Metodi Matematici per l'Ingegneria - 24/01/2013

1-OT. Sia $f(\mathbf{x}) = 2 x_1^3 - 3 x_1^2 - 6 x_1 x_2 (x_1 - x_2 - 1)$.

- Trovare tutti i punti stazionari.
- Utilizzando il calcolo dell'Hessian classificare i punti stazionari.
- Si calcoli l'Hessiana e il gradiente per un punto del tipo $\mathbf{x} = (x_1, -x_1)$ e si definisca lo step di Newton δ_k^N relativo al punto $\mathbf{x}_k = (\frac{1}{8}, -\frac{1}{8})$.
- Si verifichi se la direzione dello step di Newton è una direzione di discesa.
- **2-OT.** Si consideri la funzione quadratica:

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} - c^T \mathbf{x}$$
, con \mathbf{H} simmetrica e $\mathbf{c} \in \mathbb{R}^n$.

Dati \mathbf{x}_k e una direzione \mathbf{s}_k con $\mathbf{s}_k^T \mathbf{H} \mathbf{s}_k > 0$ si scriva :

- l'update \mathbf{x}_{k+1} ottenuto con un passo ottimale
- la riduzione $f(\mathbf{x}_{k+1}) f(\mathbf{x}_k)$ in termini di gradiente, Hessiana e direzione \mathbf{s}_k .
- **3-OT.** Determinare i minimi e massimi della funzione 1D :

$$f(\mathbf{x}) = 2x^3 - 3x^2 - 6xa(x - a - 1)$$

con a=0.25, utilizzando la function $\mathbf{fminunc}$ applicando il metodo Quasi-Newton 'bfgs' . Si dichiari nelle $\mathbf{options}$ che :

- il tipo di problema non è LargeScale;
- si sceglie l'update bfgs ;
- si prende l'identità scalata come matrice iniziale approssimante l'Hessiana;
- si fornisce il gradiente
- si assegnano le seguenti tolleranze: TolFun:1.e-10; TolX: 1.d-10.

Riportare le prime due iterate la 5, 10, 15, 20, 25 e le ultime due iterate con i seguenti dati: iteration Func-count f(x) step-size First-Order condition

Si cerchi il massimo della stessa funzione considerando il programma per problemi 1D: quasi_newton.m che utilizza i file obj.m, dobj.f. Riportare le prime due iterate la 5, 10, 15, 20, 25 e le ultime due iterate con i seguenti dati:

$$it$$
 obj $dobj$ err - r x

Si confrontino i due metodi fminc e quasi_newton in termini di valutazioni a partire dallo stesso punto iniziale $x_0 = -40$. In base ai grafici ed ai fattori di convergenza quale velocità di convergenza si osserva?

- **1-TD.** Sia $f(t) = \sin(3t) + \cos(t)\sin(t)$. Siano c_n i coefficienti di Fourier di f. Riportare un grafico qualitativo di $|c_n|$, $Re(c_n)$ e $Im(c_n)$. Giustificare i risultati ottenuti.
- **2-TD.** Sia $f(t) = 3t^2 + 1$. Siano c_n i coefficienti di Fourier di f. Si considerino i polinomi trigonometrici (serie di Fourier troncata)

$$S_k(t) = \sum_{n=-k}^k c_n e^{int} .$$

Si tracci un grafico di S_k per k=10,20,40. Commentare gli andamenti.