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Abstract. We consider an evolution in phase field fracture which combines, in a system of pdes, an irre-
versible gradient-flow for the phase-field variable with the equilibrium equation for the displacement field. We
introduce a discretization in time and define a discrete solution by means of a 1-step alternate minimization
scheme, with a quadratic L2-penalty in the phase-field variable (i.e. an alternate minimizing movement).
First, we prove that discrete solutions converge to a solution of our system of pdes. Then, we show that the
vanishing viscosity limit is a quasi-static (parametrized) BV -evolution. All these solutions are described both
in terms of energy balance and, equivalently, by pdes within the natural framework of W 1,2(0, T ;L2).
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1 Introduction

Phase field approaches are widely used to simulate crack propagation in academical and industrial
applications: even within the linear-elastic setting there are plenty of phase field models, based on
different choices of potentials and evolution laws, see e.g [2, 6, 10, 11, 19, 23, 25, 26, 34, 35] or the
recent review [3]. In the present work, we will study in detail a couple of evolutions generated by a
phase-field energy of the form

F(t, u, v) =

∫
Ω

(v2 + η)W (Dũ(t)) dx+ 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx,

where Ω ⊂ R2 is a bounded Lipschitz domain, ũ(t) = u + g(t) is the displacement fields with
u ∈ H1

0 (Ω) (so that ũ(t) = g(t) on ∂Ω), W (Dũ) is a linear elastic energy density, v ∈ H1(Ω; [0, 1])
is the phase field variable, Gc > 0 is toughness while η > 0 is a regularization parameter.

Functionals like F provide an elliptic regularization of free discontinuity functional: for instance,
neglecting boundary conditions, for ε→ 0+ and 0 < ηε = o(ε) the Γ-limit of the functionals

Fε(u, v) =

∫
Ω

(v2 + ηε)W (Du) dx+Gc

∫
Ω

(4ε)−1(v − 1)2 + ε|∇v|2 dx

is of the form

F0(u) =

∫
Ω
W (u) dx+GcH1(J(u)),

where J(u) is the set of discontinuity points of the displacement field u and H1 denotes Hausdorff
measure. Roughly speaking, the set J(u) represents the crack. Convergence has been rigorously
proved in the framework of SBD2 and GSBD2 spaces respectively in [12] and [16] while in the
scalar framework of the space GSBV 2 it was proved in the well known [5]. In our work, we will
study an evolution in time, rather then a limit for ε → 0+, hence we will work with the functional
F , omitting, for simplicity of notation, the dependence on the “internal length” ε.
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Our starting point is a time-discrete evolution generated by an alternate unilateral minimizing
movement. For τ > 0 let tn = nτ ∈ [0, T ] for n ∈ N be the time discretization. Then, the incremental
problem is the following: given (un−1, vn−1) (at time tn−1) the configuration (un, vn) at time tn is
obtained by solving{

vn ∈ argmin {F(tn, un, v) + 1
2τ ‖v − vn−1‖2 : v ≤ vn−1, v ∈ H1}

un ∈ argmin {F(tn, u, vn−1) : u ∈ H1
0}.

(1)

Similar discrete schemes have been used in applications, e.g. by [23, 35]. Note that the updated
configuration is determined by a single iteration in each variable, that each minimization problem
is well posed (thank to η > 0) and that the constraint v ≤ vn−1 models irreversibility. This scheme
takes, of course, full advantage of the separate quadratic structure of F(t, ·, ·). Our first result proves
that (as τ → 0) the time-discrete evolutions converge to a time-continuous evolution t 7→ (u(t), v(t)),
where v(·) is monotone non-increasing and satisfies for every t ∈ [0, T ] the energy balance

F(t, u(t), v(t)) = F(0, u0, v0)− 1
2

∫ t

0
‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr +

+

∫ t

0
∂tF(r, u(r), v(r)) dr, (2)

where |∂−v F(t, u, v)|L2 = sup{−∂vF(t, u, v)[ξ] : ξ ≤ 0, ‖ξ‖L2 ≤ 1} is the unilateral slope. Note
that, by irreversibility, only negative variations are allowed; for this reason a minus sign is added to
the notation |∂vF|L2 of the (unconstrained) slope. Equation (2) can be considered as De Giorgi’s
integral characterization of gradient flows; indeed, for a.e. t ∈ [0, T ] the time continuous limit solves
also the following system of pdes:{

v̇(t) = −
[
v(t)W (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t)

]+
div
(
σv(t)(ũ(t))

)
= 0,

(3)

where σv(ũ) = (v2 + η)σ(ũ) denotes the phase-field stress. Technically, we will see that v ∈
W 1,2(0, T ;L2(Ω)) and that v(t)W (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t) is a finite Radon measure with
positive part [ · ]+ in L2(Ω). To better understand the variational structure behind this evolution
problem, note that formally the partial derivatives of F read

∂vF(t, u, v)[ξ] =

∫
Ω

(
vW (Dũ(t)) +Gc(v − 1)−Gc∆v

)
ξ dx,

∂uF(t, u, v)[φ] = −
∫

Ω
div(σv(ũ(t)))φdx.

The positive part [ · ]+ appearing in (3) comes from the irreversibility constraint; more precisely

the term −
[
v(t)W (Dũ(t)) + Gc(v(t) − 1) − Gc∆v(t)

]+
is (in a suitable sense) the “projection”

of −∂vF(t, u(t), v(t)) on the set of negative variations ξ, therefore the parabolic equation can be
interpreted as a unilateral gradient flow, constrained by irreversibility.

In a larger perspective, an alternate minimizing scheme has been employed in different ways also
in a dynamic visco-elastic setting [24], in another gradient flow setting [7] and in a quasi-static setting
[21]. In general, alternate scheme are very useful in numerical simulation since they require only the
minimization of convex (in our case, quadratic) functionals. On the other hand, different approaches
can provide existence of solutions for (3) or similar problems. For instance: [22] obtains existence
introducing a unilateral minimizing movement for a “reduced” (non-convex) energy, which in our
setting would be of the form F(t, ut,v, u) for ut,v ∈ argmin {F(t, u, v) : u ∈ H1

0}, while [9] proves
existence, for a similar problem, by a fixed point argument. In the applications, “Ginzburg-Landau”
models are used in phase-field fracture for instance [1, 19, 23].
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In the second part of the paper we consider the vanishing viscosity limit of (3). More precisely,
we start with the system{

εv̇ε(t) = −
[
vε(t)W (Dũε(t)) +Gc(v

ε(t)− 1)−Gc∆vε(t)
]+

div
(
σvε(t)(ũ

ε(t))
)

= 0,
(4)

where ε > 0 is a “mobility parameter” or ”viscosity”. Our goal is the characterization of the quasi-
static limit, obtained as ε → 0. Since in the limit we expect discontinuous evolutions and since
the limit is rate independent, we first parametrize the evolutions by an arc-length parameter in
L2. In this way, we get a Lipschitz map s 7→ (tε(s), wε(s), zε(s)) where wε(s) = uε ◦ tε(s) and
zε(s) = vε ◦ tε(s). Passing to the limit, as ε→ 0, we get a map s 7→ (t(s), w(s), z(s)) which satisfies
w(s) ∈ argmin {F(t(s), w, z(s)) : w = g ◦ t(s) on ∂Ω} together with the energy balance

F(t(s), w(s), z(s)) = F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr+

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (5)

It is noteworthy that this balance together with the Lipschitz continuity of parametrized solutions
imply the main properties of the quasi-static parametrized solution s 7→ (t(s), w(s), z(s)). Indeed,
if t′(s) > 0 (i.e. in continuity points) we have equilibrium, i.e.{[

z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)
]+

= 0

div
(
σz(s)(w̃(s))

)
= 0,

(6)

if t(s) is constant in (s[, s]) (i.e. in discontinuity points) we have the following re-parametrization of
(5) {

λ(s)z′(s) = −
[
z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)

]+
div
(
σz(s)(w̃(s))

)
= 0,

(7)

where λ(s) = ‖[z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)]+‖L2 . Hence the vanishing viscosity limit
is labelled “parametrized BV -evolution” [28, 32].

It is interesting to compare, at least qualitatively, the quasi-static limit obtained here with the
one obtained in [21]. The latter is based on the alternate minimization scheme of [11], which reads,
in the one iteration version,{

vn ∈ argmin {F(tn, un, v) : v ≤ vn−1, v ∈ H1}
un ∈ argmin {F(tn, u, vn−1) : u ∈ H1

0}.

Note that in this scheme there is no additional viscosity. As a matter of fact, using the separate
quadratic structure of the energy F(t, ·, ·), the above minimization problems, in u and v, are recast
in [21] as the minimization of linear energies with suitable (state depending) dissipation-norms.
Such dissipation-norms are called “intrinsic”, as opposed to “artificial” dissipations appearing in
the vanishing viscocity approach, like the L2 norm in (1). Roughly speaking, the quasi-static limit
of [21] is a parametrized BV -evolution for the energy F with respect to these intrinsic dissipation-
norms; for the detailed characterization together with several fine properties we refer to [21].

Last, but not least, let us provide some technical considerations about our results. First of
all, the proofs of (2) and (3) rely essentially on the separate convexity of the energy F(t, ·, ·), the
lower semi-continuity of the unilateral slope and a sort of upper gradient inequality, based on a
measure theoretic argument employed in [15]. All these ingredients, put together, allow us to work
with evolutions of class W 1,2(0, T ;L2), which seems to be the natural weak setting for (2) and, in
perspective, for more complex systems, e.g. [1], and higher dimensional problems. We remark that
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our proof of existence for the unilateral gradient flow does not rely on the chain rule in W 1,2(0, T ;H1)
(see Lemma A.7). However, in order to study the quasi-static limit, and prove (5), it is necessary to
have a uniform bound on the length of the curves s 7→ (tε(s), wε(s), zε(s)). This is a delicate technical
point, which is obtained by means of a discrete Gronwall argument, cf. [22, 33], and which gives, as
a by-product, a uniform bound in W 1,2(0, T ;H1). This bound is used, together with the chain rule,
in the proof (7). Finally, we remark that our analysis works for domains Ω contained in R2 since
it relies on Sobolev embeddings, see for instance Lemma A.6. For similar technical reasons, in the
N -dimensional setting gradient flows of this type have been studied, e.g. [7] and [22], by modifying
the energy F with some dimension depending variants; for instance

∫
Ω |v−1|2+|∇v|2 dx = ‖v−1‖2H1

is replaced by ‖v − 1‖p
W 1,p (for p > N) or by ‖v − 1‖2L2 + |∇v|2

H1/2 (for N = 3).
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2 Setting, energy and its derivatives

First of all we collect the set of assumptions used through the work.

Assumptions. We assume that Ω is an open, bounded, connected domain in R2 with Lipschitz
boundary ∂Ω. Deformations are assumed to be of the form ũ = u+ g(t) for u ∈ U = H1

0 (Ω,R2) and
g ∈ C1([0, T ];W 1,p̄(Ω,R2)) for p̄ > 2. The phase-field ”space” V is H1(Ω, [0, 1]).

The potential energy F : [0, T ] × U × V → [0,+∞) is given by the following [5, 11] phase field
energy for brittle fracture

F(t, u, v) = 1
2

∫
Ω

(v2 + η)W (Dũ(t)) dx+ 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx, (8)

where ũ(t) = u + g(t) and W (Dũ) = Dũ : CDũ = ε(ũ) : σ(ũ) is the linear elastic energy density,
Gc > 0 is the toughness while η > 0 is a (small) regularization parameter. For convenience of
notation, let

E(t, u, v) = 1
2

∫
Ω

(v2 + η)W (Dũ(t)) dx, D(v) = 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx
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denote respectively the elastic and the fracture (dissipated) phase-field energy.
For sake of simplicity we will assume that the initial configuration u0, v0 (at time t = 0) is in

equilibrium; since the energy F(t, ·, ·) is separately quadratic, equilibrium is equivalent to separate
minimality, i.e.

u0 ∈ argmin {E(0, v0, ·) : u ∈ U}, v0 ∈ argmin {F(0, ·, u0) : v ≤ v0 , v ∈ V}.

Next, we provide the properties of energy and derivatives which will be used in the sequel.

Lemma 2.1 If tn → t, un ⇀ u in U and vn ⇀ v in V then

F(t, u, v) ≤ lim inf
n→+∞

F(tn, un, vn).

Proof. Since vn ⇀ v in V it is clear that D(v) ≤ lim infn→+∞D(vn). Thus, it is enough to show
that

E(t, u, v) ≤ lim inf
n→+∞

E(tn, un, vn).

First, extract a subsequence (not relabeled) such that lim infn E(tn, un, vn) = limn E(tn, un, vn).
Since vn is bounded, we can extract a further subsequence (again not relabeled) such that vn → v
a.e. in Ω. By Egorov’s Theorem, for every ε � 1 there exists Ωε ⊂ Ω with |Ω \ Ωε| < ε such that
vn → v uniformly in Ωε. Hence for δ � 1 and n � 1 in Ωε it holds 0 ≤ (v2 + η) − δ ≤ (v2

n + η).
Then

1
2

∫
Ω

(v2
n + η)W (Dũn(tn)) dx ≥ 1

2

∫
Ω

(v2 + η − δ)W (Dũn(tn))χΩε dx.

Defining the density 0 ≤ Wε(x, ξ) = (v2(x) + η − δ)W (ξ)χΩε(x) the weak lower semi-continuity of
the right hand side (see e.g. [14, Theorem 3.4]) yields

lim inf
n→+∞

E(tn, un, vn) ≥ 1
2

∫
Ω

(v2 + η − δ)W (Dũ(t))χΩε dx.

To conclude, it is sufficient to take first the supremum for δ ↘ 0 and then the supremum for ε↘ 0.

If the displacement field u is sufficiently regular (and this is the case for our evolutions) variations
of energy take a simple form; more precisely, if u ∈ W 1,p(Ω,R2) for some p > 2 then, by Lemma
A.6, the energy F(t, u, ·) is Gateaux differentiable with

∂vF(t, u, v)[ξ] =

∫
Ω
vξ W (Dũ(t)) dx+Gc

∫
Ω

(v − 1)ξ +∇v · ∇ξ dx ∀ ξ ∈ H1(Ω). (9)

In the evolution, irreversibility is modeled by monotonicity of v. For this reason, both the gradient
flow and the BV -evolution will be defined in terms of the following unilateral L2-slope of F(t, u, ·):
if u ∈W 1,p(Ω,R2) for some p > 2 let

|∂−v F(t, u, v)|L2 = | inf{∂vF(t, u, v)[ξ] : ξ ∈ H1(Ω), ξ ≤ 0, ‖ξ‖L2 ≤ 1}|. (10)

For future convenience denote Ξ = {ξ ∈ H1(Ω), ξ ≤ 0, ‖ξ‖L2 ≤ 1}, so that the unilateral slope is
equivalently given by

|∂−v F(t, u, v)|L2 = sup{−∂vF(t, u, v)[ξ] : ξ ∈ Ξ}. (11)

Lemma 2.2 If tn → t, un → u in W 1,p(Ω,R2) for p > 2 and vn ⇀ v in V then

|∂−v F(t, u, v)|L2 ≤ lim inf
n→+∞

|∂−v F(tn, un, vn)|L2 . (12)
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Proof. First, we show that for every ξ ∈ Ξ we have

lim
n→+∞

∂vF(tn, un, vn)[ξ] = ∂vF(t, u, v)[ξ]. (13)

By weak convergence in H1(Ω)

lim
n→+∞

∫
Ω

(vn − 1)ξ +∇vn · ∇ξ dx =

∫
Ω

(v − 1)ξ +∇v · ∇ξ dx,

while

lim
n→+∞

∫
Ω
vnξ W (Dũn(tn)) dx =

∫
Ω
vξ W (Dũ(t)) dx

because vn → v in Lq(Ω) for every q <∞ (by compact embedding) while

Dũ(tn) = Dun +Dg(tn)→ Dũ(t) = Du+Dg(t) in Lr(Ω,R2×2) for r = p ∧ p̄

and thus W (Dũn(tn))→W (Dũ(t)) in Lr/2 for r/2 > 1.
By (11) for every ξ ∈ Ξ

|∂−v F(tn, un, vn)|L2 ≥ −∂vF(tn, un, vn)[ξ]

and hence by (13) for every ξ ∈ Ξ we get

lim inf
n→+∞

|∂−v F(tn, un, vn)|L2 ≥ − lim
n→+∞

∂vF(tn, un, vn)[ξ] = −∂vF(t, u, v)[ξ].

Taking the supremum with respect to ξ ∈ Ξ concludes the proof.

By the regularity in time of g the partial time derivative takes the form

∂tF(t, u, v) =

∫
Ω

(v2 + η)ε(ũ(t)) : σ(ġ(t)) dx. (14)

In particular, for v ∈ V by continuity and coercivity of the elastic energy we have

|∂tF(t, u, v)| ≤ C‖ε(ũ(t))‖L2 ≤ C ′
(
‖ε(ũ(t))‖2L2 + 1

)
≤ C ′′(F(t, u, v) + 1). (15)

Lemma 2.3 If tn → t, un ⇀ u in U and vn ⇀ v in V then

lim
n→+∞

∂tF(tn, un, vn) = ∂tF(t, u, v). (16)

Proof. It is sufficient to pass to the limit in (14) using the fact that Dġ(tn)(v2
n+η)→ Dġ(t)(v2 +η)

in L2(Ω,R2×2).

Finally, the energy F(t, ·, v) is Fréchet differentiable in H1
0 (Ω,R2), with respect to the natural

norm of H1
0 (Ω,R2), and for every ζ ∈ H1

0 (Ω;R2) we have

∂uF(t, u, v)[ζ] =

∫
Ω

(v2 + η)σ(u) : ε(ζ) dx = 〈−div
(
(v2 + η)σ(u)

)
, ζ〉 ,

where 〈·, ·〉 denotes the duality between H1
0 (Ω;R2) and H−1(Ω;R2).
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3 Gradient flows

3.1 Incremental problems

Our gradient flow will be defined as an ”alternate minimizing movement”, i.e. as the limit of an
alternate implicit Euler discretization.

Fix τm = T/m > 0 (for some m ∈ N with m > 0) and for k = 0, ...,m consider the discrete times
tm,k = kτm ∈ [0, T ]. Given um,k−1 = u(tm,k−1) and vm,k−1 = v(tm,k−1) the irreversible alternate
minimizing movement is defined by{

vm,k ∈ argmin {F(tm,k, um,k−1, v) + 1
2τm
‖v − vm,k−1‖2L2 : v ≤ vm,k−1 , v ∈ V}

um,k ∈ argmin {F(tm,k, u, vm,k) : u ∈ U} = argmin {E(tm,k, u, vm,k) : u ∈ U}.
(17)

By Lemma A.5 we get the regularity and the continuous dependence of um,k stated in the next
Lemma.

Lemma 3.1 There exists 2 < p̃ < p̄ and p ∈ (2, p̄), independent of τm and k, such that um,k ∈
W 1,p(Ω,R2). Moreover, there exists C > 0, independent of τm and k, such that

‖um,k − um,k−1‖W 1,p ≤ C
(
|tm,k − tm,k−1|+ ‖vm,k − vm,k−1‖Lq

)
(18)

for 1/q = 1/p− 1/p̃. Finally, um,k is bounded in W 1,p(Ω,R2) uniformly with respect to τm and k.

The next two lemmas provide the main ingredients in the proof of the convergence Theorem 3.6.

Lemma 3.2 For every k ≥ 1 let v̇m,k = (vm,k − vm,k−1)/(tm,k − tm,k−1), then

〈v̇m,k, ξ〉L2 + ∂vF(tm,k, um,k−1, vm,k)[ξ] ≥ 0 for every ξ ∈ Ξ, (19)

‖v̇m,k‖2L2 = |∂−v F(tm,k, um,k−1, vm,k)|L2 ‖v̇m,k‖L2 = −∂vF(tm,k, um,k−1, vm,k)[v̇m,k]. (20)

Proof. First of all, by a standard truncation argument we know that we can replace V with the
whole H1(Ω) in (17), hence

vm,k ∈ argmin {F(tm,k, um,k−1, v) + 1
2τm
‖v − vm,k−1‖2L2 : v ≤ vm,k−1 , v ∈ H1(Ω)}.

By minimality, vm,k solves the variational inequality

∂vF(tm,k, um,k−1, vm,k)[w − vm,k] + 〈v̇m,k, w − vm,k〉L2 ≥ 0 (21)

for every w ∈ H1(Ω) with w ≤ vm,k−1. Inequality (19) follows. Choosing w − vm,k = ±τmv̇m,k
(corresponding to w = vm,k−1 and w = 2vm,k − vm,k−1) provides

∂vF(tm,k, um,k−1, vm,k)[v̇m,k] + ‖v̇m,k‖2L2 = 0. (22)

Next, by (11) and (21) with w − vm,k = ξ ∈ Ξ we get

|∂−v F(tm,k, um,k−1, vm,k)|L2 = sup{−∂vF(tm,k, um,k−1, vm,k)[ξ] : ξ ∈ Ξ}
≤ sup{〈v̇m,k, ξ〉L2 : ξ ∈ Ξ} = ‖v̇m,k‖L2 . (23)

If v̇m,k = 0 there is nothing else to prove. Otherwise, ξ = v̇m,k/‖v̇m,k‖L2 is an admissible variation
and by (22) the inequality in (23) becomes an equality, thus |∂vF(tm,k, um,k−1, vm,k)|L2 = ‖v̇m,k‖L2 .
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Lemma 3.3 For every k ≥ 1 it holds the following energy estimate

F(tm,k, um,k, vm,k) ≤ F(tm,k−1, um,k−1, vm,k−1) +

∫ tm,k

tm,k−1

∂tF(t, um,k−1, vm,k−1) dt+

− 1
2

∫ tm,k

tm,k−1

‖v̇m,k‖2L2 + |∂−v F(tm,k, um,k−1, vm,k)|2L2 dt. (24)

Proof. By minimality of um,k and convexity of F(tm,k, um,k−1, ·) we get

F(tm,k, um,k, vm,k) ≤ F(tm,k, um,k−1, vm,k)

≤ F(tm,k, um,k−1, vm,k−1)− ∂vF(tm,k, um,k−1, vm,k)[vm,k−1 − vm,k]. (25)

By Lemma 3.2

∂vF(tm,k, um,k−1, vm,k)[vm,k−1−vm,k] = τm‖v̇m,k‖2L2 = τm
1
2

(
‖v̇m,k‖2L2 + |∂−v F(tm,k, um,k−1, vm,k)|2L2

)
and hence by (25)

F(tm,k, um,k, vm,k) ≤ F(tm,k, um,k−1, vm,k−1)− 1
2

∫ tm,k

tm,k−1

‖v̇m,k‖2L2 + |∂−v F(tm,k, um,k−1, vm,k)|2L2 dt.

Finally,

F(tm,k, um,k−1, vm,k−1) = F(tm,k−1, um,k−1, vm,k−1) +

∫ tm,k

tm,k−1

∂tF(t, um,k−1, vm,k−1) dt

and the proof is concluded.

Lemma 3.4 There exists C > 0, independent of τm and k, such that

F(tm,k, um,k, vm,k) ≤ C(F(t0, u0, v0) + 1).

Proof. By minimality of um,k and vm,k

F(tm,k, um,k, vm,k) ≤ F(tm,k, um,k−1, vm,k)

≤ F(tm,k, um,k−1, vm,k) + 1
2τm
‖vm,k − vm,k−1‖2L2 ≤ F(tm,k, um,k−1, vm,k−1).

Further,

F(tm,k, um,k−1, vm,k−1) = F(tm,k−1, um,k−1, vm,k−1) +

∫ tm,k

tm,k−1

∂tF(t, um,k−1, vm,k−1) dt

and

∂tF(t, um,k−1, vm,k−1) =

∫
Ω

(v2
m,k−1 + η)ε(um,k−1 + g(t)) : σ(ġ(t)) dx.

Clearly ‖v2
m,k−1 + 1‖L∞ ≤ (1 + η) and ‖σ(ġ)‖L2 ≤ C. Moreover, by (15) and by the Lipschitz

continuity of g(·) we have

‖ε(um,k−1 + g(t))‖L2 ≤ ‖ε(um,k−1 + gm,k−1)‖L2 + ‖ε(g(t)− gm,k−1)‖L2

≤ C(F(tm,k−1, um,k−1, vm,k−1) + 1).

In summary, we can write

F(tm,k, um,k, vm,k) ≤ F(tm,k−1, um,k−1, vm,k−1) + Cτm(F(tm,k−1, um,k−1, vm,k−1) + 1)

and then
(F(tm,k, um,k, vm,k) + 1) ≤ (1 + Cτm)(F(tm,k−1, um,k−1, vm,k−1) + 1).

It follows that F(tm,k, um,k, vm,k) ≤ (1 + Cτm)k(F(t0, u0, v0) + 1) and then, since τm ≤ T/k,

F(tm,k, um,k, vm,k) ≤ (1 + CT/k)k(F(t0, u0, v0) + 1),

since (1 + CT/k)k → eCT the required estimate follows.
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3.2 Compactness and convergence

Let us denote by um : [0, T ] → U and vm : [0, T ] → V the evolutions obtained by piecewise affine
interpolation of um,k = um(tm,k) and vm,k = vm(tm,k).

Lemma 3.5 The sequence vm is bounded in L∞(0, T ;H1(Ω)) and in H1(0, T ;L2(Ω)) and thus, upon

extracting a (non-relabeled) subsequence, vm
∗
⇀ v in L∞(0, T ;H1(Ω)) and vm ⇀ v in H1(0, T ;L2(Ω)).

As a consequence, if tm → t then vm(tm) ⇀ v(t) in H1(Ω) and um(tm) → u(t) in W 1,p(Ω,R2),
for some p > 2, where u(t) ∈ argmin {E(t, u, v(t)) : u ∈ U}.

Proof. From Lemma 3.4 we known that F(tm,k, um,k, vm.k) is uniformly bounded and thus vm
is bounded in L∞(0, T ;H1(Ω)) while um is bounded in L∞(0, T ;H1

0 (Ω,R2)) by Korn’s inequality.
Then from the energy balance (24), together with identity (20), and from the uniform bound on the
time derivative (15) we get

F(tm,k, um,k, vm,k) ≤ F(tm,k−1, um,k−1, vm,k−1)−
∫ tm,k

tm,k−1

‖v̇m,k‖2L2 dt+ Cτm.

By induction we get ∫ T

0
‖v̇m,k‖2L2 dt ≤ F(0, u0, v0) + CT

and thus vm is bounded in H1(0, T ;L2(Ω)). As a consequence, (up to subsequences) vm ⇀ v in
H1(0, T ;L2(Ω)) and vm(tm) ⇀ v(t) in L2(Ω) for tm → t; since vm(tm) is bounded in H1(Ω) it turns
out that vm(tm) ⇀ v(t) in H1(Ω).

Let km such that tkm ≤ t < tkm+1. Being um(tm,km) = um,km ∈ argmin {E(tm,km , u, vm,km) : u ∈
U} we have ∫

Ω
(v2
m,km + 1)Dũm,kn : CDφdx = 0 ∀φ ∈ U .

Since um,km is bounded in H1
0 (Ω,R2) there exists a subsequence (non-relabeled) weakly converging

to some u∞ ∈ H1
0 (Ω,R2). Clearly

Dũm,kn = Dum,km +Dg(tm,km) ⇀ Du∞ +Dg(t) = Dũ(t) and (v2
m,km + 1)Dφ→ (v2(t) + 1)Dφ

in L2(Ω,R2×2), thus ∫
Ω

(v2(t) + 1)Dũ∞(t) : CDφdx = 0 ∀φ ∈ U

and u∞ = u(t) ∈ argmin {E(t, u, v(t)) : u ∈ U}. Since the limit is uniquely determined the whole
sequence converges. We can argue exactly in the same way for um(tm,km+1).

By compact embedding vm,km → v(t) in Lq(Ω) for every q < +∞. Then, invoking Lemma A.5
we have

‖u(t)− um,km‖W 1,p ≤ C‖g(t)− g(tm,km)‖Lq + C‖v(t)− vm,km‖Lq

and similarly for um,km+1. As um(tm) is the affine interpolation of um,km and um,km+1, the strong
convergence of displacements in W 1,p(Ω,R2) follows.

Theorem 3.6 Let v be a limit of vm (as in Lemma 3.5) and let u be the corresponding limit of
um; then v ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V) and for every t ∈ [0, T ] it holds u(t) ∈ argmin =
{E(t, u, v(t)) : u ∈ U} and

F(t, u(t), v(t)) = F(0, u0, v0)− 1
2

∫ t

0
‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr +

+

∫ t

0
∂tF(r, u(r), v(r)) dr. (26)

Moreover for almost every t ∈ [0, T ] we have

‖v̇(t)‖L2 = |∂−v F(t, u(t), v(t))|L2 . (27)
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For sake clarity the proof of the previous Theorem will be split into a couple of Propositions.

Proposition 3.7 Under the hypotheses of Theorem 3.6 for every t ∈ [0, T ] it holds

F(t, u(t), v(t)) ≤ F(0, u0, v0)− 1
2

∫ t

0
‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr + (28)

+

∫ t

0
∂tF(r, u(r), v(r)) dr.

Proof. Given t ∈ [0, T ] let 1 ≤ km ≤ m such that tm,km → t. Then, by induction (24) provides

F(tm,km , u(tm,km), v(tm,km)) + 1
2

∫ tm,km

0
‖v̇m(r)‖2L2 dr+

+ 1
2

km−1∑
k=0

∫ tm,k+1

tm,k

|∂−v F(tm,k, um,k−1, vm,k)|2L2 dr ≤

≤ F(0, u0, v0) +

km−1∑
k=0

∫ tm,k+1

tm,k

∂tF(r, um,k−1, vm,k−1) dr. (29)

By assumption tm,km → t, then by Lemma 3.5 vm(tm,km) ⇀ v(t) in H1(Ω) and um(tm,km) → u(t)
in W 1,p(Ω,R2). Then by Lemma 2.1 we get

F(t, u(t), v(t)) ≤ lim inf
m→∞

F(tm,km , u(tm,km), v(tm,km)).

Since vm ⇀ v in H1(0, T ;L2(Ω)) we have∫ t

0
‖v̇(r)‖2L2 dr ≤ lim inf

m→∞

∫ tm,km

0
‖v̇m(r)‖2L2 dr.

Next, given r ∈ (0, t) let r ∈ [tm,k′m , tm,k′m+1) for k′m ≤ km. Clearly, both tm,k′m → r and tm,k′m−1 → r.
By Lemma 3.5 we know that um(tm,k′m−1) → u(r) strongly in W 1,p(Ω,R2) (for some p > 2) while
vm(tm,k′m) ⇀ v(r) in H1(Ω) and then by Lemma 2.2 we get the pointwise estimate

|∂−v F(r, u(r), v(r))|L2 ≤ lim inf
m→+∞

|∂−v F(tm,k′m , um(tm,k′m−1), vm(tm,k′m−1))|L2 .

We remark that |∂−v F(·, u(·), v(·))|L2 is measurable in (0, T ). Indeed, given ξ ∈ Ξ, the functional
∂vF(t, u, v)[ξ] is continuous in [0, T ]×W 1,p(Ω,R2)×H1(Ω) and thus t 7→ ∂vF(t, u(t), v(t))[ξ] is mea-
surable. To conclude, it is enough to employ (11) and write |∂−v F(·, u(·), v(·))|L2 as the (pointwise)
supremum of −∂vF(·, u(·), v(·))[ξj ] for ξj in a dense, countable subset of Ξ. So, by Fatou’s Lemma
we conclude that∫ t

0
|∂−v F(r, u(r), v(r))|2L2 dr ≤ lim inf

m→+∞

km−1∑
k=0

∫ tm,k+1

tm,k

|∂−v F(tm,k, um,k−1, vm,k)|2L2 dr.

By Lemma 2.3 and (15) we get, by dominated convergence,

lim sup
m→+∞

km−1∑
k=0

∫ tm,k

tm,k−1

∂tF(r, um,k−1, vm,k−1) dr ≤
∫ t

0
∂tF(r, u(r), v(r)) dr.

Taking respectively the liminf on the left hand side and the limsup on the right hand side of
(29) we get the energy inequality

F(t, u(t), v(t)) + 1
2

∫ t

0
‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr ≤

≤ F(0, u0, v0) +

∫ t

0
∂tF(r, u(r), v(r)) dr,
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which conclude the proof.

There are different ways to prove the “upper gradient inequality”

F(0, u0, v0)−F(t, u(t), v(t)) ≤
∫ t

0
|∂−v F(r, u(r), v(r))|L2 ‖v̇(r)‖L2 dr +

−
∫ t

0
∂tF(r, u(r), v(r)) dr

≤ 1
2

∫ t

0
|∂−v F(r, u(r), v(r))|2L2 + ‖v̇(r)‖2L2 dr +

−
∫ t

0
∂tF(r, u(r), v(r)) dr.

For instance, the estimate will follow from the chain rule Lemma A.7 once we will know (from
Theorem 5.1) that the limit evolution v belongs to H1(0, T ;H1(Ω)). Actually, Proposition 3.8
below provides the required inequality for v in H1(0, T ;L2(Ω)); its proof, based only on measure
theory and separate convexity, is inspired by [15, Theorem 4.12]. In some sense (30) corresponds to
[4, Corollary 2.4.10].

Proposition 3.8 Let v ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V) and u(t) ∈ argmin {F(t, v(t), u) : u ∈ U}
such that t 7→ |∂−v F(t, u(t), v(t))| belongs to L2(0, T ). Then for every t ∈ (0, T )

F(0, u0, v0)−F(t, u(t), v(t)) ≤
∫ t

0
|∂−v F(r, u(r), v(r))|L2 ‖v̇(r)‖L2 dr +

−
∫ t

0
∂tF(r, u(r), v(r)) dr. (30)

Proof. Step I. Since the slope belongs to L2(0, t) there exists a sequence of finite subdivisions tj,i
(for j ∈ N and i = 0, ..., Ij) of the time interval [0, t] with 0 = tj,0 < ... < tj,i < tj,i+1 < ... < tj,Ij = t,
with limj→+∞maxi{tj,i+1 − tj,i} = 0 and such that the piecewise constant functions

Fj(r) =

Ij−1∑
i=0

χ(tj,i, tj,i+1)(r) |∂−v F(tj,i, u(tj,i), v(tj,i))|L2

converge to |∂−v F(·, u(·), v(·))|L2 strongly in L2(0, t) (cf. Theorem 4.12 in [15] or [18]).
Denote for simplicity uj,i = u(tj,i) and χj,i = χ(tj,i, tj,i+1) etc. For each j ∈ N and i = 0, ..., Ij

write

F(tj,i, uj,i, vj,i)−F(tj,i+1, uj,i+1, vj,i+1) =F(tj,i, uj,i, vj,i)−F(tj,i, uj,i, vj,i+1) +

+ F(tj,i, uj,i, vj,i+1)−F(tj,i+1, uj,i, vj,i+1) +

+ F(tj,i+1, uj,i, vj,i+1)−F(tj,i+1, uj,i+1, vj,i+1).

We will consider the three lines above separately, starting with the first. By convexity of F(tj,i, uj,i, ·)
we get

F(tj,i, uj,i, vj,i)−F(tj,i, uj,i, vj,i+1) ≤ −∂vF(tj,i, uj,i, vj,i)[vj,i+1 − vj,i]

≤ |∂−v F(tj,i, uj,i, vj,i)|L2 ‖vj,i+1 − vj,i‖L2

≤
∫ tj,i+1

tj,i

|∂−v F(tj,i, uj,i, vj,i)|L2 ‖v̇j,i+1‖L2 dr

where v̇j,i = (vj,i+1− vj,i)/(tj,i+1− tj,i) denotes the ”discrete” velocity. For the second term we will
just write

F(tj,i, uj,i, vj,i+1)−F(tj,i+1, uj,i, vj,i+1) = −
∫ tj,i+1

tj,i

∂tF(r, uj,i, vj,i+1) dr.
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For the third term, remember that by minimality∫
Ω

(v2
j,i+1 + η)σ(uj,i+1 + gj,i+1) : ε(uj,i − uj,i+1) dx = 0

and that F(tj,i+1, ·, vj,i+1) is quadratic, then

F(tj,i+1, uj,i, vj,i+1)−F(tj,i+1, uj,i+1, vj,i+1) =

= 1
2

∫
Ω

(v2
j,i+1 + η)

(
W (Duj,i +Dgj,i+1)−W (Duj,i+1 +Dgj,i+1)

)
dx

= 1
2

∫
Ω

(v2
j,i+1 + η)σ(uj,i + uj,i+1 + 2gj,i+1) : ε(uj,i − uj,i+1) dx

= 1
2

∫
Ω

(v2
j,i+1 + η)σ(uj,i − uj,i+1) : ε(uj,i − uj,i+1) dx

≤ C‖uj,i+1 − uj,i‖2H1 = C −
∫ tj,i+1

tj,i

‖uj,i+1 − uj,i‖2H1 dr.

In conclusion,

F(tj,i, uj,i, vj,i)−F(tj,i+1, uj,i+1, vj,i+1) ≤

≤
∫ tj,i+1

tj,i

|∂−v F(tj,i, uj,i, vj,i)|L2 ‖v̇j,i+1‖L2 dr −
∫ tj,i+1

tj,i

∂tF(r, uj,i, vj,i+1) dr+

+ C −
∫ tj,i+1

tj,i

‖uj,i+1 − uj,i‖2H1 dr.

Taking the sum for i = 0, ..., Ij yields

F(0, u0, v0)−F(t, u(t), v(t)) ≤
Ij−1∑
i=0

∫ tj,i+1

tj,i

|∂−v F(tj,i, uj,i, vj,i)|L2 ‖v̇j,i+1‖L2 dr+

−
Ij−1∑
i=0

∫ tj,i+1

tj,i

∂tF(r, uj,i, vj,i+1) dr +

Ij−1∑
i=0

−
∫ tj,i+1

tj,i

‖uj,i+1 − uj,i‖2H1 dr. (31)

Step II. Let us re-write (31) as

F(0, u0, v0)−F(t, u(t), v(t)) ≤
∫ t

0
Fj(r)Vj(r)− Pj(r) + Ej(r) dr

in terms of the piecewise constant functions Fj (defined above) and

Vj(r) =

Ij−1∑
i=0

χj,i(r) ‖v̇j,i+1‖L2 , Pj(r) =

Ij−1∑
i=0

χj,i(r) ∂tF(r, uj,i, vj,i+1),

Ej(r) =

Ij−1∑
i=0

χj,i(r) |tj,i+1 − tj,i|−1‖uj,i+1 − uj,i‖2H1 .

Since the above estimate holds for every subdivision tj,i it must hold also

F(0, u0, v0)−F(t, u(t), v(t)) ≤ lim
j→+∞

∫ t

0
Fj(r)Vj(r)− Pj(r) + Ej(r) dr.
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We will show that

lim
j

∫ t

0
Fj(r)Vj(r)dr =

∫ t

0
|∂−v F(r, u(r), v(r))|L2 ‖v̇(r)‖L2 dr, (32)

lim
j

∫ t

0
Pj(r) dr =

∫ t

0
∂tF(r, u(r), v(r)) dr, (33)

lim
j

∫ t

0
Ej(r) dr = 0, (34)

which will prove (30).
Since Fj converge strongly in L2(0, t) (by construction) to prove (32) it is enough to see that

Vj =

Ij−1∑
i=0

χj,i ‖v̇j,i+1‖L2 ⇀ ‖v̇‖L2 weakly in L2(0, t).

Note that Vj → ‖v̇‖ a.e. in [0, t] since v ∈ W 1,2(0, t;L2). Thus, it is enough to check that Vj is
bounded in L2(0, t). Write,

‖v̇j,i+1‖2L2 =

∥∥∥∥vj,i+1 − vj,i
tj,i+1 − tj,i

∥∥∥∥2

L2

=

∥∥∥∥∥−
∫ tj,i+1

tj,i

v̇(r) dr

∥∥∥∥∥
2

L2

≤ −
∫ tj,i+1

tj,i

‖v̇(r)‖2L2 dr (35)

so that ∫ t

0
V 2
j (r) dr ≤

Ij−1∑
i=0

(tj,i+1 − tj,i)−
∫ tj,i+1

tj,i

‖v̇(r)‖2L2 dr =

∫ t

0
‖v̇(r)‖2L2 dr.

Let us prove (33). Fix r ∈ (0, t) and let tj,i ≤ r < tj,i+1 (with i depending on j). For a.e. r ∈ (0, t)
we have

∂tF(r, uj,i, vj,i+1) =

∫
Ω

(v2
j,i+1 + η)σ(uj,i + g(r)) : ε(ġ(r)) dr.

Remember that v ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)). Using the arguments of Lemma 3.5 we get
vj,i+1 = v(tj,i+1) → v(r) and vj,i = v(tj,i) → v(r) in Lq(Ω) for every q < ∞. Thus uj,i = u(tj,i) →
u(r) in W 1,p(Ω,R2) for p > 2 (by Lemma A.5). As a consequence∫

Ω
(v2
j,i+1 + η)σ(uj,i + g(r)) : ε(ġ(r)) dr →

∫
Ω

(v2(r) + η) σ(u(r) + g(r)) : ε(ġ(r)) dr.

Therefore ∂tF(r, uj,i, vj,i+1)→ ∂tF(r, u(r), v(r)) a.e. in (0, t). Since v ∈ L∞(0, t;H1) by (15) we get
that |∂tF(r, uj,i, vj,i+1)| is uniformly bounded and thus (33) follows by dominated convergence.

Finally, let us prove (34). Since uj,i ∈ argmin {E(tj,i, ·, vj,i)} by Lemma 3.1 we known that

‖uj,i+1 − uj,i‖2H1 ≤ C|tj,i+1 − tj,i|2 + C‖vj,i+1 − vj,i‖2Lq ,

for some q sufficiently large. Since vj,i ∈ Lp(Ω) for every p < ∞ (by Sobolev embedding) we can
apply the interpolation inequality

‖vj,i+1 − vj,i‖Lq ≤ ‖vj,i+1 − vj,i‖αL2 ‖vj,i+1 − vj,i‖1−αLq̄

with 1/q = α/2 + (1− α)/q̄ (for a suitable q̄ depending on α). Hence, for α = 1/2 we get

|tj,i+1 − tj,i|−1‖vj,i+1 − vj,i‖2Lq ≤ ‖v̇j,i+1‖L2 ‖vj,i+1 − vj,i‖Lq̄ .
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Then,

∫ t

0
Ej(r) dr ≤

Ij−1∑
i=0

∫ tj,i+1

tj,i

|tj,i+1 − tj,i|−1‖uj,i+1 − uj,i‖2H1

≤
Ij−1∑
i=0

∫ tj,i+1

tj,i

C|tj,i+1 − tj,i|+ C ‖v̇j,i+1‖L2 ‖vj,i+1 − vj,i‖Lq̄ dr

≤ C
∫ t

0
|tj,i+1 − tj,i|+ Vj(r)Dj(r) dr, (36)

where Vj has been defined before while Dj(r) =
∑

i
χj,i‖vj,i+1 − vj,i‖Lq̄ . We have already seen that

Vj ⇀ ‖v̇‖L2 weakly in L2(0, t) and that ‖vj,i+1 − vj,i‖Lq̄ → 0 a.e. in (0, t). Since vj,i is uniformly
bounded in H1(Ω), and thus in Lq̄(Ω), by dominated convergence ‖vj,i+1 − vj,i‖Lq̃ → 0 in L2(0, t).
As Ej ≥ 0 from (36) follows (34).

Theorem 3.9 Let v, u be the limits obtained by Lemma 3.5, then v ∈ H1(0, T ;L2(Ω))∩L∞(0, T ;V)
and for a.e. t ∈ [0, T ] it holds{

v̇(t) = −
[
v(t)W (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t)

]+
div
(
σv(t)(ũ(t))

)
= 0 ,

(37)

Note that v(t)W (Dũ(t)) + Gc(v(t) − 1) − Gc∆v(t) is a finite Radon measure with positive part in
L2(Ω) while σv(ũ) = (v2 + η) CDũ is the phase-field stress (and ũ(t) denotes the displacement
u(t) + g(t)). In particular, the first equation holds in L2(Ω) and v is monotone non-increasing while
the second holds in H−1(Ω,R2).

Proof. By Lemma 3.2 we known that 〈v̇m,k, ξ〉+ ∂vF(tm,k, um,k−1, vm,k)[ξ] ≥ 0 for every ξ ∈ Ξ and
for every choice of the indices m and k. Besides the piecewise affine function vm we introduce the
(auxiliary) piecewise constant functions tm, um and vm given by

tm(t) = tm,k, um(t) = um,k−1, vm(t) = vm,k for t ∈ [tm,k−1, tm,k).

Then, for 0 ≤ ta < tb ≤ T we can write∫ tb

ta

〈v̇m, ξ〉L2 dt ≥
∫ tb

ta

−∂vF(tm, um, vm)[ξ] dt.

Since v̇m ⇀ v̇ in L2(0, T ;L2(Ω)) we can easily pass to the limit in the first term. By Lemma 3.5
we know that vm ⇀ v in H1(Ω) and um → u strongly in W 1,p(Ω,R2) (for some p > 2) pointwise in
(0, T ). Thus by (13) ∫ tb

ta

〈v̇(t), ξ〉L2 dt ≥
∫ tb

ta

−∂vF(t, u(t), v(t))[ξ] dt,

which holds for every 0 ≤ ta < tb ≤ T . As a consequence 〈v̇(t), ξ〉 ≥ −∂vF(t, u(t), v(t))[ξ] holds
a.e. in time for every ξ ∈ Ξ.

From Theorem 3.6 we know that ‖v̇(t)‖L2 = |∂−v F(t, u(t), v(t))|L2 holds a.e. in time, then by
Lemma A.3 it follows that ∂vF(t, u(t), v(t)) is a finite Radon measure µ with positive part µ+ ∈
L2(Ω) and that

‖v̇(t)‖L2 = |∂−v F(t, u(t), v(t))|L2 = ‖µ+‖L2 .

Moreover for every ξ ∈ Ξ ∩ C∞0 (Ω)

〈−v̇(t),−ξ〉L2 ≥ ∂vF(t, u(t), v(t))[−ξ] = 〈µ+ − µ−,−ξ〉 =

∫
Ω
ξdµ− −

∫
Ω
ξµ+dx,
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where the duality is in the sense of distributions. Let Ω± be the disjoint supports of µ±. Let
ϕ ∈ L2(Ω) a non-negative function supported in Ω+. Arguing as in the proof of Lemma A.3 we
can find a sequence ϕn ∈ C∞0 (Ω) such that 〈µ−, ϕn〉 → 0 and 〈µ+, ϕn〉 → 〈µ+, ϕ〉. Hence, for every
non-negative ϕ ∈ L2(Ω) supported in Ω+ we get

〈−v̇(t), ϕ〉L2 ≥ 〈µ+, ϕ〉L2 .

It follows that −v̇(t) ≥ µ+ ≥ 0 in Ω+. The same inequality hold (obviously) in Ω−, where
µ+ = 0. Since ‖ − v̇(t)‖L2 = ‖µ+‖L2 we get −v̇(t) = µ+. To conclude, it is enough to represent the
functional ∂vF(t, u(t), v(t))[φ]. For φ ∈ C∞0 (Ω) we have

∂vF(t, u(t), v(t))[φ] =

∫
Ω
vφW (Dũ(t)) dx+Gc

∫
Ω

(v(t)− 1)φ+∇v · ∇φdx

= 〈vW (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t), φ〉, (38)

where the last duality is in the sense of distributions. Hence

µ+ = [vW (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t)]+

and the proof is concluded.

4 Time rescaling

In order to find the quasi-static limit we first rescale the time variable, in order to get a ”slow”
evolution in the rescaled physical time interval [0, T/ε]. For ε > 0 let us consider the boundary
condition gε(t) = g(εt) defined in [0, Tε], for Tε = T/ε. Clearly gε is Lipschitz continuous in
W 1,p̄(Ω,R2) with

‖gε(t2)− gε(t1)‖W 1,p̄ ≤ εC|t2 − t1|.
Next, we define Fε : [0, Tε]× U × V → [0,+∞) by

Fε(t, u, v) = 1
2

∫
Ω

(v2 + η)W (Du+Dgε(t)) dx+ 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx.

As in §3 fix τm = Tε/m > 0 and let tm,k = kτm for k = 0, ...,m. Given uε,m,k−1 and vε,m,k−1 define
by induction{

vε,m,k ∈ argmin
{
Fε(tm,k, uε,m,k−1, v) + 1

2τm
‖v − vε,m,k−1‖2L2 : v ≤ vε,m,k−1 , v ∈ V

}
uε,m,k ∈ argmin {Fε(tm,k, u, vε,m,k) : u ∈ U} .

(39)

Denote by uε,m and vε,m the corresponding piecewise affine interpolate. By Lemma 3.5, Theorem
3.6 and Theorem 3.9 we easily get the following result.

Theorem 4.1 There exists a subsequence (not relabelled) of vε,m such that vε,m ⇀ vε in H1(0, Tε;L
2(Ω)).

Let uε be the corresponding limit of uε,m. Then, for every t ∈ [0, Tε] we have uε(t) ∈ argmin {E(t, vε(t), u) :
u ∈ U} and

Fε(t, uε(t), vε(t)) = Fε(0, u0, v0)− 1
2

∫ t

0
‖v̇ε(r)‖2L2 + |∂−v Fε(r, uε(r), vε(r))|2L2 dr +

+

∫ t

t0

∂tFε(r, uε(r), vε(r)) dr. (40)

Moreover for almost every t ∈ [0, Tε] we have

‖v̇ε(t)‖L2 = |∂−v Fε(t, uε(t), vε(t))|L2 (41){
v̇ε(t) = −

[
vε(t)W (Dũε(t)) +Gc(vε(t)− 1)−Gc∆vε(t)

]+
div
(
σvε(t)(ũε(t))

)
= 0 .

(42)
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Corollary 4.2 For every λ ∈ [0, 1] it holds

Fε(t, uε(t), vε(t)) = Fε(0, u0, v0) +

∫ t

0
∂tFε(r, uε(r), vε(r)) dr +

−
∫ t

0
λ ‖v̇ε(r)‖2L2 + (1− λ)|∂vFε(r, uε(r), vε(r))|2L2 dr. (43)

Proof. It is sufficient to re-write (40) taking into account (41).

Remark 4.3 We remark that in general (43) does not provide a characterization of the gradient
flow, unless it holds for λ = 1/2. Moreover, introducing the rescaled variable t = (t/ε) ∈ [0, T ], the
functions vε(t) = vε(t/ε) and uε(t) = uε(t/ε) solve the system{

εv̇ε(t) = −
[
vε(t)W (Dũε(t)) +Gc(v

ε(t)− 1)−Gc∆vε(t)
]+

div
(
σvε(t)(ũ

ε(t))
)

= 0 .

5 Quasi-static parametrized limit

In this section we will apply the change of variable

t 7→ sε(t) = εt+

∫ t

0
‖v̇ε(r)‖L2 dr

in order to obtain a parametrization of vε (originally defined for t ∈ [0, T/ε]) in terms of an arc-
length parameter s ∈ [0, Sε]. This is a convenient way of writing the quasi-static (rate-independent)
evolution and in particular to characterize its behavior in the discontinuity points. Note that here
the parametrization is in L2 and not in H1 as in [22].

First of all, let us see that sε maps the physical time interval [0, T/ε] onto a reference parametriza-
tion interval [0, Sε] with Sε = sε(Tε) uniformly bounded with respect to ε > 0.

5.1 Finite length and boundedness

Theorem 5.1 The length of the discrete curves vε,m is uniformly bounded in L2, i.e., there exists
C > 0 (independent of ε and m) such that for τ sufficiently small it holds∫ Tε

0
‖v̇ε,m(t)‖L2 dt ≤ C(T + |Ω|).

Moreover, ∫ Tε

0
‖v̇ε,m(t)‖2H1 dt ≤ C(εT + |Ω|).

Proof. The proof is quite technical and is based on a discrete Gronwall argument, provided in
Lemma A.1, see also [33, 22, 31, 29]. We will prove this property employing again the time dis-
cretization scheme. However, for notational convenience, we will write vk instead of vε,m,k etc.

Step I. By Lemma 3.2 for k ≥ 0 we have

∂vFε(tk+1, uk, vk+1)[v̇k+1] + ‖v̇k+1‖2L2 = 0. (44)

while for k ≥ 1

∂vFε(tk, uk−1, vk)[w − vk] + 〈v̇k, w − vk〉L2 ≥ 0 for every w ∈ H1(Ω) with w ≤ vk−1.

Choosing w = vk + v̇k+1 provides

∂vFε(tk, uk−1, vk)[v̇k+1] + 〈v̇k, v̇k+1〉L2 ≥ 0. (45)
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For k = 0 we have, by equilibrium,

∂vFε(0, u0, v0)[v̇1] ≥ 0. (46)

Hence, from (44) and (45) we obtain, for k ≥ 1,

∂vFε(tk, uk−1, vk)[v̇k+1]− ∂vFε(tk+1, uk, vk+1)[v̇k+1] ≥
≥ ‖v̇k+1‖2L2 − 〈v̇k, v̇k+1〉L2 ≥ 1

2‖v̇k+1‖2L2 − 1
2‖v̇k‖

2
L2 . (47)

For k = 0 from (44) and (46) we get

∂vFε(0, u0, v0)[v̇1]− ∂vFε(t1, u0, v1)[v̇1] ≥ ‖v̇1‖2L2 .

Setting v̇0 = 0 we can also write

∂vFε(0, u0, v0)[v̇1]− ∂vFε(t1, u0, v1)[v̇1] ≥ 1
2‖v̇1‖2L2 − 1

2‖v̇0‖2L2 (48)

and thus (47) actually holds for every k ≥ 0.
For the left hand side of (47) we proceed as follows.

∂vFε(tk, uk−1, vk)[v̇k+1]− ∂vFε(tk+1, uk, vk+1)[v̇k+1] =

= ∂vE(tk, uk−1, vk)[v̇k+1]− ∂vE(tk+1, uk, vk+1)[v̇k+1] +

+ ∂vD(vk)[v̇k+1]− ∂vD(vk+1)[v̇k+1].

For ∂vD(vk)[v̇k+1]− ∂vD(vk+1)[v̇k+1] we write∫
Ω

(vk − 1) v̇k+1 +∇vk · ∇v̇k+1 dx−
∫

Ω
(vk+1 − 1) v̇k+1 +∇vk+1 · ∇v̇k+1 dx =

=

∫
Ω

(vk − vk+1) v̇k+1 +∇(vk − vk+1) · ∇v̇k+1 dx = −τ‖v̇k+1‖2H1 . (49)

We can estimate ∂vE(tk, uk−1, vk)[v̇k+1]− ∂vE(tk+1, uk, vk+1)[v̇k+1] by∫
Ω
vkv̇k+1W (Duk−1 +Dgε,k) dx−

∫
Ω
vk+1 v̇k+1W (Duk +Dgε,k+1) dx ≤

≤
∫

Ω
vkv̇k+1W (Duk−1 +Dgε,k) dx−

∫
Ω
vk+1v̇k+1W (Duk−1 +Dgε,k) dx+

+

∫
Ω
vk+1v̇k+1W (Duk−1 +Dgε,k) dx−

∫
Ω
vk+1v̇k+1W (Duk +Dgε,k+1) dx

≤
∫

Ω
(vk − vk+1)v̇k+1W (Duk−1 +Dgε,k) dx+

+

∫
Ω
vk+1v̇k+1

(
W (Duk−1 +Dgε,k)−W (Duk +Dgε,k+1)

)
dx

≤
∫

Ω
vk+1v̇k+1

(
W (Duk−1 +Dgε,k)−W (Duk +Dgε,k+1)

)
dx,

where last inequality follows from (vk − vk+1) v̇k+1W (Duk +Dgε,k) ≤ 0. For 1/s+ 2/p = 1 we get
by Hölder inequality∫

Ω
v̇k+1vk+1

(
W (Duk−1 +Dgε,k)−W (Duk +Dgε,k+1)

)
dx ≤

≤ ‖v̇k+1‖Ls ‖W (Duk−1 +Dgε,k)−W (Duk +Dgε,k+1)‖Lp/2 .
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Since uk is uniformly bounded in W 1,p(Ω,R2) for 2 < p < p̄ (by Lemma A.5) and since g ∈
W 1,∞(0, T ;W 1,p̄(Ω,R2)) we get by Lemma A.5

sup
k
‖(Duk−1 +Dgε,k) + (Duk +Dgε,k+1)‖Lp < +∞,

‖(Duk−1 +Dgε,k)− (Duk +Dgε,k+1)‖Lp ≤
≤ C(ε|tk − tk−1|+ ‖vk − vk−1‖Lr + ε|tk+1 − tk|)
≤ Cτ(ε+ ‖v̇k‖Lr),

where 1/r = 1/p− 1/p̄. Thus for q = s ∨ r we have∫
Ω
v̇k+1vk+1

(
W (Duk−1 +Dgε,k)−W (Duk +Dgε,k+1)

)
dx ≤ Cτ‖v̇k+1‖Lq(ε+ ‖v̇k‖Lq).

In conclusion, for k ≥ 0 we have

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤ −τGc‖v̇k+1‖2H1 + Cτ‖v̇k+1‖Lq(ε+ ‖v̇k‖Lq). (50)

Step II. By Young’s inequality, for 0 < µ� 1 and Cµ > 1

‖v̇k+1‖Lq(ε+ ‖v̇k‖Lq) ≤ ε‖v̇k+1‖Lq + Cµ‖v̇k+1‖2Lq + µ‖v̇k‖2Lq ≤ C ′µ(ε2 + ‖v̇k+1‖2Lq) + µ‖v̇k‖2Lq

≤ C ′µ(ε2 + ‖v̇k+1‖2Lq) + Cµ‖v̇k‖2H1 . (51)

Write 1/q = α + (1 − α)/q̄ for α ∈ (0, 1) and q < q̄ < +∞. Then, by interpolation and Young’s
inequality, with p = 1/α, for 0 < λ� 1 we have

‖v̇k+1‖2Lq ≤ ‖v̇k+1‖
2α
L1 ‖v̇k+1‖

2(1−α)
Lq̄ ≤ Cλ‖v̇k+1‖2L1 + λ‖v̇k+1‖2Lq̄

≤ C ′λ‖v̇k+1‖L1‖v̇k+1‖L2 + Cλ‖v̇k+1‖2H1 . (52)

Hence, upon choosing µ and λ sufficiently small, respectively in (51) and in (52), we infer that for
every 0 < δ � 1 there exists Cδ such that

C‖v̇k+1‖Lq(ε+ ‖v̇k‖Lq) ≤ Cδ(ε2 + ‖v̇k+1‖L1‖v̇k+1‖L2) + δ‖v̇k+1‖2H1 + δ‖v̇k‖2H1 . (53)

Joining (50) and (53) yields the estimate

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤− τGc‖v̇k+1‖2H1 + τδ‖v̇k+1‖2H1 + τδ‖v̇k‖2H1+

+ τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδε
2. (54)

Step III. In order to apply the discrete Gronwall Lemma A.1 we need to re-write (54). First,

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤− τ(Gc − 2δ)‖v̇k+1‖2H1 − δτ‖v̇k+1‖2H1 + δτ‖v̇k‖2H1+

+ τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδε
2.

Hence, (
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
−
(

1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)
≤

− τ(Gc − 2δ)‖v̇k+1‖2H1 + τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδε
2.

For τ, δ � 1 and γ > 0 we can write

γ
(

1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
≤ (Gc − 2δ)‖v̇k+1‖2H1 .

Therefore, we get(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
−
(

1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)
≤

≤ −γτ
(

1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
+

+ C ′δτ‖v̇k+1‖L1

(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)1/2
+ Cδτε

2. (55)
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Define
ak =

(
1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)1/2
, bk = C ′δ‖v̇k‖L1 , c2

k = Cδε
2.

Hence (55) reads: for every 0 ≤ k ≤ m− 1

a2
k+1 − a2

k ≤ −τγa2
k+1 + τak+1bk+1 + τc2

k+1.

Then, for 0 < β < γ/2 by Lemma A.1 we get

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+

k∑
i=0

τe−β(tk−ti)bi.

Remembering the definition of ak, bk and ck, the previous estimate gives

1
2‖v̇k‖L2 ≤

(
1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)1/2
≤ C

( k∑
i=0

e−2β(tk−ti)τε2

)1/2

+ C
k∑
i=0

τe−β(tk−ti)‖v̇i‖L1

≤ Cε
(∫ tk

0
e−2β(tk−r) dr

)1/2

+ C

∫ tk

0
e−β(tk−r)‖v̇ε,m(r)‖L1 dr

≤ Cε/2β + C

∫ tk

0
‖v̇ε,m(r)‖L1 dr ≤ C ′(ε+ |Ω|), (56)

where the last inequality follows from monotonicity (in time) and boundedness of vε,m. Hence vε,m
is bounded in W 1,∞(0, Tε;L

2). Moreover,∫ Tε

0
‖v̇ε,m(t)‖ dt ≤

m∑
k=0

τ‖v̇k‖L2 ≤ CεTε + C
m∑
k=0

τ

∫ tk

0
e−β(tk−r)‖v̇ε,m(r)‖L1 dr.

Then, for t ∈ [tk, tk+1] we can write∫ tk

0
e−β(tk−r)‖v̇ε,m(r)‖L1 dr ≤

∫ t

0
e−β(t−τ−r)‖v̇ε,m(r)‖L1 dr

and thus

K∑
k=0

τ

∫ tk

0
e−β(tk−r)‖v̇ε,m(r)‖L1 dr ≤

∫ T/ε

0

∫ t

0
e−β(t−τ−r)‖v̇ε,m(r)‖L1 dr dt

≤ eβτ
∫ T/ε

0
‖v̇ε,m(r)‖L1

∫ T/ε

r
e−β(t−r) dt dr

≤ C
∫ T/ε

0
‖v̇ε,m(r)‖L1dr = C|Ω|.

Step IV. Let us go back to (54), i.e.

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤

≤ −τ(Gc − δ)‖v̇k+1‖2H1 + τδ‖v̇k‖2H1 + τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδε
2.

Let 0 < C = Gc − δ for 0 < δ � 1; being ‖v̇k‖L2 uniformly bounded (by the previous step) the
above estimate can be written as

τC‖v̇k+1‖2H1 ≤
(

1
2‖v̇k‖

2
L2 − 1

2‖v̇k+1‖2L2

)
+ τδ‖v̇k‖2H1 + τC ′δ(ε

2t+ ‖v̇k+1‖L1).
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Taking the sum for k = 0, ...,m− 1 and remembering that vε,m is piecewise affine we get

C

∫ Tε

0
‖v̇ε,m‖2H1 dt = C

m−1∑
k=0

τ‖v̇k+1‖2H1 ≤
m−1∑
k=0

(
1
2‖v̇k‖

2
L2 − 1

2‖v̇k+1‖2L2

)
+

+δ
m−1∑
k=0

τ‖v̇k‖2H1 + C ′δ

m−1∑
k=0

τ(ε2 + ‖v̇k+1‖L1)

≤ 1
2‖v̇0‖2L2 + δ

∫ Tε

0
‖v̇ε,m‖2H1 dt+ C ′δ

∫ Tε

0
ε2 + ‖v̇ε,m‖L1 dt

≤ δ

∫ Tε

0
‖v̇ε,m‖2H1 dt+ Cδ(εTε + |Ω|). (57)

Choosing 0 < δ < C it follows that vε,m is bounded in H1(0, Tε;H
1).

Passing to the limit for τm → 0 in the previous Theorem we get the following result.

Corollary 5.2 The limit evolution vε (provided by Theorem 4.1) satisfies∫ Tε

0
‖v̇ε(t)‖L2 + ‖v̇ε(t)‖2H1 dt ≤ C(T + |Ω|).

In particular Sε = sε(T/ε) is uniformly bounded.

5.2 Rescaled parametrized gradient flows

Let us go back to our parametrization

t 7→ sε(t) = εt+

∫ t

0
‖v̇ε(r)‖L2 dr (58)

from [0, Tε] onto [0, Sε]. The map t 7→ sε(t) is absolutely continuous and strictly monotone. We
denote by tε(s) be its inverse; moreover we denote

tε(s) = εtε(s), zε(s) = vε ◦ tε(s), wε(s) = uε ◦ tε(s). (59)

Accordingly, let w0 = u0 and z0 = v0.

Lemma 5.3 The functions s 7→ tε(s) and s 7→ zε(s) are Lipschitz continuous in [0, Sε], more
precisely for a.e. s ∈ [0, Sε] it holds

t ′ε(s) + ‖z′ε(s)‖L2 = 1, t ′ε(s) =
ε

ε+ |∂−v F(tε(s), wε(s), zε(s))|L2

.

Note that tε is onto [0, T ].

Proof. As t 7→ sε(t) is absolutely continuous with ṡε(t) ≥ ε a.e. in [0, Tε] the inverse function
s 7→ tε(s) turns out to be Lipschitz continuous with (tε)′(s) = 1/ṡε(tε(s)) a.e. in [0, Sε]. Hence, by
(58) and (59)

1 = ṡε(tε(s)) (tε)′(s) = (ε+ ‖v̇ε(tε(s))‖L2) (tε)′(s) = t′ε(s) + ‖z′ε(s)‖L2 .

Moreover, by (27) for a.e. t ∈ [0, Tε] we have

‖v̇ε(t)‖L2 = |∂−v Fε(t, uε(t), vε(t))|L2 = |∂−v F(εt, uε(t), vε(t))|L2 .
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Thus

‖v̇ε(tε(s))‖L2 = |∂−v F(εtε(s), uε ◦ tε(s), vε ◦ tε(s))|L2 = |∂−z F(tε(s), wε(s), zε(s))|L2 .

Since sets of measure zero are mapped to sets of measure zero, both by s 7→ tε(s) and by t 7→ sε(t),
for a.e. s ∈ [0, Sε] we have

t ′ε(s) =
ε

ṡε(tε(s))
=

ε

ε+ ‖v̇ε(tε(s))‖L2

=
ε

ε+ |∂vF(tε(s), wε(s), zε(s))|L2

. (60)

Since tε is the rescaled inverse of sε it is surjective, taking values in [0, T ].

Lemma 5.4 For ε > 0, the rescaled parametrized evolutions (tε, zε) are (uniformly) bounded in
W 1,∞(0, Sε; [0, T ] × L2) and in L∞(0, Sε; [0, T ] × V) with t′ε ≥ 0, z′ε ≤ 0 and t′ε + ‖z′ε‖L2 ≤ 1.
Further, for every s ∈ [0, Sε] and every λ ∈ [0, 1] the following energy balance holds:

F(tε(s), wε(s), zε(s)) = F(0, w0, z0) +

∫ s

0
∂tF(tε(r), wε(r), zε(r)) t

′
ε(r) dr+

−
∫ s

0
λΨε(‖z′ε(r)‖L2) + (1− λ)Φε(|∂−z F(tε(r), wε(r), zε(r))|L2) dr, (61)

where

Ψε(ξ) =

{
εξ2/(1− ξ) 0 ≤ ξ < 1

+∞ ξ ≥ 1,
Φε(ξ) = ξ2/(ε+ ξ).

We consider both Ψε and Φε to be defined in [0,+∞). Clearly, wε(s) ∈ argmin {E(tε(s), w, zε(s)) :
w ∈ U}

Proof. By Corollary 4.2 we known that for every t̄ ∈ [0, Tε] it holds

Fε(t̄, uε(t̄), vε(t̄)) = Fε(0, u0, v0) +

∫ t̄

0
∂tFε(t, uε(t), vε(t)) dt +

−
∫ t̄

0
λ ‖v̇ε(t)‖2L2 + (1− λ)|∂−v Fε(t, uε(t), vε(t))|2L2 dt.

Remember that Fε(t, u, v) = F(εt, u, v) and thus

∂tFε(t, u, v) = ε ∂tF(εt, u, v), ∂vFε(t, u, v) = ∂vF(εt, u, v).

Hence, by the change of variable t = tε(s) = tε(s)/ε, the energy balance in parametrized form
reads: for a.e. s̄ ∈ [0, Sε] it holds

F(tε(s̄), wε(s̄), zε(s̄)) = F(0, w0, z0) +

∫ s̄

0
∂tF(tε(s), wε(s), zε(s)) t

′
ε(s) ds +

−
∫ s

0

[
λ ‖v̇ε(tε(s))‖2L2 + (1− λ)|∂−v F(tε(s), wε(s), zε(s))|2L2

]
(tε)′(s) ds.

Since ‖v̇ε(tε(r))‖L2 (tε)′(r) = ‖z′ε(r)‖L2 and (tε)′(r) = t′ε(r)/ε it follows by Lemma 5.3 that

‖v̇ε(tε(r))‖2L2 (tε)′(r) = ε‖z′ε(r)‖2L2/t
′
ε(r) = ε‖z′ε(r)‖2L2/(1− ‖z′ε(r)‖L2) = Ψε(‖z′ε(r)‖L2).

Again by Lemma 5.3, (tε)′(r) = 1/(ε+ |∂−z F(tε(r), wε(r), zε(r))|L2).

Since Sε is uniformly bounded, by Corollary 5.2, we have S = lim infε Sε < +∞. For compact-
ness, it will be convenient to consider parametrized evolutions tε and zε to be defined in [0, S] with
a constant extension in (Sε, S] (clearly only in the case Sε < S). In this way all the (possibly ex-
tended) evolutions enjoy the compactness properties of the previous Lemma in the parametrization
interval [0, S]. Note however that, with this simple extension, the energy balance is not true, in
general, for s ∈ (Sε, S]. Note that, independently of ε > 0, we have tε(0) = 0 and tε(S) = T . Using
Lemma 5.3 and Lemma A.5 it is now immediate to prove the following compactness property.
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Corollary 5.5 For εn → 0 there exists a subsequence (not relabeled) such that

(tεn , zεn)
∗
⇀(t, z) in W 1,∞(0, S; [0, T ]× L2).

For a.e. s ∈ [0, S] we have zεn(s) ⇀ z(s) in H1 and thus wεn(s)→ w(s) in W 1,p (for p > 2) where
w(s) ∈ argmin {E(t(s), w, z(s)) : w ∈ U}. Finally, t(0) = 0 and t(S) = T and thus t maps [0, S]
onto [0, T ].

5.3 Quasi-static parametrized BV -limit

Theorem 5.6 Every limit evolution obtained by Corollary 5.5 satisfies z′ ≤ 0, t′ ≥ 0 and t′ +
‖z′‖L2 ≤ 1, t(0) = 0 and t(S) = T . Moreover, for every s ∈ [0, S) we have w(s) ∈ argmin {E(t(s), w, z(s)) :
w ∈ U} and the following energy balance

F(t(s), w(s), z(s)) = F(0, w0, z0) +

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr+

−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr. (62)

Any such limit will be called a parametrized BV -evolution.

Proof. Part I. The proof follows closely that of [32, Theorem 4.4]. If s < S then s ∈ [0, Sεn) for
εn � 1; thus (61), with λ = 0, provides

F(tεn(s), wεn(s), zεn(s)) = F(0, w0, z0) +

∫ s

0
∂tF(tεn(r), wεn(r), zεn(t)) t′εn(r) dr+

−
∫ s

0
Φεn(|∂−z F(tεn(r), wεn(r), zεn(r))|L2) dr. (63)

By Corollary 5.5 we known that tεn(s)→ t(s), zεn(s) ⇀ z(s) in H1 and wεn(s)→ w(s) in W 1,p (for
p > 2). As a consequence, by Lemma 2.2

F(t(s), w(s), z(s)) ≤ lim inf
εn→ 0

F(tεn(s), wεn(s), zεn(s)). (64)

Next, taking the lim supεn→0 in (63) we get

lim sup
εn→ 0

F(tεn(s), wεn(s), zεn(s)) ≤ F(0, w0, z0) +

+ lim sup
εn→ 0

∫ s

0
∂tF(tεn(r), wεn(r), zεn(r)) t′εn(r) dr

− lim inf
εn→ 0

∫ s

0
Φεn(|∂zF(tεn(r), wεn(r), zεn(r))|L2) dr. (65)

First, let us see that

lim
εn→ 0

∫ s

0
∂tF(tεn(r), wεn(r), zεn(r)) t′εn(r) dr =

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (66)

By Lemma 2.3 we know that ∂tF(tεn(r), wεn(r), zεn(t)) → ∂tF(t(r), w(r), z(r)) for a.e. r ∈ [0, s].
Moreover ∂tF(tεn(r), wεn(r), zεn(r)) is uniformly bounded since

|∂tF(tεn(r), wεn(r), zεn(r))| ≤ C(F(tεn(r), wεn(r), zεn(r)) + 1) < C̄.

Hence ∂tF(tεn(·), wεn(·), zεn(·)) converge to ∂tF(t(·), w(·), z(·)) strongly in L1(0, s) (by dominated

convergence). Since tεn
∗
⇀ t in L∞(0, s) we get (66).
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Finally, let us show that∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr ≤ lim inf

εn→0

∫ s

0
Φεn(|∂−z F(tεn(r), wεn(r), zεn(r))|L2) dr. (67)

It is not difficult to check that Φε(ξ) ≥ ξ − ε for every ξ ∈ [0,+∞). Thus we can write∫ s

0
Φεn(|∂−z F(tεn(r), wεn(r), zεn(r))|L2) dr ≥

∫ s

0
|∂−z F(tεn(r), wεn(r), zεn(r))|L2 dr − εns.

By Lemma 2.2

|∂−z F(t(r), w(r), z(r))|L2 ≤ lim inf
εn→0

|∂−v F(tεn(r), wεn(r), zεn(r))|L2

and thus (67) follows from Fatou’s Lemma. Joining (64)-(67) yields

F(t(s), u(s), v(s)) ≤ F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr+

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr.

Part II. To prove the opposite inequality we employ the “upper gradient inequality” as in
Proposition 3.8. In this setting, t ∈ W 1,∞(0, s), z ∈ W 1,∞(0, s;L2(Ω)) ∩ L∞(0, s;V), w(r) ∈
argmin {F(t(r), w, z(r)) : w ∈ U} and r 7→ |∂−z F(t(r), w(r), z(r))|L2 belongs to L1(0, s). Then,
following step by step the proof of Proposition 3.8 it is not difficult (but lengthy) to check that

F(0, w0, z0)−F(t(s), w(s), z(s)) ≤
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 ‖z′(r)‖L2 dr +

−
∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (68)

Since ‖z′(r)‖L2 ≤ 1 we get

F(0, w0, z0)−F(t(s), w(s), z(s)) ≤
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr +

−
∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr, (69)

which concludes the proof.

Corollary 5.7 If sεn → s then F(tεn(sεn), wεn(sεn), zεn(sεn))→ F(t(s), w(s), z(s)) and zεn(sεn)→
z(s) in H1(Ω). Moreover s 7→ z(s) is continuous from (0, S) to H1(Ω).

Proof. Following the proof of Theorem 5.6 it is easy to check, using (65)-(69), that

F(t(s), w(s), z(s)) ≤ lim inf
n→+∞

F(tεn(sεn), wεn(sεn), zεn(sεn))

≤ lim sup
n→+∞

F(tεn(sεn), wεn(sεn), zεn(sεn)) ≤ F(t(s), w(s), z(s)).

Thus limn→+∞F(tεn(sεn), wεn(sεn), zεn(sεn)) = F(t(s), w(s), z(s)).
If sε → s then by compactness (cf. Corollary 5.5) zεn(sεn) converge to z(s) weakly in H1 and

thus, by compact embedding, strongly in Lq for every q < +∞. Since tεn
∗
⇀ t we get tεn(sεn)→ t(s).

Then by Lemma A.5 we have wε(sε)→ w(s) in W 1,p for some p > 2. Hence∫
Ω

(z2
εn(sεn) + η)W (Dũεn(sεn)) dx →

∫
Ω

(z2(s) + η)W (Dũ(s)) dx,∫
Ω

(zεn(sεn)− 1)2 dx →
∫

Ω
(z(s)− 1)2 dx.
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By convergence of the energy it follows that∫
Ω
|∇zεn(sεn)|2 dx →

∫
Ω
|∇z(s)|2 dx,

from which follows the strong convergence in H1. Since zεn(sεn) → z(s) in H1 for every sequence
sεn → s we get that zεn → z (strongly in H1) locally uniformly in (0, S).

Remember that, by Corollary 5.2, the evolution vε is bounded in W 1,∞(0, Tε;L
2)∩H1(0, Tε;H

1)
and thus it is continuous in H1. As a consequence s 7→ zε(s) = vε ◦ tε(s) is continuous from [0, Sε]
to H1. Since zε converge to z locally uniformly, its limit z is continuous as well.

Remark 5.8 Using the Legendre transform it is possible to write (62) “in gradient flow fashion”.
Let

Ψ̃(z) =

{
0 z ≤ 1

+∞ z > 1,
Φ̃(z) =

{
+∞ z < 0

z z ≥ 0 .

Note that Φ̃(z) = Ψ̃∗(z). With this notation (62) reads

F(t(s), w(s), z(s)) = F(0, w0, z0) +

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr +

−
∫ s

0
Ψ̃(‖z′(r)‖L2) + Ψ̃∗(|∂−v F(t(r), w(r), z(r))|L2) dr . (70)

5.4 From energy balance to PDEs

In this last subsection we provide some properties, in terms of pdes, of the parametrized evolution
characterized by Theorem 5.6. Intuitively such an evolution is an “arc-length” parametrization of a
BV -evolution [27, 30].

Remember that quasi-static evolutions for non-convex energies may have discontinuity in time
and that characterization of these points makes the difference between different notion of quasi-
static evolution, e.g. energetic, BV or local [27, 30]. Remember also that discontinuity points td (in
time) correspond in the parametric picture to intervals (s[, s]) with t(s) = td, z(s

[) = z−(td) and
z(s]) = z+(td). ”Vice versa” if t′(sc) > 0 then tc = t(sc) is a continuity point in time.

Most of the informations are provided by the relationship between the derivative t′(s) and the
slope |∂−v F(t(s), w(s), z(s))|L2 , which is the subject of Proposition 5.9 ; its pdes form is provided in
Corollary 5.10. First, in order to employ the chain rule, we prove the following lemma.

Proposition 5.9 Let (t, w, z) be a parametrized evolution (provided by Theorem 5.6) then for
a.e. s ∈ [0, S] it holds

• ∂wF(t(s), w(s), z(s)) = ∂wE(t(s), w(s)) = 0,

• if t′(s) > 0 then |∂−z F(t(s), w(s), z(s))|L2 = 0,

• if |∂−z F(t(s), w(s), z(s))|L2 6= 0 then t′(s) = 0 and

z′(s) ∈ argmin {∂zF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1},

in particular ‖z′(s)‖L2 = 1.

Proof. Equilibrium for the displacement field follows from the minimality of w(s).
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Since ‖z′(s)‖L2 ≤ 1 for a.e. s ∈ [0, S] by (62) and (68) we can write

F(t(s), w(s), z(s)) = F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr +

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr

≤ F(0, w0, z0)−
∫ s

0
|∂−v F(t(r), w(r), z(r))|L2 ‖z′(r)‖L2 dr +

+

∫ s

0
∂tF(t(r), u(r), v(r)) t′(r) dr ≤ F(t(s), u(s), v(s)).

Hence all inequalities becomes equalities and hold in every subinterval of (0, S). In particular, for
a.e. s ∈ (0, S) we have

|∂−z F(t(s), w(s), z(s))|L2 (1− ‖z′(s)‖L2) = 0. (71)

Hence, if t′(s) > 0 then ‖z′(s)‖L2 < 1 (simply because t′(s) + ‖z′(s)‖L2 ≤ 1) and thus

|∂−z F(t(s), w(s), z(s))|L2 = 0.

On the contrary, if |∂−z F(t(s), w(s), z(s))|L2 6= 0 then ‖z′(s)‖L2 = 1 and t′(s) = 0.
Let s̄ ∈ [0, S] such that |∂−v F(t(s̄), w(s̄), z(s̄))|L2 6= 0, let us show that

z′(s̄) ∈ argmin {∂vF(t(s̄), w(s̄), z(s̄))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1}.

In order to apply the chain rule (80) we will show first that z ∈W 1,2(s1, s2;H1) for s̄ ∈ (s1, s2). By
the lower semi-continuity of the slope (cf. Lemma 2.2) for δ � 1 it holds |∂−v F(t, w, z)|L2 ≥ C > 0
for

(t, z) ∈ Iδ ×Bδ = {|t− t(s̄)| ≤ δ} × {‖z − z(s̄)‖H1 ≤ δ}

and w ∈ argmin {F(t, ·, z)}. Since s 7→ (t(s), z(s)) is continuous in [0, T ] × H1 and since tε and
zε converge locally uniformly (cf. Corollaries 5.5 and 5.7) there exists s1 < s2 such that both
(t(s), z(s)) ∈ Iδ ×Bδ and (tε(s), zε(s)) ∈ Iδ ×Bδ for s ∈ [s1, s2]. Thus,

|∂−v F(tε(s), wε(s), zε(s))|L2 ≥ C > 0 for s ∈ [s1, s2].

In other terms, let tε1 = tε(s1) and tε2 = tε(s2). Then we have sε(t) ∈ [s1, s2] for t ∈ [tε1, t
ε
2] and

|∂−v Fε(t, uε(t), vε(t))|L2 ≥ C > 0 for t ∈ [tε1, t
ε
2].

Remember that zε(s) = vε ◦ tε(s) and that (tε)′(s) = 1/ṡε(tε(s)) (being tε the inverse of sε); then,
by the change of variable s = sε(t) we get∫ s2

s1

‖z′ε(s)‖2H1 ds =

∫ s2

s1

‖v̇ε(tε(s))‖2H1 |(tε)′(s)|2 ds

=

∫ tε2

tε1

‖v̇ε(t)‖2H1

ṡε(t)
dt

=

∫ tε2

tε1

‖v̇ε(t)‖2H1

ε+ ‖v̇ε(t)‖L2

dt

=

∫ tε2

tε1

‖v̇ε(t)‖2H1

ε+ |∂−v Fε(t, uε(t), vε(t)|L2

dr

≤ 1

ε+ C

∫ tε2

tε1

‖v̇ε(t)‖2H1 ≤ +∞,

where the last bound follow from Corollary 5.2. Thus, zε and its limit z belong to W 1,2(s1, s2;H1).
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Hence, by the chain rule

F ′(t(s), w(s), z(s)) = ∂zF(t(s), w(s), z(s))[z′(s)] + ∂tF(t(s), w(s), z(s)) t′(s) (72)

for a.e. in s ∈ (s1, s2). On the other hand, by Theorem 5.6 for a.e. s ∈ (s1, s2) it holds

F ′(t(s), w(s), z(s)) = −|∂vF(t(s), w(s), z(s)|L2 + ∂tF(t(s), w(s), z(s)) t′(s).

Hence,
∂zF(t(s), w(s), z(s))[z′(s)] = −|∂vF(t(s), w(s), z(s))|L2 .

Therefore z′(s) ∈ argmin {∂vF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1}.

Corollary 5.10 Let (t, w, z) be a parametrized evolution (provided by Theorem 5.6) then for a.e. s ∈
[0, S] we have

• if t′(s) > 0 then {[
z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)

]+
= 0

div
(
σz(s)(w̃(s))

)
= 0,

(73)

• if t(s) = td in (s[, s]) then{
λ(s)z′(s) = −

[
z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)

]+
div
(
σz(s)(w̃(s))

)
= 0,

(74)

where λ(s) = ‖[z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)]+‖L2.

Remember that the first case corresponds to a continuity point in time, the second describes instead
the “instantaneous evolution” in the discontinuity point td. As in (37) the first equation in both the
previous systems holds in L2(Ω) while the second holds in H−1(Ω,R2).

Proof. If t′(s) > 0 then by Proposition 5.9 |∂−z F(t(s), w(s), z(s))|L2 = 0, i.e.

∂zF(t(s), w(s), z(s))[ξ] ≥ 0 for every ξ ∈ H1 with ξ ≤ 0.

In other terms, ∂zF(t(s), w(s), z(s)) is a negative Radon measure or, equivalently, a Radon measure
µ with µ+ = 0. As in (38), writing ∂vF(t(s), w(s), z(s)) in the sense of distributions yields (73).

By Proposition 5.9 we know that z′(s) ∈ argmin {∂zF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1}
and thus by Lemma A.4 we get (74).

A Some Lemmas

A.1 Discrete Gronwall

First of all let us provide the Gronwall estimate to be used in the proof of Theorem 5.1. It’s proof
originates from [33] and [22].

Lemma A.1 Let γ > 0, ak, bk, ck ≥ 0 and a0 = 0 such that

a2
k+1 − a2

k ≤ −τγa2
k+1 + τak+1bk+1 + τc2

k+1 for k ∈ N. (75)

Denote tk = kτ for k ∈ N. Then for 0 < β < γ/2 and τ � 1 it holds

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+

k∑
i=0

τe−β(tk−ti)bi for k ∈ N.
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Proof. for λ = (1 + τγ)1/2 and for τ < 1 let us re-write (75) as λ2a2
k+1 − a2

k − ak+1bk+1 ≤ c2
k+1.

Denote

Ak = λ−k(Ck +Bk) , Ck =

( k∑
i=0

λ2ic2
i

)1/2

, Bk =
k∑
i=0

λibi .

Let us show that Ak satisfies

λ2A2
k+1 −A2

k −Ak+1bk+1 ≥ c2
k+1 (76)

In terms of Ck and Bk, the left hand side reads

λ−2(k+1)+2
(
C2
k+1 +B2

k+1 + 2Ck+1Bk+1

)
− λ−2k

(
C2
k +B2

k + 2CkBk
)
− λ−(k+1)

(
Ck+1 +Bk+1

)
bk+1

Let us see that (76) holds. First, since λ > 1

λ−2kC2
k+1 − λ−2kC2

K = λ−2k(C2
k+1 − C2

k) ≥ λ−2k+2(k+1)c2
k+1 ≥ c2

k+1.

Next,

λ−2kB2
k+1 − λ−2kB2

k − λ−(k+1)Bk+1bk+1 =

= λ−2k(Bk + λk+1bk+1)2 − λ−2kB2
k − λ−(k+1)(Bk + λk+1bk+1)bk+1

=
(
λ−2k+2(k+1) − 1

)
b2k+1 +

(
2λ−2k+(k+1) − λ−(k+1)

)
Bkbk+1 ≥ 0,

where the last inequality follows again from λ > 1. Finally,

2λ−2kCk+1

(
Bk + λk+1bk+1

)
− 2λ−2kCkBk − λ−(k+1)Ck+1bk+1 =

= 2λ−2k
(
Ck+1 − Ck)Bk +

(
2λ−2k+(k+1) − λ−(k+1)

)
Ck+1bk+1 ≥ 0,

again because λ > 1.
Since λ2a2

k+1 − a2
k − ak+1bk+1 ≤ c2

k+1 and ak+1 ≥ 0 we get

ak+1 ≤
1

2λ2

(
bk+1 +

√
b2k+1 + 4λ2(a2

k + c2
k+1)

)
.

In the same way

Ak+1 ≥
1

2λ2

(
bk+1 +

√
b2k+1 + 4λ2(A2

k + c2
k+1)

)
.

Hence by induction ak ≤ Ak for every k ∈ N, i.e.

ak ≤
( k∑
i=0

τλ2(i−k)c2
i

)1/2

+

k∑
i=0

τλi−kbi .

Finally, it is not hard to check that for 0 < β < γ/2 and 0 < τ � 1 it holds

λ−1 = (1 + τγ)−1/2 ≤ 1− βτ.

Hence, for tk = kτ we have

λ(i−k) = λ−(k−i) ≤ (1− βτ)(k−i) = e(k−i) ln(1−βτ) ≤ e−β(k−i)τ = e−β(tk−ti).

Then

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+
k∑
i=0

τe−β(tk−ti)bi .

which concludes the proof.
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A.2 Representation of linear functionals

We provide here a couple of representations, to be used in Theorem 3.9 and in Corollary 5.10. The
first, related to unilateral gradient flows, is already stated, without proof, in [17]. The second follows
from [13, Lemma 4.4]. In the next Lemmas we assume that Ω is an open, bounded set in Rn.

Lemma A.2 Let ζ ∈ H−1(Ω). If

sup
{
〈ζ, ξ〉 : ξ ∈ H1

0 (Ω), ξ ≥ 0, ‖ξ‖L2 ≤ 1
}
< +∞ (77)

then ζ is a (locally finite) Radon measure whose positive part belongs to L2(Ω).

Proof. We introduce the indicator functions IB, I+ : H1
0 → [0,+∞] given by

IB(ξ) =

{
0 ‖ξ‖L2 ≤ 1

+∞ otherwise,
I+(ξ) =

{
0 ξ ≥ 0

+∞ otherwise.

By (77)
sup
ξ∈H1

0

〈ζ, ξ〉 −
(
I+(ξ) + IB(ξ)

)
< +∞.

In other terms, ζ belongs to the proper domain of the Legendre transform (I+ + IB)∗ in H−1. In
order to characterize the proper domain, let us write by inf-convolution, e.g. §15.1 in [8],

(I+ + IB)∗(ζ) = min
ϕ∈H−1

I∗+(ϕ) + I∗B(ζ − ϕ).

Clearly, if (I+ + IB)∗(ζ) < +∞ there exists µ ∈ H−1 such that I∗+(µ) + I∗B(ζ − µ) < +∞ and hence

I∗+(µ) < +∞ and I∗B(ζ − µ) < +∞. Choosing ξ = λξ̂, for λ ≥ 0 and ξ̂ ≥ 0, yields

λ〈µ, ξ̂〉 ≤ sup{〈µ, ξ〉 : ξ ∈ H1
0 , ξ ≥ 0} = I∗+(µ) < +∞ for every λ ≥ 0,

thus 〈µ, ξ̂〉 ≤ 0 for every ξ̂ ≥ 0 in H1
0 . By Riesz-Markov Theorem it follows that µ is a negative

Radon measure. Further, since

I∗B(ζ − µ) = sup{〈ζ − µ, ξ〉 : ξ ∈ H1
0 , ‖ξ‖L2 ≤ 1} < +∞,

the functional ζ−µ can be extended from H1
0 to the whole L2 (by Hahn-Banach Theorem) and thus

it can be represented as an element f ∈ L2 (by Riesz’s representation Theorem). In summary, we
write ζ = µ+ fL, where µ is a negative Radon measure, f is an L2-function and L is the Lebesgue
measure. Write µ = µac +µs where µac and µs are, respectively, absolutely continuous and singular
with respect to L. Then µac = −mL (by Radon-Nikodym Theorem) where m ∈ L1 and m ≥ 0.
Hence

ζ+ = (f −m)+L+ µ+
s = (f −m)+L = (f −m)L|A

where A = {f −m ≥ 0}. In A we have f ≥ m ≥ 0 and thus m ∈ L2(A). It follows that ζ+ ∈ L2.

Lemma A.3 Let ζ ∈ (H1(Ω))∗. If

sup
{
〈ζ, ξ〉 : ξ ∈ H1(Ω), ξ ≥ 0, ‖ξ‖L2 ≤ 1

}
< +∞ (78)

then ζ is a finite Radon measure whose positive part belongs to L2(Ω). Moreover

sup
{
〈ζ, ξ〉 : ξ ∈ H1(Ω), ξ ≥ 0, ‖ξ‖L2 ≤ 1

}
= ‖ζ+‖L2 . (79)
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Corollary A.4 Let ζ ∈ (H1(Ω))∗ and let

ξM ∈ argmax
{
〈ζ, ξ〉 : ξ ∈ H1(Ω), ξ ≥ 0, ‖ξ‖L2 ≤ 1

}
,

then ζ is a finite Radon measure and ζ+ = ξM ‖ζ+‖L2. In particular, the positive part ζ+ belongs
to H1(Ω).

Proof. If ζ = 0 there is nothing to prove because the identity ζ+ = ξM‖ζ+‖L2 becomes trivial.
Otherwise, since ξ ≥ 0 we have, by the previous Lemma and by density of smooth functions

‖ζ+‖L2 = 〈ζ, ξM 〉 = sup
{
〈ζ, ξ〉 : ξ ∈ H1(Ω), ξ ≥ 0, ‖ξ‖L2 ≤ 1

}
= sup{〈ζ, ξ〉 : ξ ∈ C∞, ξ ≥ 0, ‖ξ‖L2 ≤ 1}
≤ sup{〈ζ+, ξ〉 : ξ ∈ L2, ξ ≥ 0, ‖ξ‖L2 ≤ 1} = ‖ζ+‖L2 .

It is now enough to note that ξ = ζ+/‖ζ+‖L2 is the unique maximizer in L2(Ω).

A.3 Continuous dependence and differentiability

Finally, we collect, for the readers convenience, few results from [22] adapted to our notation and
framework; the first follows from [22, Lemma 2.2] (which in turn is based on a general regularity
result proved in [20, Theorem 1.1]), the second from [22, Lemma 2.4] while the last from [22, Lemma
2.3].

Lemma A.5 Let g ∈ C1([0, T ];W 1,p̄(Ω,R2)) for p̄ > 2. For t ∈ [0, T ] and v ∈ V denote u(t, v) =
argmin{F(t, ·, v) : u ∈ U}. There exists C > 0 and 2 < p̃ < p̄ such that: for every 2 ≤ p < p̃, every
t1, t2 ∈ [0, T ] and every v1, v2 ∈ V it holds

‖u(t2, v2)− u(t1, v1)‖W 1,p ≤ C
(
‖g(t2)− g(t1)‖W 1,p + ‖g‖L∞(0,T ;W 1,p) ‖v2 − v1‖Lq

)
where 1/q = 1/p − 1/p̃. We remark that C > 0 depends only on the linear elastic density W , on
η > 0 and on Ω; in particular, it is independent of the boundary condition.

Lemma A.6 If u ∈ W 1,p(Ω,R2) for some p > 2 then F(t, u, ·) is Gateaux differentiable (with
respect to H1(Ω)) and

∂vF(t, u, v)[ξ] = 2

∫
Ω
vξ W (Du+Dg(t)) dx+Gc

∫
Ω

(v − 1)ξ +∇v · ∇ξ dx ∀ ξ ∈ H1(Ω).

Note that the above integrals makes sense thanks to the fact that, for Ω ⊂ R2, ξ ∈ Lq for any
1 ≤ q < +∞ while, by assumption, W (Du+Dg(t)) ∈ Lp for some p > 1.

Lemma A.7 If v ∈ W 1,2(0, T ;H1) and u(t) ∈ argmin{F(t, u, v(t)) : u ∈ U} then the energy
t 7→ F(t, u(t), v(t)) is a.e. differentiable in (0, T ) and the following chain rule holds:

Ḟ(t, u(t), v(t)) = ∂tF(t, u(t), v(t)) + ∂vF(t, u(t), v(t)) [v̇(t)] . (80)
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