)" + 3Vu,
Ral, ) = / 55(7) + 85(r ) dx,
Q

PcC IRS;SO be a convex closed neighbourhood of the origin,

dp is its indicator function, and 5 the conjugate functional to dp,
5= {f = (m,m); n = 6p(m)},
Ra(i) :/fID)e(ij) se(d) dx,
Q2
() = /g|b\2dx.
0?2
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Visco-plasticity with hardening

Damage
Some applications outlined Delamination, earthsquakes.

Main features:
R1 discontinous but £(t, -, -,-) convex and quadratic.
Joint recovery sequence by the “binominal trick”:

lim sup (E(tk, Uk, Zk)+R1(Zk — zk)—E(tk, Uk, zk))

k— o0

= limsup (/Q (%C(ﬂ'k—f—%k) - (Ce(uk)) D (mk—Tk)

k—o00

1 _ _ _ _
+ Eb(nker)(nk—nk)dx + Ri(Tk—m, 77k_77k)>
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Main features:
R1 discontinous but £(t, -, -,-) convex and quadratic.
Joint recovery sequence by the “binominal trick”:

lim sup (E(tk, Uk, Zk)+R1(Zk — zk)—E(tk, Uk, zk))

k— o0

= limsup (/Q (%C(ﬂ'k—l—%k) —(Ce(uk)) C(mo—=7))

k—o00

1 _ _ N _
+ §b(nk+nk)(n -7 )dx + Ry(T =7, . —1 ))

if we choose Ty ‘=7 — 7 + 7wk and 7, ;=1 — N + Nk

T.Roubitek (STAMM 08, Levico) RATE-INDEPENDENT PROCESSES IN SOLIDS



Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Main features:
R1 discontinous but £(t, -, -,-) convex and quadratic.
Joint recovery sequence by the “binominal trick”:

lim sup (E(tk, Uk, Zk)+R1(Zk — zk)—E(tk, Uk, zk))

k— o0

= limsup (/Q (%C(ﬂ'k—l—%k) —(Ce(uk)) S =7)

k—o00

1 _ _ N _
+ §b(nk+nk)(n - )dx 4+ Ry(7T -7, — ))

— [ (3C0+7) ~ Ce(w):(n—7) + 5b4T (- + R, 7-1)
Q
=&(t,u,2)+R1(z — 2)—E(t, u, 2),

if we choose Ty :=7 — m + 7wk and 7, =1 — 1 + Nk
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Main features:
R1 discontinous but £(t, -, -,-) convex and quadratic.
Joint recovery sequence by the “binominal trick”:

lim sup (E(tk, Uk, Zk)+R1(Zk — zk)—E(tk, Uk, zk))

k— o0

= limsup (/Q (%C(ﬂk—i—%k) —(Ce(uk)) S =7)

k—o00

1 _ _ N _
+ §b(nk+nk)(n -7 )dx 4+ Ry(T -7, — ))

— [ (3C0+7) ~ Ce(w):(n—7) + 5b4T (- + R, 7-1)
Q
=&(t,u,2)+R1(z — 2)—E(t, u, 2),

if we choose 7y := 7 — 7 + 7 and 7 := 1) — 1 + M.

Similar results by

H.-D.Alber, C.Carstensen, C.Chelminski, W.Han & D.Reddy, A.Mielke, at al.
Thermodynamical expansion for thermally dilatable materials:

S.Bartels & T.R. (in preparation)
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Gradient damage (partial) at small strains:

Q c RY a bounded domain,
u =displacement,
z =a scalar damage parameter,
U= WwH?(Q;R%),
Z = Whr(Q),
1
E(tyu,z) = /g(Ce(u):e(u) + dj0,1(2) + b|Vz|P + E(Coe(u):e(u) — f(t) - udx,
Q

with b > 0 and Cy positive definite,

‘Rﬂé)zh/éF“wﬂiy—mzdx
Q
with k£ > 0 the energy per d-dimensional volume dissipated by damage,

Ra(i) :/Q%I[))e(ij) se(d)dx,

ﬂmz/ﬁm%x
02
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Main features:
R discontinous and &(t, -, -) nonconvex
but 9,E(t, -, z) uniformly monotone.

Regularization . of € by a term e|e(u)|®: then
(e,z) — zCe:e + le|® + £|e|? is strictly convex for £ large, as need above.

Joint recovery sequence:
A.Mielke & T.R. (for p > d), A.Mielke & M.Thomas (also for p < d).

After having the energetic solution of the regularized problem, passage
€ — 0 possible because &, -converges to £.
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Delamination:

Q c IR? a bounded domain,

I a d—1 dimensional manifold inside Q,
u =displacement,

z = a scalar delamination parameter,
U=Ww2Q\r;Rr7,

Z = L*(I),
/ Ce(u)-elu) _ f-udx —|—/ E[u]?ds if [u]-v>0o0nT,
E(tyu,z) =< 72 2 re
g\\y Wy - 0 S z S 1 on r,
+00 elsewhere.
with v the normal to ',

Ra(2) = / 0 )2 Sy it
r
k > 0 the energy per d—1-dimensional surface dissipated by delamination,

Ro(ir) :/Q%De(il) o
(@) :/ng\zdx.
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Main features:

R discontinous and £(t, -, -) nonconvex
(= a regularization frs‘[u]‘ﬁds helps),

but we benefit compactness of trace operator on I'
(= no gradient of z nedeed),

04E(t, -, z) uniformly monotone.

T.Roubitek (STAMM 08, Levico) RATE-INDEPENDENT PROCESSES IN SOLIDS



Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

I-limit of & for € — 0: a brittle delamination:

Eoo(t,u,2) =
/wfﬁudx if [u]-»>0o0nT,0<z<1lonT, and
Q
[u(x)]r = 0 for a.a. x€T such that z(x) > 0,
+00 elsewhere.

Joint recovery sequence: T.R. & L.Scardia & C.Zanini (in preparation)

Applications in geophysics of short-time range:
spontaneous rupture of faults in lithosperic plates with kinetic-energy
emission via sesmic waves (attenuated by viscosity) that may

1) activate another rupture on another distant fault

2) manifest as an earthsquake on the earth surface.

Modifications:

z the slip along I and R1(z, z) with monotonic R1(+, 2)
(so-called “slip weakening concept used in geophysics”)
Combination of delamination and slip weakening possible too.
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Visco-plasticity with hardening
Damage

Some applications outlined Delamination, earthsquakes.

Some references:

@ A.Mielke, T.Roubitek, U.Stefanelli: I'-limits and relaxations
for rate-independent evolutionary problems. Calc. Var. P.D.E.
31 (2008), 387-416.

@ A.Mielke, T.Roubiek, J.Zeman: Complete damage in elastic
and viscoelastic media and its energetics. Comp. Methods
Appl. Mech. Engr., submitted.

@ T.Roubi¢ek: Rate independent processes in viscous solids at
small strains. Math. Methods Appl. Sci., printed electronically.

@ T.Roubi¢ek: Thermodynamics of rate independent processes
in viscous solids at small strains. SIAM J. Math. Anal.,
submitted.

Grazie per la vostra gentile attenzione.
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