Analisi Matematica I - 15/07/2024 - Tempo a disposizione: 3h

COGNOME ______ NOME _____

Laurea: \square Matematica \square Fisica

A1. Sia $f(x) = 2^x \log_2(x) + 1$ per x > 0. Calcolare la retta tangente al grafico in $x_0 = 1$.

- **A2.** Calcolare $\lim_{n \to +\infty} \frac{(n-1)n \sinh(n)}{\cosh(-n) n \ln(n^2 + 1)}$.
- **A3.** Calcolare $\lim_{x\to 0} \frac{2\tan(x^2)}{x\cos^2(x)} + \frac{\tan^2(\sqrt{2}x)}{3\sin(x^2)}$.
- **A4.** Calcolare $\int 2(x+1)\ln(x) dx$.
- **A5.** Stabilire se la serie $\sum_{n=5}^{+\infty} (-1)^n (1-e^{1/n})$ converge semplicemente e assolutamente.

Studiare il comportamento della serie $\sum_{n=2}^{+\infty} \frac{n!}{2n(n+m)!}$ in funzione del parametro $m \in \mathbb{N}$.

- **A6.** Sia $f: \mathbb{R} \setminus \{-2, 1\} \to \mathbb{R}$ la funzione $f(x) = \left| \frac{x+1}{(x-1)(x+2)} \right|$. Tracciare un grafico qualitativo di f, calcolare gli eventuali punti di massimo e minimo (locali e globali). Stabilire se la funzione iniettiva e suriettiva, calcolare l'immagine di f.
- **A7.** Sia $a_n = \tanh(n)$ e sia a_{n_j} la sottosuccessione per $n_j = 3j + (-1)^j$ con $j \ge 1$. Sia $s_k = \sum_{j=1}^k a_{n_j}$.

Calcolare $\lim_{j\to+\infty} a_{n_j}$ e $\lim_{k\to+\infty} s_k$. Studiare il comportamento della serie $\sum_{k=1}^{+\infty} \frac{(-1)^k}{s_k}$.

B1. Sia $f:[-1,1]\to\mathbb{R}$ una funzione integrabile e pari. Allora $\int_{-1}^{1}f(x)+f(-x)\,dx=$

 $\boxed{A} \int_0^1 f(x) dx. \qquad \boxed{B} \quad 2 \int_0^1 f(x) dx. \qquad \boxed{C} \quad 4 \int_0^1 f(x) dx. \qquad \boxed{D} \quad 3 \int_0^1 f(x) dx.$

B2. Sia $f:[1,+\infty)\to\mathbb{R}$ la funzione $f(x)=\log_{1/3}(x^4)+ax+1$. Stabilire per quale scelta del parametro a la funzione è crescente:

 $oxed{A}$ 1/ln 3. $oxed{B}$ 2/ln 3. $oxed{C}$ 3/ln 3. $oxed{D}$ 4/ln 3.

B3. Siano $\{x_n\}$ una successione e $x \in \mathbb{R}$. Se $\sum_{n=0}^{+\infty} (x_n - x)$ converge allora

 $\boxed{A} x_n \to x^+. \qquad \boxed{B} x_n \to x. \qquad \boxed{C} x_n \to x^-. \qquad \boxed{D} x_n \not\to x.$

B4. Fornire un esempio di funzione $f: \mathbb{R} \to (0,1)$ strettamente decrescente e biunivoca.

B5. Sia $f:[0,+\infty)\to [0,+\infty)$ continua. Siano $g(t)=e^{-t}\int_0^t f(s)\,ds$ e $h(t)=e^{-t}f(t)$ per $t\in[0,+\infty)$. Dimostrare che

- $\bullet \ h(t) = g'(t) + g(t)$
- $g(t) \le \int_0^t h(s) \, ds$.
- **B6.** Fornire una definizione di $\lim_{x\to x_0} f(x) = L^+$.
- B7. Fornire l'enunciato e la dimostrazione della condizione necessaria di convergenza delle serie.

Soluzioni dello scritto del 15/07/24

A1.
$$y = (2/\ln 2)(x-1) + 1$$

A2.
$$+\infty$$

A3.
$$2/3$$

A4.
$$\boxed{(x^2+2x)\ln x - (\frac{1}{2}x^2+2x) + C} \text{ per parti}$$

A5. Converge semplicemente Converge per Leibniz. Mentre $|1 - e^{1/n}| \sim 1/n$ dall'espansione di Taylor e quindi la serie dei moduli diverge per cfr. asintotico con la serie armonica.

diverge per
$$m=0$$
 e converge per $m\geq 1$

Per m=0 la serie è armonica.

Per m > 0 si ha $\frac{n!}{n(n+m)!} \sim 1/n^{1+m}$ la cui serie (armonica) converge.

- **A6.** Tracciando il grafico di $g(x) = \frac{(x+1)}{(x-1)(x+2)}$ si vede che l'immagine è $[0,+\infty)$ con pto di min in $x_0 = -1$.
- **A7.** Si ha $n_j \to +\infty$ e $a_n \to 1$, quindi $a_{n_j} \to 1$, la cui serie diverge a $+\infty$. Si ha s_k è monotona crescente e positiva. Quindi la serie $\sum (-1)^k/s_k$ converge per Leibniz.

B1.
$$\boxed{4\int}$$
 per simmetria

- **B2.** $\boxed{4/\ln 3}$ imponendo che la derivata prima sia positiva
- **B3.** $x_n x \to 0$ per condizione necessaria di convergenza della serie

B4. Ad es
$$f(x) = \frac{1}{2}(1 + \tanh(x))$$

B5. Dal teorema fondamentale per la funzione integrale si ha $g'(t) = -e^{-t} \int_0^t f(s) \, ds + e^{-t} f(t) \, ds$ cui g'(t) + g(t) = h(t). Inoltre

$$g(t) = e^{-t} \int_0^t f(s) \, ds = \int_0^t e^{-t} f(s) \, ds \le \int_0^t e^{-s} f(s) \, ds = \int_0^t h(s) \, ds$$