MULLER’S K VECTOR IN THERMOELASTICITY.
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ABSTRACT. The concept of the K vector first proposed by I. Miiller
[1] made revolutionary changes in irreversible thermodynamics. It
may be important also in the theory of thermoelasticity. The well
known theories are based on thermal expansion, and the recent im-
provements are looked for in the theory of heat conduction. The
reason is that heat conduction is accounted with scalar and vector
variables while elasticity with second order tensors and there is no
direct linear coupling between second order tensors and vectors or
scalars in an isotropic material. The deviations from the present
theories urge new pathways for research. Such a new track can be
opened by Onsager’s thermodynamics supplemented with dynamic
degrees of freedom. This theory is usually referred to as extended
thermodynamics. The key moment is in the general form of the
entropy current out of local equilibrium, which leads to the formal
introduction of the transport of the dynamic degrees of freedom.
The skeleton of the possible theories is based on the introduction
of one or more vectorial dynamic variables. They can be coupled
to the current density of the heat flow, while their ’diffusion’ in-
tensities are second order tensors coupled directly in linear order
to the stress tensor even if the material is isotropic. The possibili-
ties are demonstrated on an example with one dynamic degree of
freedom. The new theory may explain why a thin coat of mortar
can prevent the disintegration of the rock in a tunnel.

INTRODUCTION

Non-equilibrium thermodynamics has been applied with success to
a lot of phenomena even in the form that nowadays is referred to as
" classical irreversible thermodynamics”—in the form that was accepted
just after the first papers of Onsager [2-5] and is presented—more
or less strictly—in the classical monographs [6-9]. It concerned the
principle of local equilibrium. The latter turned out to be too tight and
was generalized [10-15]. The departure from local equilibrium turned
out very fruitful and opened a broad perspective of applications [16-26].
Here a model for thermal stress is sketched that may be the closest to
the original Onsagerian presentation. In the model, thermal stress is
invoked by heat conduction through linear Onsager equations.

Key words and phrases. thermodynamic modeling, Onsager—Casimir reciprocal
relation, irreversible thermodynamics, thermoelasticity.
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1. THE MODEL

Assume a moving solid body in which heat conduction is present.
The first law reads

pi+divJ, =t:d. (1.1)

Here p is the density, u the specific internal energy, J_(; the current
density of heat flow, t Cauchy’s stress, and d the symmetric part of
the velocity gradient. The ° above the symbols means co-rotational
derivative. Further on the study will be restricted to small deformations
for the sake of simpler formulae; with this restriction, the co-rotational
derivative of the dilatation tensor d equals the symmetric part of the
velocity gradient.

The local state variables are the specific internal energy u, the di-
latation tensor d, and a vectorial dynamic variable 5 not yet specified.
As the variable 5’ is determined by the others at an equilibrium state
they can be chosen in a special way so that the entropy function takes
the form

5 =s° (u — %52, d> . (1.2)

Here s¢(u,d) is the equilibrium entropy function. The choice of the
dynamic variables resulting the above non-equilibrium entropy function
is ensured by the Morse-lemma [27] and the maximum property of the
entropy.

The general form of the entropy balance reads

ps +divJ, =0, >0 (1.3)

Here J, is the entropy flow density and o, the entropy production. The
inequality expresses the second law.

The system is not in local equilibrium. The classical formula of the
entropy flow is replaced [28] by

To=7 (i- 7). (1.9

Here J¢ is the current density of the transport of the dynamic variable.
The actual form of the entropy production or better of the energy
dissipation function reads

1 . N . .
To, = — grad T (Jq . J£§> — Gt (t— 1) d—J¢ : Grad€ (1.5)

Here the abbreviating notations

. Os

5’% = p_é—i‘DlVJg
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have been introduced. The function t¢ is the equilibrium stress belong-
ing to the present specific entropy and deformation and ¢ is the source
density of quantity E

The four terms in the above formula give account on the entropy
generation of four processes. The first term belongs to heat conduction,
the second to the relaxation of the dynamic variable, the third to the
viscous effects, and the forth to the transport of the dynamic degree of
freedom.

The conditions of an equilibrium can be taken from here. According
to the first term the temperature has to be uniform, according to the
second the dynamic structure has to be relaxed. The third term gives
the expression for the stress at an equilibrium. Introducing the notation
makes its meaning clear. The last term says that no gradient of E can
be present at an equilibrium.

2. CONSTITUTIVE EQUATIONS

The first two terms belong vectorial phenomena while the last two
to tensorial ones. The Onsager equations fall into two uncoupled set
of equations. One for the vectorial phenomena

— —) 1 —
(Jq - J&f) = _quf grad 1" — Lge§ (2.1)
1 e
Eg = —quf gradT — ngf (22)
and one for the tensorial quantities
t—t°= decoi - Ld{ Gradg
(2.3)
Jg = Lgdcol — ng Grad 5

Here the quantities L are isotropic forth order tensors, the general
form of which [29] makes possible to split the set of equations (2.3)
into three uncoupled sets, one for the traces

(p° —p) = LYy dive — LY divE

(2.4)
trJe = LY divd — LY dive,
one for the deviatoric parts
o A D
(87— ) = LRd - L}, (Grad€)
(2.5)

o N\ D
JP = 15d— 14 (Grad€) ",

and one for the skew symmetric parts
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0=} <Grad g)A (2.6)
(Jo)* = —I4 <Grad E)A. (2.7)

Here the L coefficients are numbers. The upper indices °, P, and

4 refer to the scalar, the deviatoric, and the skew-symmetric parts,
respectively. The coefficient Lfg equals obviously zero otherwise the
equations would be incompatible.

3. HEADING AN ENGINEERING APPLICATION.

Aiming the problem of the disintegration of the wall in some tun-
nels, some simplifying assumptions are practicable. First of all, the
displacements are assumed small and the viscous effects are neglected.
Combining equations (2.4)s, (2.5)2, and (2.7),

1,
Je = 5L dived — LE(Grad§)” — Lgg(Grad ) (3.1)

results for the current density of the transport of the dynamic variable.
Its divergence reads

. 1 0 1 D 1 A - 1 D A s
(3.2)
Introducing it into the equation (2.2) yields
3 - 1 . o
n + Lee = —quT grad T + AAE + B grad div €, (3.3)
where the abbreviating notations
Lo 1op 14, L.p A

have been introduced.

The wall of a tunnel may be approximated sufficiently well with a
half space. The above equation falls to one dimensional. Supposing
that all the functions depends only on the coordinate perpendicular to
the wall, equations (3.3) turn to

¢, - 10T 0%,
Py T Lecs ~Legg T (A+B)55 (3.5)
%) 3 €
Por T Lee€) = AW? (3.6)

where &, refers to the component of E perpendicular to the wall and
{7‘ to the parallel component. The quantity = stands for a Cartesian
coordinate perpendicular to the wall. Equation (3.6) shows that only
the perpendicular component can be excited.
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Turn attention to the stress. Equation (2.3);—having dropped the
viscosity—can be cast to the familiar formula

t—t°=2u"e" + \"0%6. (3.7)
For the sake of analogy, the symbols
et = %[Grad £+ (Grad&)"] (3.8)
0* = div¢ (3.9)
T —%Lfg (3.10)
o= %ng — L (3.11)

have been introduced. The symbol 4 is the unit tensor. Equation (3.7)
for the one dimensional problem in matrix notation reads

ot 1 00 ot 1 00
t—t°=2 *aL 00 0 +A*8L 01 0f. (3.12)
T 1000 Y1001
Accepting the classical formula of linear thermoelasticity
t° =2ue + [A\O — (2u + 3\)a(T — Tp)] 4, (3.13)
the equilibrium stress functions in matrix form is
ou |1 00 o 1 00
te:2ua— 0 0 O + Aa——(2u+3A)a(T—TO) 01 0f,
“10 00 v 001
(3.14)

where A and p are the Lame coefficients, a the coefficient of linear ther-
mal expansion, and wu is the displacement of the material perpendicular
to the wall.

Cauchy’s equation of motion—(Div¢ = 0)—reads
0%u 0%¢, oT

— +(2uF N 2 — = 1
(%CQjL(;JJJr/\)agE2 (u+3A)aax 0 (3.15)

Assuming that no displacement or dynamic degree of freedom are
present deep in the rock, a first integration results

(2n+A)

0
(2u+>\)a—z+(2u*+)\*)£— (2u+ 3N)a(T —Tp) =0 (3.16)
For a damage, the deviatoric part of the stress tensor is responsible.
2 0 0
2 0 0
tP = (2u “ zu*£> 0 -1 0 (3.17)

At first sight it seems as if the equations were the same as in the clas-
sical theory but the similarity of the equations is only formal. Equation
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(3.16) serves to determine the displacement while £, has to be known
from solving equation (3.5)
Eliminating u from equation (3.17) with equation (3.16),

4 2 0 0
L ——— ) N TV I 3.18
32u+N) g o —1 (3.18)
with o
D = pu2p + 3N)a(T — Tp) + (A — ,u)\*)% (3.19)
results.

4. DISCUSSION

The last equation reduces to the classical result if p* and \* are
zero. This case the thermal stress depends only on the difference of the
temperatures at the spot and deep in the rock. A thin layer of coat
can delay the damage but does not hinder. Equation (3.18)) reports
such an effect. For a rough estimate, drop the first term on the left
hand side of equation (3.5) and the last term on the right hand side
and substitute &, into the equation.

2
Le, O°T (4.1)
TL& 0x?

To judge the practical merit of the theory sketched above is far be-
yond the possibilities and the authenticity of a thermodynamicist. So I
present the idea for further consideration to researchers more familiar
with the original problem. But if inclining to reject first consider that,
in contrast to Lame’s coefficients, thermodynamics do not restrict the
magnitudes of p* and \*.

D = p(2p + 3N a(T — To) + (A" — ™))
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