Analisi Matematica I - $19/07/2021$ - Tempo a disposizione: $3h$		
Matricola	COGNOME e NOME _	
Laurea: Matematica	\square Fisica	Orale: □ 19/07
Note:		

A1. Siano
$$f(x) = \begin{cases} \frac{\sin(x^{5/3})}{x^{2/3}} & x < 0 \\ a + bx & x \ge 0 \end{cases}$$
 e $g(x) = \begin{cases} \frac{\sin(x^{5/3})}{x^{2/3}} & x < 0 \\ c + x^d & x \ge 0. \end{cases}$

Determinare i parametri $a, b, c, d \in \mathbb{R}$ in modo tale che f e g siano di classe C^1 .

A2. Calcolare $\lim_{n\to+\infty} \frac{n^2 \sin(n) + 2^n}{n^{-2} - \sin(n^{-1})}$.

A3. Calcolare il polinomio di Taylor di ordine 2 e centro $x_0 = 1$ per la funzione $f(x) = \ln(x^2 + 1)$.

A4. Calcolare $\int_0^1 e^{-x^2} x^3 dx$ (utilizzare la sostituzione $x^2 = t$).

A5. Studiare il comportamento delle serie $\sum_{n=5}^{+\infty} \frac{1}{\sin(n) + n^a} e \sum_{n=3}^{+\infty} (\ln b)^{n+2} \tanh(b)$ in funzione dei parametri $a,b \in (0,+\infty)$.

A6. Sia $f: \mathbb{R} \setminus \{\pi\} \to \mathbb{R}$ la funzione $f(x) = \arctan\left(\frac{x^2}{x-\pi}\right)$. Tracciare un grafico qualitativo di f indicando gli eventuali punti di massimo e minimo (locali e globali). Calcolare inoltre immagine, sup ed inf di f.

A7.* Dati $x \in (0, +\infty)$ e $b \in (0, +\infty)$ si consideri la successione

$$\begin{cases} a_0 = x \\ a_{n+1} = (a_n)^b. \end{cases}$$

Scrivere il termine a_n della successione in funzione di n (e dei parametri x e b). Calcolare $\lim_{n\to\infty}a_n$ in funzione di x e b.

B1. Sia $f: \mathbb{R} \to \mathbb{R}$ convessa, allora $f \ge$

A monotona. B derivabile. C continua. D invertibile.

B3. Sia $f:[a,b]\to\mathbb{R}$ limitata e integrabile con $\int_a^b f(x)\,dx=0$. Allora

B4. Fornire un esempio di successione b_n tale che $|b_n| \sim n^{-1/2}$ e $\sum_{n=1}^{+\infty} b_n$ converga.

B5. Dimostrare la seguente implicazione.

Sia $f: \mathbb{R} \to \mathbb{R}$ continua e tale che f(q) = f(0) per ogni $q \in \mathbb{Q}$, allora f è costante.

Stabilire se la seguente implicazione sia vera o falsa (fornendo una dimostrazione o un contro-esempio). Sia $f: \mathbb{R} \to \mathbb{R}$ tale che f(q) = f(0) per ogni $q \in \mathbb{Q}$, allora f è costante.

B6. Fornire una definizione di funzione continua.

B7. Enunciare e dimostrare il teorema di continuità delle funzioni derivabili.

Soluzioni dello scritto del 19/07/21

Parte A

A1. a = c = 0 e b = d = 1. In quanto $f(x) \sim g(x) \sim x$ per x < 0 usando $\sin(t) \sim t$ per $t \to 0$.

A2. $[-\infty]$ Numeratore $\sim 2^n$. Denominatore $\sim -n^{-1}$ perché $\sin(1/n) \sim 1/n$ mentre $n^{-3} - n^{-1} \sim n^{-1}$.

A3. $p_2(x) = p_1(x) = \ln(2) + (x-1).$

A4. $1/2 - e^{-1}$. Dopo la sistituzione si arriva a $\frac{1}{2} \int_0^1 e^{-t} t \, dt$ che si integra per parti.

A5. Converge per a > 1, diverge a $+\infty$ altrimenti. Successione $\sim 1/n^a$ (armonica).

Oscilla per $0 < b \le e^{-1}$, converge per $e^{-1} < b < e$, diverge a $+\infty$ per $b \ge e$. Serie si comporta come $\sum (\ln b)^n$ (geometrica).

A6. Max loc $x_0 = 0$. Min loc $x_1 = 2\pi$. Immagine $(-\pi/2, 0] \cup [\arctan(4\pi), \pi/2)$.

A7. $a_n = x^{(b^n)} = e^{b^n \ln x} = e^{c_n}$. Quindi possiamo studiare il lim di $c_n = b^n \ln x$. Da cui

• se $b \in (0,1)$ allora $b^n \to 0$, quindi $c_n \to 0$ e $a_n \to 1$.

• se b = 1 allora $b^n = 1$, quindi $c_n = \ln x$ e $a_n = x$,

• se b > 1 allora $b^n \to +\infty$ e quindi $c_n \to \begin{cases} -\infty & x < 1 \\ 0 & x = 1 \\ +\infty & x > 1 \end{cases}$ e $a_n \to \begin{cases} 0^+ & x < 1 \\ 1 & x = 1 \\ +\infty & x > 1 \end{cases}$

Parte B (es. 1-5)

- **B1.** C
- **B2.** B
- **B3.** D

B4. $b_n = (-1)^n n^{-1/2}$, la serie converge per il criterio di Leibniz.

B5. Per ogni $x_0 \in \mathbb{R}$ si ha $f(x) = \lim_{x \to x_0} f(x) = \lim_{q \to x_0} f(q) = f(0)$ per $q \in \mathbb{Q}$. Falsa. La funzione di Dirichlet è un contro-esempio.