

RATE-INDEPENDENT PROCESSES IN SOLIDS: combination with rate-dependent processes

Tomáš Roubíček
(Sept.23, 2008, STAMM, Levico)

Charles University & Academy of Sciences, Prague

Combination of rate-independent processes vs. rate-dependent processes.

$$\mathcal{T}' \frac{d^2 u}{dt^2} + \mathcal{R}'_2 \frac{du}{dt} + \partial_u \mathcal{E}(t, u, z) = 0, \quad (1a)$$

$$\partial_{\frac{dz}{dt}} \mathcal{R}_1(z, \frac{dz}{dt}) + \partial_z \mathcal{E}(t, u, z) \ni 0. \quad (1b)$$

with

$u \in \mathcal{U}$ a “displacement” determined essentially by z

$z \in \mathcal{Z}$ an “internal” variable with activated evolution,

$\mathcal{E} : \mathcal{U} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the stored energy,

$\mathcal{R}_1 : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the dissipation pseudopotential

$\mathcal{R}_1(z, \cdot)$ (positively) homogeneous degree-1

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ the dissipation pseudopotential of viscous forces, quadratic

$\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ the kinetic energy, quadratic

Functional-analytical ansatz: $\mathcal{V}, \mathcal{U}, \mathcal{Z}$ Banach spaces, \mathcal{H} a Hilbert space,

$u : [0, T] \rightarrow \mathcal{U}, \frac{du}{dt} : [0, T] \rightarrow \mathcal{V},$

$\mathcal{V} \subseteq \mathcal{U} \subseteq \mathcal{H} \cong \mathcal{H}^*$ densely,

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ and $\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ coercive.

Combination of rate-independent processes vs. rate-dependent processes.

$$\mathcal{T}' \frac{d^2 u}{dt^2} + \mathcal{R}'_2 \frac{du}{dt} + \partial_u \mathcal{E}(t, u, z) = 0, \quad (1a)$$

$$\partial_{\frac{dz}{dt}} \mathcal{R}_1(z, \frac{dz}{dt}) + \partial_z \mathcal{E}(t, u, z) \ni 0. \quad (1b)$$

with

$u \in \mathcal{U}$ a “displacement” evolving “viscously”

$z \in \mathcal{Z}$ an “internal” variable with activated evolution,

$\mathcal{E} : \mathcal{U} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the stored energy,

$\mathcal{R}_1 : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the dissipation pseudopotential

$\mathcal{R}_1(z, \cdot)$ (positively) homogeneous degree-1

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ the dissipation pseudopotential of viscous forces, quadratic

$\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ the kinetic energy, quadratic

Functional-analytical ansatz: $\mathcal{V}, \mathcal{U}, \mathcal{Z}$ Banach spaces, \mathcal{H} a Hilbert space,

$u : [0, T] \rightarrow \mathcal{U}, \frac{du}{dt} : [0, T] \rightarrow \mathcal{V},$

$\mathcal{V} \subseteq \mathcal{U} \subseteq \mathcal{H} \cong \mathcal{H}^*$ densely,

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ and $\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ coercive.

Combination of rate-independent processes vs. rate-dependent processes.

$$\mathcal{T}' \frac{d^2 u}{dt^2} + \mathcal{R}'_2 \frac{du}{dt} + \partial_u \mathcal{E}(t, u, z) = 0, \quad (1a)$$

$$\partial_{\frac{dz}{dt}} \mathcal{R}_1 \left(z, \frac{dz}{dt} \right) + \partial_z \mathcal{E}(t, u, z) \ni 0. \quad (1b)$$

with

$u \in \mathcal{U}$ a “displacement” evolving “viscously” and “inertially”

$z \in \mathcal{Z}$ an “internal” variable with activated evolution,

$\mathcal{E} : \mathcal{U} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the stored energy,

$\mathcal{R}_1 : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the dissipation pseudopotential

$\mathcal{R}_1(z, \cdot)$ (positively) homogeneous degree-1

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ the dissipation pseudopotential of viscous forces, quadratic

$\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ the kinetic energy, quadratic

Functional-analytical ansatz: $\mathcal{V}, \mathcal{U}, \mathcal{Z}$ Banach spaces, \mathcal{H} a Hilbert space,

$u : [0, T] \rightarrow \mathcal{U}, \frac{du}{dt} : [0, T] \rightarrow \mathcal{V},$

$\mathcal{V} \subseteq \mathcal{U} \subseteq \mathcal{H} \cong \mathcal{H}^*$ densely,

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ and $\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ coercive.

Combination of rate-independent processes vs. rate-dependent processes.

$$\mathcal{T}' \frac{d^2 u}{dt^2} + \mathcal{R}'_2 \frac{du}{dt} + \partial_u \mathcal{E}(t, u, z) = 0, \quad (1a)$$

$$\partial_{\frac{dz}{dt}} \mathcal{R}_1 \left(z, \frac{dz}{dt} \right) + \partial_z \mathcal{E}(t, u, z) \ni 0. \quad (1b)$$

with

$u \in \mathcal{U}$ a “displacement” evolving “viscously” and “inertially”

$z \in \mathcal{Z}$ an “internal” variable with activated evolution,

$\mathcal{E} : \mathcal{U} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the stored energy,

$\mathcal{R}_1 : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ the dissipation pseudopotential

$\mathcal{R}_1(z, \cdot)$ (positively) homogeneous degree-1

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ the dissipation pseudopotential of viscous forces, quadratic

$\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ the kinetic energy, quadratic

Functional-analytical ansatz: $\mathcal{V}, \mathcal{U}, \mathcal{Z}$ Banach spaces, \mathcal{H} a Hilbert space,

$$u : [0, T] \rightarrow \mathcal{U}, \frac{du}{dt} : [0, T] \rightarrow \mathcal{V},$$

$\mathcal{V} \subseteq \mathcal{U} \Subset \mathcal{H} \cong \mathcal{H}^*$ densely,

$\mathcal{R}_2 : \mathcal{V} \rightarrow \mathbb{R}$ and $\mathcal{T} : \mathcal{H} \rightarrow \mathbb{R}$ coercive.

Treatment of the general ansatz:

General theory of rate-independent processes based on
dissipation distance:

$$\mathcal{D}_1(z_0, z_1) := \inf \left\{ \int_0^1 \mathcal{R}_1\left(\tilde{z}(t), \frac{d\tilde{z}}{dt}(t)\right) dt; \right. \\ \left. \tilde{z} \in C^1([0, 1]; \mathcal{V}), \tilde{z}(0) = z_0, \tilde{z}(1) = z_1 \right\}$$

In principle, \mathcal{D}_1 the dissipation distance can be treated as itself even without referring to \mathcal{R}_1 and without any linear structure on \mathcal{Z} .

But we will not pursue this high generality here.

Simplification: $\mathcal{R}_1(z, \frac{dz}{dt}) = \mathcal{R}_1(\frac{dz}{dt})$. Then $\mathcal{D}_1(z_0, z_1) = \mathcal{R}_1(z_1 - z_0)$ and we assume $\mathcal{R}_1 : \mathcal{Z} \rightarrow \mathbb{R} \cup \{\infty\}$ homogeneous degree-1 and coercive.

The philosophy of a suitable definition of a solution to (1) can be based on the **energetic-solution concept** of A.Mielke et al. applied, for u considered fixed, to the **system** $(\mathcal{Z}, \mathcal{I}_u, \mathcal{R}_1)$ with (1b), by

$$\mathcal{I}_u(t, z) := [\mathcal{E} \circ u](t, z) = \mathcal{E}(t, u(t), z),$$

and further combined with a conventional **weak-solution concept** as far as the “**momentum equation**” (1a) concerns.

We consider still **initial conditions**:

$$u(0) = u_0, \quad \frac{du}{dt}(0) = \dot{u}_0, \quad z(0) = z_0.$$

This leads to:

We call $q = (u, z) : [0, T] \rightarrow \mathcal{Q} = \mathcal{U} \times \mathcal{Z}$ an **energetic solution** to the problem (1) with the initial conditions if

$$u \in C_w([0, T]; \mathcal{U}),$$

$$\frac{du}{dt} \in L^2(I; \mathcal{V}) \cap C_w([0, T]; \mathcal{H}),$$

$z : [0, T] \rightarrow \mathcal{Z}$ with $z([0, T])$ relatively compact,

$\text{Var}_{\mathcal{R}_1}(z; 0, T) = (\text{the variation of } z \text{ over } [0, T] \text{ w.r.t. } \mathcal{R}_1) < \infty$,

$t \mapsto \partial_t \mathcal{E}(t, u(t), z(t))$ is integrable on $[0, T]$,

and if:

- the “**momentum equation**” (1a) with the initial condition $\frac{du}{dt}(0) = \dot{u}_0$ holds in the weak sense, i.e.

$$\int_0^T \left\langle \mathcal{R}'_2 \frac{du}{dt} + \partial_u \mathcal{E}(t, u(t), z(t)), v(t) \right\rangle - \left(T' \frac{du}{dt} \Big| \frac{dv}{dt} \right) dt \\ + \left(T' \frac{du}{dt}(T) \Big| v(T) \right) = (T' \dot{u}_0 \Big| v(0)),$$

holds for all $v \in C([0, T]; \mathcal{U}) \cap C^1([0, T]; \mathcal{V})$,

- the **energy inequality** holds, i.e.

$$T\left(\frac{du}{dt}(T)\right) + \mathcal{E}(T, u(T), z(T)) \\ + \text{Var}_{\mathcal{R}_1}(z; 0, T) + 2 \int_0^T \mathcal{R}_2\left(\frac{du}{dt}\right) dt \\ \leq T(\dot{u}_0) + \mathcal{E}(0, u_0, z_0) + \int_0^T \partial_t \mathcal{E}(t, u(t), z(t)) dt,$$

- the **semi-stability** holds for all $v \in \mathcal{Z}$ and for a.a. $t \in I$:

$$\mathcal{E}(t, u(t), z(t)) \leq \mathcal{E}(t, u(t), v) + \mathcal{R}_1(v - z(t))$$

- the remaining **initial conditions** $u(0) = u_0$ and $z(0) = z_0$ are satisfied.

Discretization in time by a **fully implicit formula**:

$$T' \frac{u_\tau^k - 2u_\tau^{k-1} + u_\tau^{k-2}}{\tau^2} + \mathcal{R}_2' \frac{u_\tau^k - u_\tau^{k-1}}{\tau} + \partial_u \mathcal{E}_\tau^k(u_\tau^k, z_\tau^k) = 0,$$
$$\partial \mathcal{R}_1 \left(\frac{z_\tau^k - z_\tau^{k-1}}{\tau} \right) + \partial_z \mathcal{E}_\tau^k(u_\tau^k, z_\tau^k) \ni 0$$

where $\mathcal{E}_\tau^k(u, z) := \mathcal{E}_\tau(k\tau, u, z)$ with $\mathcal{E}_\tau(t, u, z) := \frac{1}{\tau} \int_{-\tau}^0 \mathcal{E}(t+\xi, u, z) d\xi$,
for $k = 1, \dots, T/\tau$ and using, for $k = 1$,

$$u_\tau^0 = u_0, \quad u_\tau^{-1} = u_0 - \tau \dot{u}_0, \quad z_\tau^0 = z_0,$$

The existence of the discrete solution (u_τ^k, z_τ^k) :

the [direct method](#),

(u_τ^k, z_τ^k) can be taken as a solution to:

$$\begin{array}{ll} \text{minimize} & \tau^2 T \left(\frac{u - 2u_\tau^{k-1} + u_\tau^{k-2}}{\tau^2} \right) + \tau \mathcal{R}_1 \left(\frac{z - z_\tau^{k-1}}{\tau} \right) \\ & + \tau \mathcal{R}_2 \left(\frac{u - u_\tau^{k-1}}{\tau} \right) + \mathcal{E}_\tau^k(u, z) \\ \text{subject to} & (u, z) \in \mathcal{Q} = \mathcal{U} \times \mathcal{Z}. \end{array} \quad (P_\tau^k)$$

It suggests a conceptually implementable numerical strategy.

A problem with deriving an energy balance:

the homogeneous-degree-1 term standardly rely on (P_τ^k)

the kinetic/viscous terms rely on optimality condition for (P_τ^k)

The existence of the discrete solution (u_τ^k, z_τ^k) :

the [direct method](#),

(u_τ^k, z_τ^k) can be taken as a solution to:

$$\begin{array}{ll} \text{minimize} & \tau^2 T \left(\frac{u - 2u_\tau^{k-1} + u_\tau^{k-2}}{\tau^2} \right) + \mathcal{R}_1 \left(z - z_\tau^{k-1} \right) \\ & + \tau \mathcal{R}_2 \left(\frac{u - u_\tau^{k-1}}{\tau} \right) + \mathcal{E}_\tau^k(u, z) \\ \text{subject to} & (u, z) \in \mathcal{Q} = \mathcal{U} \times \mathcal{Z}. \end{array} \quad (P_\tau^k)$$

It suggests a conceptually implementable numerical strategy.

A problem with deriving an energy balance:

the homogeneous-degree-1 term standardly rely on (P_τ^k)

the kinetic/viscous terms rely on optimality condition for (P_τ^k)

Knowing already u_τ^k , let us still consider
 an auxiliary modified (partly linearized) minimization problem:

$$\left. \begin{aligned} \text{minimize} \quad & \left(T' \frac{u_\tau^k - 2u_\tau^{k-1} + u_\tau^{k-2}}{\tau^2} \Big| u \right) + \mathcal{R}_1(z - z_\tau^{k-1}) \\ & + (1 - \sqrt{\tau}) \left\langle \mathcal{R}'_2 \frac{u_\tau^k - u_\tau^{k-1}}{\tau}, u \right\rangle + \tau^{3/2} \mathcal{R}_2 \left(\frac{u - u_\tau^{k-1}}{\tau} \right) \\ & + \mathcal{E}_\tau^k(u, z) \end{aligned} \right\} (\tilde{P}_\tau^k)$$

subject to $(u, z) \in \mathcal{Q}$.

Let us denote by $(\tilde{u}_\tau^k, \tilde{z}_\tau^k)$ a solution to (\tilde{P}_τ^k) .

This solution $(\tilde{u}_\tau^k, \tilde{z}_\tau^k)$ to (\tilde{P}_τ^k) must satisfy

$$T' \frac{u_\tau^k - 2u_\tau^{k-1} + u_\tau^{k-2}}{\tau^2} + (1 - \sqrt{\tau}) \mathcal{R}'_2 \frac{u_\tau^k - u_\tau^{k-1}}{\tau} + \partial_u \mathcal{E}_\tau^k(\tilde{u}_\tau^k, \tilde{z}_\tau^k) = 0,$$

$$\partial \mathcal{R}_1 \left(\tilde{z}_\tau^k - z_\tau^{k-1} \right) + \partial_z \mathcal{E}_\tau^k(\tilde{u}_\tau^k, \tilde{z}_\tau^k) \ni 0.$$

- subtract these equality and (in fact) inequality respectively from the discrete formulas for (u_τ^k, z_τ^k) ,
- test respectively by $\tilde{u}_\tau^k - u_\tau^k$ and $\tilde{z}_\tau^k - z_\tau^k$,
- sum it, and use degree-2 homogeneity of \mathcal{R}_2

we get

$$\begin{aligned} & \frac{2}{\sqrt{\tau}} \mathcal{R}_2(u_\tau^k - \tilde{u}_\tau^k) + \mathcal{R}_1(z_\tau^k - \tilde{z}_\tau^k) \\ & + \left\langle \partial \mathcal{E}_\tau^k(u_\tau^k, z_\tau^k) - \partial \mathcal{E}_\tau^k(\tilde{u}_\tau^k, \tilde{z}_\tau^k), (u_\tau^k, z_\tau^k) - (\tilde{u}_\tau^k, \tilde{z}_\tau^k) \right\rangle \leq 0. \end{aligned}$$

Strict convexity of $(u, z) \mapsto \mathcal{E}(u, z) + \ell R_2(u)$ for some large ℓ

$$\implies \tilde{u}_\tau^k = u_\tau^k \text{ and } \tilde{z}_\tau^k = z_\tau^k \text{ if } \tau \leq \frac{\ell^2}{4}.$$

Abbreviate \tilde{J}_τ^k := “cost functional of” \tilde{P}_τ^k .

Then

$$\tilde{J}_\tau^k(u_\tau^k, z_\tau^k) = \tilde{J}_\tau^k(\tilde{u}_\tau^k, \tilde{z}_\tau^k) = \min(\tilde{P}_\tau^k) \leq \tilde{J}_\tau^k(u_\tau^{k-1}, z_\tau^{k-1}).$$

It gives

$$\begin{aligned} T\left(\frac{u_\tau^k - u_\tau^{k-1}}{\tau}\right) + \mathcal{R}_1(z_\tau^k - z_\tau^{k-1}) + \tau(2 - \sqrt{\tau}) \mathcal{R}_2\left(\frac{u_\tau^k - u_\tau^{k-1}}{\tau}\right) + \mathcal{E}_\tau^k(u_\tau^k, z_\tau^k) \\ \leq T\left(\frac{u_\tau^{k-1} - u_\tau^{k-2}}{\tau}\right) + \mathcal{E}_\tau^k(u_\tau^{k-1}, z_\tau^{k-1}) \end{aligned}$$

We further use:

$$\mathcal{E}_\tau^k(u_\tau^{k-1}, z_\tau^{k-1}) = \mathcal{E}_\tau^{k-1}(u_\tau^{k-1}, z_\tau^{k-1}) + \int_{t_\tau^{k-1}}^{t_\tau^k} \partial_t \mathcal{E}_\tau(t, u_\tau^{k-1}, z_\tau^{k-1}) dt.$$

Summing it for $k = 1, \dots, T/\tau$, we get the approximate energy balance:

$$\begin{aligned} & \mathcal{T}\left(\frac{du_\tau}{dt}(T)\right) + \mathcal{E}(T, u_\tau(T), z_\tau(T)) \\ & + \text{Var}_{\mathcal{R}_1}(z_\tau; 0, T) + (2 - \sqrt{\tau}) \int_0^T \mathcal{R}_2\left(\frac{du_\tau}{dt}\right) dt \\ & \leq \mathcal{T}(\dot{u}_0) + \mathcal{E}(0, u_0, z_0) + \int_0^T \partial_t \mathcal{E}_\tau(t, \underline{u}_\tau(t), \underline{z}_\tau(t)) dt, \end{aligned}$$

where

$$\begin{aligned} u_\tau &:= \text{piecewise affine interpolation of } \{u_\tau^k\}_{k=0}^{T/\tau}, \\ \bar{u}_\tau &:= \text{"forward" piecewise constant interpolation of } \{u_\tau^k\}_{k=0}^{T/\tau}, \\ \underline{u}_\tau &:= \text{"backward" piecewise constant interpolation of } \{u_\tau^k\}_{k=0}^{T/\tau}, \\ \text{and similarly for } z_\tau, \bar{z}_\tau, \text{ and } \underline{z}_\tau. \end{aligned}$$

Taking (u_τ^k, z_τ^k) a solution to (P_τ^k) and fixing u_τ^k , we can see that z_τ^k fulfills

$$\mathcal{E}_\tau^k(u_\tau^k, z_\tau^k) + \mathcal{R}_1(z_\tau^k - z_\tau^{k-1}) \leq \mathcal{E}_\tau^k(u_\tau^k, v) + \mathcal{R}_1(v - z_\tau^{k-1})$$

for all $v \in \mathcal{Z}$. Using the triangle inequality of \mathcal{R}_1 , we also know $\mathcal{R}_1(v - z_\tau^{k-1}) - \mathcal{R}_1(z_\tau^k - z_\tau^{k-1}) \leq \mathcal{R}_1(v - z_\tau^k)$. Altogether, we get

$$\mathcal{E}_\tau^k(u_\tau^k, z_\tau^k) \leq \mathcal{E}_\tau^k(u_\tau^k, v) + \mathcal{R}_1(v - z_\tau^k).$$

After summation for $k = 1, \dots, T/\tau$, we get the “integrated” semi-stability for the discrete solution:

$$\int_0^T \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), \bar{z}_\tau(t)) dt \leq \int_0^T \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), v(t)) + \mathcal{R}_1(v(t) - \bar{z}_\tau(t)) dt$$

holds for all $v \in L^\infty([0, T]; \mathcal{Z})$.

We have also the following discrete analog of the [momentum equation](#):

$$\begin{aligned} \int_0^T \left\langle \mathcal{R}'_2 \frac{du_\tau}{dt} + \partial_u \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), \bar{z}_\tau(t)), \bar{v}_\tau(t) \right\rangle dt - \int_\tau^T \left(T' \frac{du_\tau}{dt}(\cdot - \tau) \Big| \frac{dv_\tau}{dt} \right) dt \\ + \left(T' \frac{du_\tau}{dt}(T) \Big| v_\tau(T) \right) = (T' \dot{u}_0 \Big| v_\tau(\tau)), \end{aligned}$$

holds for all $v \in C^1([0, T]; \mathcal{U} \cap \mathcal{V})$ where v_τ and \bar{v}_τ are respectively the piecewise affine and the piecewise constant interpolants of $\{v(k\tau)\}_{k=0}^{T/\tau}$.

Standard assumptions on coercivity, lower semicontinuity, etc.

An essential assumption:

existence of a **joint recovery sequence** in the sense

$$\begin{aligned} \forall (t_k, u_k, z_k) \rightarrow (t, u, z) \quad \forall \tilde{z} \in \mathcal{Z} \quad \exists (\tilde{z}_k)_{k \in \mathbb{N}} : \\ \limsup_{k \rightarrow \infty} (\mathcal{E}(t_k, u_k, \tilde{z}_k) + \mathcal{R}_1(\tilde{z}_k - z_k) - \mathcal{E}(t_k, u_k, z_k)) \\ \leq \mathcal{E}(t, u, \tilde{z}) + \mathcal{R}_1(\tilde{z} - z) - \mathcal{E}(t, u, z). \end{aligned}$$

Possibly, we also benefit from assuming a **uniform monotonicity** of $\partial_u \mathcal{E}(t, \cdot, z)$.

Step 1: a-priori estimates: from the approximate energy balance by Gronwall inequality:

$$\|u_\tau\|_{L^\infty([0, T]; \mathcal{U})} \cap W^{1,2}([0, T]; \mathcal{V}) \leq C_1, \quad (5a)$$

$$\left\| \frac{du_\tau}{dt} \right\|_{L^\infty([0, T]; \mathcal{H})} \cap \text{BV}([0, T]; \mathcal{U}^* + \mathcal{V}^*) \leq C_2, \quad (5b)$$

$$\max_{t \in [0, T]} \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), \bar{z}_\tau(t)) \leq C_3, \quad (5c)$$

$$\|z_\tau\|_{L^\infty([0, T]; \mathcal{Z})} \leq C_4; \quad (5d)$$

$$\text{Var}_{\mathcal{R}_1}(\bar{z}_\tau; 0, T) \leq C_5; \quad (5e)$$

note that the BV-estimate in (5b) represents an estimate of the acceleration $\frac{d^2 u_\tau}{dt^2}$ as a measure $M([0, T]; \mathcal{U}^* + \mathcal{V}^*)$.

Step 2: selection of subsequences

weakly* converging (Banach's selection principle) to some u and z ,

pointwise converging (Helly's selection principle):

$$z_\tau(t) \rightarrow z(t) \text{ weakly in } \mathcal{Z} \text{ for all } t.$$

in case of a uniform monotonicity of $\partial_u \mathcal{E}(t, \cdot, z)$ also

$$u_\tau \rightarrow u \text{ strongly in } L^p([0, T]; \mathcal{U}).$$

Step 3: limit passage in the stability:
using the joint recovery sequence condition for the approximate
semi-stability

$$\int_0^T \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), \bar{z}_\tau(t)) dt \leq \int_0^T \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), v(t)) + \mathcal{R}_1(v(t) - \bar{z}_\tau(t)) dt$$

to get the limit semi-stability

$$\int_0^T \mathcal{E}(t, u(t), z(t)) dt \leq \int_0^T \mathcal{E}(t, u(t), v(t)) + \mathcal{R}_1(v(t) - z(t)) dt$$

for all $v \in L^\infty([0, T]; \mathcal{Z})$.

Step 3: limit passage in the stability:
using the joint recovery sequence condition for the approximate
semi-stability

$$\int_0^T \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), \bar{z}_\tau(t)) dt \leq \int_0^T \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), v(t)) + \mathcal{R}_1(v(t) - \bar{z}_\tau(t)) dt$$

to get the limit semi-stability and desintegrating it

$$\int_0^T \mathcal{E}(t, u(t), z(t)) dt \leq \int_0^T \mathcal{E}(t, u(t), v(t)) + \mathcal{R}_1(v(t) - z(t)) dt$$

for all $v \in \mathcal{Z}$ and a.a. $t \in [0, T]$.

Step 4: limit passage in the upper energy inequality:

$$\begin{aligned} & \mathcal{T}\left(\frac{du_\tau}{dt}(T)\right) + \mathcal{E}(T, u_\tau(T), z_\tau(T)) \\ & + \text{Var}_{\mathcal{R}_1}(z_\tau; 0, T) + (2 - \sqrt{\tau}) \int_0^T \mathcal{R}_2\left(\frac{du_\tau}{dt}\right) dt \\ & \leq \mathcal{T}(\dot{u}_0) + \mathcal{E}(0, u_0, z_0) + \int_0^T \partial_t \mathcal{E}_\tau(t, u_\tau(t), z_\tau(t)) dt. \end{aligned}$$

by lower semicontinuity in the l.h.s. and continuity in the r.h.s.

Step 4: limit passage in the upper energy inequality:

$$\begin{aligned} & \mathcal{T}\left(\frac{du_\tau}{dt}(T)\right) + \mathcal{E}(T, u_\tau(T), z_\tau(T)) \\ & + \text{Var}_{\mathcal{R}_1}(z_\tau; 0, T) + (2 - \sqrt{\tau}) \int_0^T \mathcal{R}_2\left(\frac{du_\tau}{dt}\right) dt \\ & \leq \mathcal{T}(\dot{u}_0) + \mathcal{E}(0, u_0, z_0) + \int_0^T \partial_t \mathcal{E}_\tau(t, u_\tau(t), z_\tau(t)) dt. \end{aligned}$$

by lower semicontinuity in the l.h.s. and continuity in the r.h.s.

Step 5: the lower energy inequality:

semistability (a.e.) and upper-energy inequality allows
by Riemann-sum approximation of Lebesgue integral to show
the opposite inequality \Rightarrow the energy equality!

Step 6: Improved convergence.

$$\forall t \in [0, T] : \text{Var}_{\mathcal{R}_1}(z_\tau; [0, t]) \rightarrow \text{Var}_{\mathcal{R}_1}(z; [0, t]);$$

$$\forall t \in [0, T] : \mathcal{E}(t, u_\tau(t), z_\tau(t)) \rightarrow \mathcal{E}(t, u(t), z(t));$$

$$\partial_t \mathcal{E}(\cdot, u_\tau(\cdot), z_\tau(\cdot)) \rightarrow \partial_t \mathcal{E}(\cdot, u(\cdot), z(\cdot)) \text{ in } L^1((0, T)).$$

Step 7: Convergence in the approximate momentum equation

$$\begin{aligned} \int_0^T \left\langle \mathcal{R}'_2 \frac{du_\tau}{dt} + \partial_u \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau(t), \bar{z}_\tau(t)), \bar{v}_\tau(t) \right\rangle dt - \int_\tau^T \left(T' \frac{du_\tau}{dt}(\cdot - \tau) \Big| \frac{dv_\tau}{dt} \right) \right. \\ \left. + \left(T' \frac{du_\tau}{dt}(T) \Big| v_\tau(T) \right) \right. \end{aligned}$$

The only delicate point is to ensure

$$\partial_u \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau, \bar{z}_\tau) \rightarrow \partial_u \mathcal{E}(t, u, z) \text{ weakly in } L^1(0, T; \mathcal{V}^*).$$

Step 7: Convergence in the approximate momentum equation

$$\begin{aligned} \int_0^T \left\langle \mathcal{R}'_2 \frac{du_\tau}{dt} + \partial_u \mathcal{E}_\tau(t, u_\tau(t), z_\tau(t)), v_\tau(t) \right\rangle dt - \int_\tau^T \left(\tau' \frac{du_\tau}{dt}(\cdot - \tau) \Big| \frac{dv_\tau}{dt} \right) \\ + \left(\tau' \frac{du_\tau}{dt}(T) \Big| v_\tau(T) \right) \end{aligned}$$

The only delicate point is to ensure

$$\partial_u \bar{\mathcal{E}}_\tau(t, \bar{u}_\tau, \bar{z}_\tau) \rightarrow \partial_u \mathcal{E}(t, u, z) \text{ weakly in } L^1(0, T; \mathcal{V}^*).$$

Stability under data perturbation:

Γ -convergence of \mathcal{E} 's and \mathcal{R} 's and joint-recovery-sequence condition
= a modification of [A.Mielke, T.R., U.Stefanelli].

No convexity of $\mathcal{E} + \ell\mathcal{R}_2$ for large ℓ needed now.

Thermodynamical expansion possible:

\mathcal{E} temperature dependent,

- fully implicit time discretization does not yield an incremental problem with a variational structure (existence by Schauder fixed point only)
- energetic-solution concept important (weak convergence of the dissipative heat source)
- L^1 -theory for heat equation (Boccardo, Galouët, et al.) and interpolation of the adiabatic-heat term (Gagliardo, Nirenberg)

Linearized visco-plasticity with hardening at small strains:

$\Omega \subset \mathbb{R}^d$ a bounded domain,

u = displacement,

$z = (\pi, \eta)$ = the plastic deformation and the hardening parameter,

$\mathcal{U} = W^{1,2}(\Omega; \mathbb{R}^d)$,

$\mathcal{Z} = L^2(\Omega; \mathbb{R}_{\text{sym},0}^{d \times d} \times \mathbb{R})$,

with $\mathbb{R}_{\text{sym},0}^{d \times d} := \{A \in \mathbb{R}^{d \times d}; A^\top = A, \text{tr}(A) = 0\}$,

$$\mathcal{E}(t, u, \pi, \eta) = \int_{\Omega} \frac{1}{2} \mathbb{C}(\mathbf{e}(u) - \pi) : (\mathbf{e}(u) - \pi) + b\eta^2 - f(t) \cdot u \, dx,$$

with $b > 0$, $\mathbf{e}(u) = \frac{1}{2}(\nabla u)^\top + \frac{1}{2}\nabla u$,

$$\mathcal{R}_1(\dot{\pi}, \dot{\eta}) = \int_{\Omega} \delta_P^*(\dot{\pi}) + \delta_S(\dot{\pi}, \dot{\eta}) \, dx,$$

$P \subset \mathbb{R}_{\text{sym},0}^{n \times n}$ be a convex closed neighbourhood of the origin,

δ_P is its indicator function, and δ_P^* the conjugate functional to δ_P ,

$\mathcal{S} := \{z = (\pi, \eta); \eta \geq \delta_P^*(\pi)\}$,

$$\mathcal{R}_2(\dot{u}) = \int_{\Omega} \frac{1}{2} \mathbb{D}\mathbf{e}(\dot{u}) : \mathbf{e}(\dot{u}) \, dx,$$

$$\mathcal{T}(\dot{u}) = \int_{\Omega} \frac{\varrho}{2} |\dot{u}|^2 \, dx.$$

Main features:

\mathcal{R}_1 discontinuous but $\mathcal{E}(t, \cdot, \cdot, \cdot)$ convex and quadratic.

Joint recovery sequence by the “binominal trick”:

$$\begin{aligned}
 & \limsup_{k \rightarrow \infty} \left(\mathcal{E}(t_k, u_k, \tilde{z}_k) + \mathcal{R}_1(\tilde{z}_k - z_k) - \mathcal{E}(t_k, u_k, z_k) \right) \\
 &= \limsup_{k \rightarrow \infty} \left(\int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi_k + \tilde{\pi}_k) - \mathbb{C}e(u_k) \right) : (\pi_k - \tilde{\pi}_k) \right. \\
 &\quad \left. + \frac{1}{2} b(\eta_k + \tilde{\eta}_k)(\eta_k - \tilde{\eta}_k) dx + \mathcal{R}_1(\tilde{\pi}_k - \pi_k, \tilde{\eta}_k - \eta_k) \right) \\
 &= \int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi + \tilde{\pi}) - \mathbb{C}e(u) \right) : (\pi - \tilde{\pi}) + \frac{1}{2} b(\eta + \tilde{\eta})(\eta - \tilde{\eta}) dx + \mathcal{R}_1(\tilde{\pi} - \pi, \tilde{\eta} - \eta) \\
 &= \mathcal{E}(t, u, \tilde{z}) + \mathcal{R}_1(\tilde{z} - z) - \mathcal{E}(t, u, z),
 \end{aligned}$$

if we choose $\tilde{\pi}_k := \tilde{\pi} - \pi + \pi_k$ and $\tilde{\eta}_k := \tilde{\eta} - \eta + \eta_k$.

Similar results by

H.-D.Alber, C.Carstensen, C.Chelminski, W.Han & D.Reddy, A.Mielke, at al.
 Thermodynamical expansion for thermally dilatable materials:
 S.Bartels & T.R. (in preparation)

Main features:

\mathcal{R}_1 discontinuous but $\mathcal{E}(t, \cdot, \cdot, \cdot)$ convex and quadratic.

Joint recovery sequence by the “binominal trick”:

$$\begin{aligned}
 & \limsup_{k \rightarrow \infty} \left(\mathcal{E}(t_k, u_k, \tilde{z}_k) + \mathcal{R}_1(\tilde{z}_k - z_k) - \mathcal{E}(t_k, u_k, z_k) \right) \\
 &= \limsup_{k \rightarrow \infty} \left(\int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi_k + \tilde{\pi}_k) - \mathbb{C}e(u_k) \right) : (\pi_k - \tilde{\pi}_k) \right. \\
 &\quad \left. + \frac{1}{2} b(\eta_k + \tilde{\eta}_k)(\eta_k - \tilde{\eta}_k) dx + \mathcal{R}_1(\tilde{\pi}_k - \pi_k, \tilde{\eta}_k - \eta_k) \right) \\
 &= \int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi + \tilde{\pi}) - \mathbb{C}e(u) \right) : (\pi - \tilde{\pi}) + \frac{1}{2} b(\eta + \tilde{\eta})(\eta - \tilde{\eta}) dx + \mathcal{R}_1(\tilde{\pi} - \pi, \tilde{\eta} - \eta) \\
 &= \mathcal{E}(t, u, \tilde{z}) + \mathcal{R}_1(\tilde{z} - z) - \mathcal{E}(t, u, z),
 \end{aligned}$$

if we choose $\tilde{\pi}_k := \tilde{\pi} - \pi + \pi_k$ and $\tilde{\eta}_k := \tilde{\eta} - \eta + \eta_k$.

Similar results by

H.-D.Alber, C.Carstensen, C.Chelminski, W.Han & D.Reddy, A.Mielke, at al.
 Thermodynamical expansion for thermally dilatable materials:
 S.Bartels & T.R. (in preparation)

Main features:

\mathcal{R}_1 discontinuous but $\mathcal{E}(t, \cdot, \cdot, \cdot)$ convex and quadratic.

Joint recovery sequence by the “binominal trick”:

$$\begin{aligned}
 & \limsup_{k \rightarrow \infty} \left(\mathcal{E}(t_k, u_k, \tilde{z}_k) + \mathcal{R}_1(\tilde{z}_k - z_k) - \mathcal{E}(t_k, u_k, z_k) \right) \\
 &= \limsup_{k \rightarrow \infty} \left(\int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi_k + \tilde{\pi}_k) - \mathbb{C}e(u_k) \right) : (\pi_k - \tilde{\pi}_k) \right. \\
 &\quad \left. + \frac{1}{2} b(\eta_k + \tilde{\eta}_k)(\eta_k - \tilde{\eta}_k) dx + \mathcal{R}_1(\tilde{\pi}_k - \pi_k, \tilde{\eta}_k - \eta_k) \right) \\
 &= \int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi + \tilde{\pi}) - \mathbb{C}e(u) \right) : (\pi - \tilde{\pi}) + \frac{1}{2} b(\eta + \tilde{\eta})(\eta - \tilde{\eta}) dx + \mathcal{R}_1(\tilde{\pi} - \pi, \tilde{\eta} - \eta) \\
 &= \mathcal{E}(t, u, \tilde{z}) + \mathcal{R}_1(\tilde{z} - z) - \mathcal{E}(t, u, z),
 \end{aligned}$$

if we choose $\tilde{\pi}_k := \tilde{\pi} - \pi + \pi_k$ and $\tilde{\eta}_k := \tilde{\eta} - \eta + \eta_k$.

Similar results by

H.-D.Alber, C.Carstensen, C.Chelminski, W.Han & D.Reddy, A.Mielke, at al.
 Thermodynamical expansion for thermally dilatable materials:
 S.Bartels & T.R. (in preparation)

Main features:

\mathcal{R}_1 discontinuous but $\mathcal{E}(t, \cdot, \cdot, \cdot)$ convex and quadratic.

Joint recovery sequence by the “binominal trick”:

$$\begin{aligned}
 & \limsup_{k \rightarrow \infty} \left(\mathcal{E}(t_k, u_k, \tilde{z}_k) + \mathcal{R}_1(\tilde{z}_k - z_k) - \mathcal{E}(t_k, u_k, z_k) \right) \\
 &= \limsup_{k \rightarrow \infty} \left(\int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi_k + \tilde{\pi}_k) - \mathbb{C}e(u_k) \right) : (\pi_k - \tilde{\pi}_k) \right. \\
 &\quad \left. + \frac{1}{2} b(\eta_k + \tilde{\eta}_k)(\eta_k - \tilde{\eta}_k) dx + \mathcal{R}_1(\tilde{\pi}_k - \pi_k, \tilde{\eta}_k - \eta_k) \right) \\
 &= \int_{\Omega} \left(\frac{1}{2} \mathbb{C}(\pi + \tilde{\pi}) - \mathbb{C}e(u) \right) : (\pi - \tilde{\pi}) + \frac{1}{2} b(\eta + \tilde{\eta})(\eta - \tilde{\eta}) dx + \mathcal{R}_1(\tilde{\pi} - \pi, \tilde{\eta} - \eta) \\
 &= \mathcal{E}(t, u, \tilde{z}) + \mathcal{R}_1(\tilde{z} - z) - \mathcal{E}(t, u, z),
 \end{aligned}$$

if we choose $\tilde{\pi}_k := \tilde{\pi} - \pi + \pi_k$ and $\tilde{\eta}_k := \tilde{\eta} - \eta + \eta_k$.

Similar results by

H.-D.Alber, C.Carstensen, C.Chelminski, W.Han & D.Reddy, A.Mielke, at al.
 Thermodynamical expansion for thermally dilatable materials:
 S.Bartels & T.R. (in preparation)

Gradient damage (partial) at small strains:

$\Omega \subset \mathbb{R}^d$ a bounded domain,

u = displacement,

z = a scalar damage parameter,

$\mathcal{U} = W^{1,2}(\Omega; \mathbb{R}^d)$,

$\mathcal{Z} = W^{1,p}(\Omega)$,

$$\mathcal{E}(t, u, z) = \int_{\Omega} \frac{z}{2} \mathbb{C} \mathbf{e}(u) : \mathbf{e}(u) + \delta_{[0,1]}(z) + b |\nabla z|^p + \frac{1}{2} \mathbb{C}_0 \mathbf{e}(u) : \mathbf{e}(u) - f(t) \cdot u \, dx,$$

with $b > 0$ and \mathbb{C}_0 positive definite,

$$\mathcal{R}_1(\dot{z}) = \int_{\Omega} \delta_{(-\infty, 0]}(\dot{z}) - \kappa \dot{z} \, dx,$$

with $\kappa > 0$ the energy per d -dimensional volume dissipated by damage,

$$\mathcal{R}_2(\dot{u}) = \int_{\Omega} \frac{1}{2} \mathbb{D} \mathbf{e}(\dot{u}) : \mathbf{e}(\dot{u}) \, dx,$$

$$\mathcal{T}(\dot{u}) = \int_{\Omega} \frac{\varrho}{2} |\dot{u}|^2 \, dx.$$

Main features:

\mathcal{R}_1 discontinuous and $\mathcal{E}(t, \cdot, \cdot)$ nonconvex
but $\partial_u \mathcal{E}(t, \cdot, z)$ uniformly monotone.

Regularization \mathcal{E}_ε of \mathcal{E} by a term $\varepsilon |e(u)|^6$: then
 $(e, z) \mapsto z^T e + \varepsilon |e|^6 + \ell |e|^2$ is strictly convex for ℓ large, as need above.

Joint recovery sequence:

A.Mielke & T.R. (for $p > d$), A.Mielke & M.Thomas (also for $p \leq d$).

After having the energetic solution of the regularized problem, passage $\varepsilon \rightarrow 0$ possible because \mathcal{E}_ε Γ -converges to \mathcal{E} .

Delamination:

$\Omega \subset \mathbb{R}^d$ a bounded domain,

Γ a $d-1$ dimensional manifold inside Ω ,

u = displacement,

z = a scalar delamination parameter,

$\mathcal{U} = W^{1,2}(\Omega \setminus \Gamma; \mathbb{R}^d)$,

$\mathcal{Z} = L^\infty(\Gamma)$,

$$\mathcal{E}_\varepsilon(t, u, z) = \begin{cases} \int_{\Omega} \frac{\mathbb{C}e(u):e(u)}{2} - f \cdot u \, dx + \int_{\Gamma} \frac{z}{\varepsilon} [u]_\Gamma^2 \, dS & \text{if } [u] \cdot \nu \geq 0 \text{ on } \Gamma, \\ +\infty & \text{elsewhere.} \end{cases}$$

with ν the normal to Γ ,

$$\mathcal{R}_1(\dot{z}) = \int_{\Gamma} \delta_{(-\infty, 0]}(\dot{z}) - \kappa \dot{z} \, dS, \text{ with}$$

$\kappa > 0$ the energy per $d-1$ -dimensional surface dissipated by delamination,

$$\mathcal{R}_2(\dot{u}) = \int_{\Omega} \frac{1}{2} \mathbb{D}e(\dot{u}) : e(\dot{u}) \, dx,$$

$$\mathcal{T}(\dot{u}) = \int_{\Omega} \frac{\varrho}{2} |\dot{u}|^2 \, dx.$$

Main features:

\mathcal{R}_1 discontinuous and $\mathcal{E}(t, \cdot, \cdot)$ nonconvex
(\Rightarrow a regularization $\int_{\Gamma} \varepsilon |[u]|^6 dS$ helps),

but we benefit compactness of trace operator on Γ
(\Rightarrow no gradient of z needed),

$\partial_u \mathcal{E}(t, \cdot, z)$ uniformly monotone.

Γ -limit of \mathcal{E}_ε for $\varepsilon \rightarrow 0$: a **brittle delamination**:

$$\mathcal{E}_\infty(t, u, z) = \begin{cases} \int_{\Omega} \frac{\mathbb{C}e(u):e(u)}{2} - f \cdot u \, dx & \text{if } [u] \cdot \nu \geq 0 \text{ on } \Gamma, \ 0 \leq z \leq 1 \text{ on } \Gamma, \text{ and} \\ & [u(x)]_\Gamma = 0 \text{ for a.a. } x \in \Gamma \text{ such that } z(x) > 0, \\ +\infty & \text{elsewhere.} \end{cases}$$

Joint recovery sequence: T.R. & L.Scardia & C.Zanini (in preparation)

Applications in **geophysics** of short-time range:

spontaneous **rupture of faults** in lithospheric plates with kinetic-energy emission via **seismic waves** (**attenuated** by viscosity) that may

- 1) activate another **rupture** on another distant fault
- 2) manifest as an **earthquake** on the earth surface.

Modifications:

z the slip along Γ and $\mathcal{R}_1(z, \dot{z})$ with monotonic $\mathcal{R}_1(\cdot, \dot{z})$

(so-called "**slip weakening** concept used in geophysics")

Combination of delamination and slip weakening possible too.

Some references:

- A.Mielke, T.Roubíček, U.Stefanelli: Γ -limits and relaxations for rate-independent evolutionary problems. *Calc. Var. P.D.E.* **31** (2008), 387-416.
- A.Mielke, T.Roubíček, J.Zeman: Complete damage in elastic and viscoelastic media and its energetics. *Comp. Methods Appl. Mech. Engr.*, submitted.
- T.Roubíček: Rate independent processes in viscous solids at small strains. *Math. Methods Appl. Sci.*, printed electronically.
- T.Roubíček: Thermodynamics of rate independent processes in viscous solids at small strains. *SIAM J. Math. Anal.*, submitted.

Grazie per la vostra gentile attenzione.