|--|

_

Laurea: \Box Matematica \Box Fisica

- **A1.** Determinare i parametri α e β in modo tale che la funzione $f(x) = \begin{cases} \log_2(1+2x) + 1 & x \geq 0 \\ \beta x + \alpha & x < 0 \end{cases}$ sia di classes C^1 in \mathbb{R} .
- **A2.** Calcolare $\lim_{n \to +\infty} \frac{(-1)^n}{n! n^2} + \frac{2^n n^{1/3}}{\tanh(n+1) + \ln(n+1)}$.
- **A3.** Calcolare $\lim_{x\to 0^+} \frac{\sin(3x^2) 3x^2\cos(2x)}{x^4 x^6}$
- **A4.** Calcolare $\int_0^4 \frac{x}{e^x} dx$.
- **A5.** Si consideri la successione $b_n = \frac{\cosh(n)}{e^n}$. Studiare il comportamento della serie $\sum_{n=0}^{+\infty} (b_n)^n$.

Studiare il comportamento della serie $\sum_{n=9}^{+\infty} \frac{3\,n^{1.3}+3\,n^{\lambda}}{6\,n^{\lambda}-3\,n^{0.7}} \text{ in funzione del parametro } \lambda>0.$

- **A6.** Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione $f(x) = \left| \frac{x^2 + x 6}{x 1} \right|$. Tracciare un grafico qualitativo di f, indicando gli eventuali punti di massimo e minimo (locali e globali). Calcolare inoltre immagine, sup ed inf di f.
- **A7.** Si consideri la funzione $f:(1,+\infty)\to\mathbb{R}$ definita da $f(x)=\ln(\ln x)$. Verificare se la funzione f sia superiormente limitata, inferiormente limitata, iniettiva, suriettiva e Lipschitziana. Verificare infine che $f(x)=o(\ln x)$ per $x\to+\infty$.

B1. Sia $f: \mathbb{R} \to \mathbb{R}$ monotona e sia $x_0 \in \mathbb{R}$. Allora

$$\boxed{\mathbf{D}} \quad \lim_{x \to x_0^-} f(x) = f(x_0).$$

B2. Sia $g:[a,b]\to\mathbb{R}$ continua e sia $I(x)=\int_x^a g(t)\,dt$ per $x\in[a,b]$. Se I è crescente allora $\boxed{\mathbf{A}}$ $g\leq 0$. $\boxed{\mathbf{B}}$ g>0. $\boxed{\mathbf{C}}$ g<0. $\boxed{\mathbf{D}}$ $g\geq 0$.

B3. Siano $\{a_n\}$ e $\{b_n\}$ successioni di Cauchy e sia $\{\lambda_n\}$ una successione limitata. Allora la successione $c_n=\lambda_n a_n+b_n(\lambda_n-1)$ è

A monotona. B limitata. C convergente. D divergente.

B4. Fornire un esempio di successione $\{a_n\}$ tale che

•
$$\sum_{n=0}^{+\infty} a_n$$
 non converga

• esista una sottosuccessione $\{a_{n_k}\}$ tale che $\sum_{k=0}^{+\infty} a_{n_k}$ converga.

B5. Sia $g: \mathbb{R} \to \mathbb{R}$ crescente e sia $f: \mathbb{R} \to \mathbb{R}$ decrescente. Fornire la definizione di funzione monotona crescente e decrescente. Dimostrare che $g \circ f$ e $f \circ g$ sono decrescenti.

B6. Fornire una definizione di $\lim_{x \to -\infty} f(x) = -1$.

B7. Enunciare e dimostrare il Teorema della Media Integrale.

Soluzioni dello scritto del 27/06/23

A1.
$$\alpha = 1$$
 $\beta = 2/\ln 2$

- **A2.** $+\infty$ Il primo termine è asintotico a $\frac{(-1)^n}{n!}$ quindi è infinitesimo. Il secondo è asintotico a $\frac{2^n}{\ln(n)}$ quindi diverge.
- **A3.** $\boxed{6}$ Per le espansioni di cos e sin il numeratore è asintotico a $6x^4$. Il denominatore è asintotico a x^4 .
- **A4.** $1 5e^{-4}$. Si integra per parti una volta.
- **A5.** Converge. La successione b_n è asintotica a 1/2 quindi la serie (geometrica) converge per il criterio del confronto.

Diverge per ogni $\lambda > 0$ Se $\lambda < 1.3$ il numeratore è asintotico a $3n^{1.3}$. Se $\lambda = 1.3$ il numeratore è asintotico a $6n^{1.3}$. Se $\lambda > 1.3$ il numeratore è asintotico a $3n^{\lambda}$.

Se $\lambda < 0.7$ il denominatore è asintotico a $-3 n^{0.7}$. Se $\lambda = 0.7$ il denominatore è asintotico a $3 n^{0.7}$. Se $\lambda > 0.7$ il denominatore è asintotico a $6 n^{\lambda}$.

Combinando i casi, la successione (di cui si vuole calcolare la serie) diverge se $\lambda < 1.3$, converge a 1 se $\lambda = 1.3$ e converge a 1/2 se $\lambda > 1.3$.

- **A6.** Punti di min (angolosi) in -3 e in 2. L'immagine è $[0, +\infty)$.
- A7. La funzione è di classe C^1 con derivata $f'(x) = 1/x \ln(x)$. Calcolando i limiti agli estremi del dominio si vede che l'immagine è \mathbb{R} dunque la funzione è surietttiva. La derivata è strettamente positiva dunque la funzione è strettamente crescente e quindi iniettiva. La derivata non è limitata e quindi la funzione non è lipschitziana. Per verificare che $f(x) = o(\ln(x))$ si scrive $\ln(\ln(x))/\ln(x) = \ln(y)/y \to 0$ per $y \to +\infty$.
- **B1.** C
- **B2.** B usando il teorema fondamentale per la funzione integrale
- **B3.** A Le successioni di Cauchy sono convergenti e quindi limitate.
- **B4.** $a_n = 1/n$ se n è dispari e $a_n = 0$ se n è pari.
- **B5.** Se $x_1 < x_2$ si ha $y_1 = f(x_1) \ge f(x_2) = y_2$ quindi $g \circ f(x_1) = g(y_1) \ge g(y_2) = g \circ f(x_2)$. Allo stesso modo nell'altro caso.