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the model

! Ω ⊂ R3 connected set: the heat conductor configuration;

! the heat conductor is rigid =⇒ no shape change of Ω;

! memory heat conduction =⇒ dependence on time via
present and past times;

! thermally passive environment =⇒ environment’s thermal
status is not affected

by the conductor’s one.
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General Framework of the Problem

the model

! Ω ⊂ R3 connected set: the heat conductor configuration;

! the heat conductor is rigid =⇒ no shape change of Ω;

! memory heat conduction =⇒ dependence on time via
present and past times;

! thermally passive environment =⇒ environment’s thermal
status is not affected

by the conductor’s one.

key references

! M.E. Gurtin, A.C. Pipkin, 1968

! M. Fabrizio, G. Gentili, D.W. Reynolds, 1998
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. . . further references

• C.Cattaneo Atti Sem.Mat.Fis.Univ. Modena 3 (1948), 83–101

• B.D.Coleman, Arch. Rat. Mech. Anal. 17 (1964), 1–46

• M.E.Gurtin, Mechanics today 1 (1972), 168–213

• B.D.Coleman, E.H.Dill, Arch. Rat. Mech. Anal.1(1973), 1–53

• C.Giorgi, G.Gentili, Quart. Appl. Math. 51 (2)(1993), 343–62

...and many more !!
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Quantities of Interest

θ = θ (x, t) temperature

θ0 fixed reference temperature

u := θ (x, t) − θ0 relative temperature

g := ∇u (x, t) temperature gradient

q = q (x, t) heat flux

e = e (x, t) internal energy

α0 = const energy relaxation coefficient

k = k (x, t) heat flux relaxation function

k0(x) := k (x, 0) initial heat flux relaxation function

furthemore . . . . . . constitutive assumptions
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Constitutive Assumptions

e (x, t) = α0 u (x, t) , α0 const

q (x, t) = −
∫ ∞

0
k(x, τ) ∇u (x, t − τ) dτ

k(x, t) = k0(x) +

∫ t

0
k̇(x, s) ds
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Constitutive Assumptions

e (x, t) = α0 u (x, t) , α0 const

q (x, t) = −
∫ ∞

0
k(x, τ) ∇u (x, t − τ) dτ

k(x, t) = k0(x) +

∫ t

0
k̇(x, s) ds

the heat flux can be equivalently written in the form:

q (x, t) =

∫ ∞

0
k̇(x, τ) ḡt (x, τ) dτ . (-1)

where g := ∇u, and ḡt(x, τ) :=

∫ t

t−τ

∇u(x, s) ds

ḡt(x, τ) . . . integrated history of the temperature gradient
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Functional Assumptions

• k̇ ∈ L1(R+) ∩ L2(R+) ∀ x ∈ Ω

• k ∈ L1(R+) ∀ x ∈ Ω

• k(x, t) = k0(x) +

∫ t

0
k̇(x, s) ds

• k(x,∞) := lim
t→∞

k(x, t) = 0

fading memory property ∀ x ∈ Ω

∀ε>0∃ ã=a (ε, ḡt)∈ R
+s.t. ∀a>ã⇒

∣

∣

∣

∣

∫ ∞

0
k̇(s + a)ḡt(s) ds

∣

∣

∣

∣

<ε

. . . i.e., no heat flux when, at infinity, equilibrium is reached!
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The evolution problem







α0ut = −∇ · q + r(x, t) , r(x, t) heat supply

q(x, t) =

∫ ∞

0
k̇(x, τ)∇u

t
(x, τ) dτ in QT = Ω × [0, T )

initial and boundary conditions Problem 1
no heat flux through the body boundary (Neumann cond.s)
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The evolution problem







α0ut = −∇ · q + r(x, t) , r(x, t) heat supply

q(x, t) =

∫ ∞

0
k̇(x, τ)∇u

t
(x, τ) dτ in QT = Ω × [0, T )

initial and boundary conditions Problem 1
no heat flux through the body boundary (Neumann cond.s)

u(x, 0) = u0(x) ∀x ∈ Ω

q(x, t) · n(x)|∂Ω = 0, ∀ t ∈ [0, T )

where n(x) denotes the outward unit normal to the (smooth)
boundary ∂Ω at x ∈ ∂Ω and, in addition, say r(x, t) = 0,i.e
no heat supply.
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The evolution problem







α0ut = −∇ · q + r(x, t) , r(x, t) heat supply

q(x, t) =

∫ ∞

0
k̇(x, τ)∇u

t
(x, τ) dτ in QT = Ω × [0, T )

initial and boundary conditions Problem 2
fixed temperature at the body boundary (Dirichlet cond.s)

u(x, 0) = u0(x) ∀x ∈ Ω

u(x, t)|∂Ω = 0, ∀ t ∈ [0, T )

at the boundary of Ω , namely ∀x ∈ ∂Ω, and, in addition, say
r(x, t) = 0,i.e no heat supply.
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Semigroups Theory

" write evolution problem as a dynamical system






u̇(x, t) = ∇ ·
∫ +∞

0
k̇(τ)ḡt(τ) dτ

˙̄gt(τ) = ∇u(t) −∇u(t − τ)
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Semigroups Theory

" write evolution problem as a dynamical system






u̇(x, t) = ∇ ·
∫ +∞

0
k̇(τ)ḡt(τ) dτ

˙̄gt(τ) = ∇u(t) −∇u(t − τ)

" energy inner product . . .

〈χ1(t), χ2(t)〉 =
1

2

∫

Ω

α(x)u1(x, t)u2(x, t)dx−
1

2

∫

Ω

∫

∞

0

k̇(τ)ḡt
1(τ) · ḡt

2(τ)dτdx
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Semigroups Theory

" write evolution problem as a dynamical system






u̇(x, t) = ∇ ·
∫ +∞

0
k̇(τ)ḡt(τ) dτ

˙̄gt(τ) = ∇u(t) −∇u(t − τ)

" energy inner product . . .

〈χ1(t), χ2(t)〉 =
1

2

∫

Ω

α(x)u1(x, t)u2(x, t)dx−
1

2

∫

Ω

∫

∞

0

k̇(τ)ḡt
1(τ) · ḡt

2(τ)dτdx

" . . . and induced norm

‖χ(t)‖2 =
1

2

∫

Ω

α(x)u2(x, t)dx −
1

2

∫

Ω

∫

∞

0

k̇(τ)
[

ḡt(τ)
]2

dτdx
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Exponential Decay
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Exponential Decay

" recall Graffi’s free energy

ζG
(

u, ḡt
)

:=
α0

2
[u(x, t)]2 −

1

2

∫ ∞

0
k′(τ)

[

ḡt(x, τ)
]2

dτ
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Exponential Decay

" recall Graffi’s free energy

ζG
(

u, ḡt
)

:=
α0

2
[u(x, t)]2 −

1

2

∫ ∞

0
k′(τ)

[

ḡt(x, τ)
]2

dτ

" Graffi’s free energy satisfies

∂ζG

∂t
(x, t) −

∂e

∂t
(x, t)u(x, t) + q(x, t)·g(x, t) = −

1

2

∫

∞

0

k′′(τ)
[

ḡt(x, τ)
]2

dτ
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Exponential Decay

" recall Graffi’s free energy

ζG
(

u, ḡt
)

:=
α0

2
[u(x, t)]2 −

1

2

∫ ∞

0
k′(τ)

[

ḡt(x, τ)
]2

dτ

" Graffi’s free energy satisfies

∂ζG

∂t
(x, t) −

∂e

∂t
(x, t)u(x, t) + q(x, t)·g(x, t) = −

1

2

∫

∞

0

k′′(τ)
[

ḡt(x, τ)
]2

dτ

" introduce the energy

E(t) =
1

2

∫

Ω
α0 [u(x, t)]2 dx −

1

2

∫

Ω

∫ ∞

0
k′(τ)

[

ḡt(x, τ)
]2

dτdx
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Exponential Decay

" recall that is E(t) =

∫

Ω
ζG

(

u, ḡt
)

dx
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Exponential Decay

" recall that is E(t) =

∫

Ω
ζG

(

u, ḡt
)

dx

" under the assumption

0 < −k̇(τ) ≤ δk̈(τ) , k̇(0) bounded

since

∫

Ω
ζ̇G

(

u, ḡt
)

dx = −
1

2

∫

Ω

∫ ∞

0
k̈(x, τ)

[

ḡt(τ)
]2

dτdx ≤ 0
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Exponential Decay

" recall that is E(t) =

∫

Ω
ζG

(

u, ḡt
)

dx

" under the assumption

0 < −k̇(τ) ≤ δk̈(τ) , k̇(0) bounded

since

∫

Ω
ζ̇G

(

u, ḡt
)

dx = −
1

2

∫

Ω

∫ ∞

0
k̈(x, τ)

[

ḡt(τ)
]2

dτdx ≤ 0

" exponential decay follows

d

dt
E(t) ≤ 0 =⇒ 0 ≤ E(t) ≤ E(0)
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Bäcklund Transformations
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Bäcklund Transformations
! given two Evolution Equations, K and G are C∞-vector field

ut = K(u), K : M1 → TM1, u : (x, t)∈ Rn×R→u(x, t)∈Rm

vt = G(v), G : M2 → TM2, v : (x, t)∈ Rn× R→v(x, t)∈Rm
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Bäcklund Transformations
! given two Evolution Equations, K and G are C∞-vector field

ut = K(u), K : M1 → TM1, u : (x, t)∈ Rn×R→u(x, t)∈Rm

vt = G(v), G : M2 → TM2, v : (x, t)∈ Rn× R→v(x, t)∈Rm

!Bäcklund Transformations [Fuchssteiner, Nonlin. An. TMA, 3, 849,80]. let,
in turn, u(x, t) and v(x, t) be solutions to the two evolution
equations

if B(u, v)|t=0 = 0 ⇒ B(u, v) = 0 ∀t

then B(u, v) = 0 is a Bäcklund Transformations
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Bäcklund Transformations
! given two Evolution Equations, K and G are C∞-vector field

ut = K(u), K : M1 → TM1, u : (x, t)∈ Rn×R→u(x, t)∈Rm

vt = G(v), G : M2 → TM2, v : (x, t)∈ Rn× R→v(x, t)∈Rm

!Bäcklund Transformations [Fuchssteiner, Nonlin. An. TMA, 3, 849,80]. let,
in turn, u(x, t) and v(x, t) be solutions to the two evolution
equations

if B(u, v)|t=0 = 0 ⇒ B(u, v) = 0 ∀t

then B(u, v) = 0 is a Bäcklund Transformations

! if ut = K(u) admits a Recursion Operator Φ it can be written

ut = Φ(u)[ux]
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Bäcklund Chart
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Bäcklund Chart
! Bäcklund Chart: net of links connecting evolution equations
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Bäcklund Chart
! Bäcklund Chart: net of links connecting evolution equations
! Example 1 [Cole(1950),Hopf(1950)].

ut = uxx + 2uux
BT←→ vt = vxx

B(u, v) = 0 reads vx − uv = 0
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Bäcklund Chart
! Bäcklund Chart: net of links connecting evolution equations
! Example 1 [Cole(1950),Hopf(1950)].

ut = uxx + 2uux
BT←→ vt = vxx

B(u, v) = 0 reads vx − uv = 0

! Example 2

ut = uxxx + 6uux
BT←→ vt = vxxx − 6v2vx

B(u, v) = 0 reads u + vx + v2 = 0

S.T.A.M.M. 2008 Levico T. September 22-25, 2008 Sandra Carillo – p.13



...Latest Bäcklund Chart
[S. C., 2008]
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...Latest Bäcklund Chart
[S. C., 2008]

Heat Condution with memory:
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...Latest Bäcklund Chart
[S. C., 2008]

Heat Condution with memory:

! Consider a 1-dimesional heat conductor with memory

α0 vt = −
[
∫ t

0
k̇(τ)∇v

t
(x, τ) dτ

]

x

which . . . after a Cole-Hopf transformations is related to

utt = k0 [uxx + 2uux] , k0 = k(0)

. . . look for solutions of the latter . . .
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Traveling Wave Solutions
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Traveling Wave Solutions

S.T.A.M.M. 2008 Levico T. September 22-25, 2008 Sandra Carillo – p.15



Traveling Wave Solutions

! Inspection shows [S. C., Vietri 2008]

u(x, t) =
k0 − c2

k0(x ± ct + C)
, ∀C ∈ IR, ∀c ∈ IR+.

c2 = k0 =⇒ trivial zero solution.
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Traveling Wave Solutions

! Inspection shows [S. C., Vietri 2008]

u(x, t) =
k0 − c2

k0(x ± ct + C)
, ∀C ∈ IR, ∀c ∈ IR+.

c2 = k0 =⇒ trivial zero solution.

! further solutions are ∀c ∈ IR+\{
√

k0},∀c1, c2 ∈ IR,

u(x ± ct) = −
c1e

k0
(c2−k0)

(x±ct) − c2e
−

k0
(c2−k0)

(x±ct)

c1e
k0

(c2−k0)
(x±ct)

+ c2e
−

k0
(c2−k0)

(x±ct)
,

which also represent traveling wave solutions of the
nonlinear wave equation

utt = k0 [uxx + 2uux] , k0 = k(0)
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