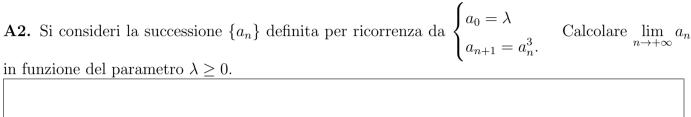
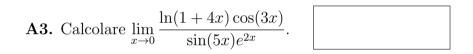
$x_0 = \pi/8$ per la funzione
)





A4. Calcolare
$$\int_0^{\ln 2} \frac{2}{e^x + 2} dx$$
 (usando la sostituzione $t = e^x$).

A5. Studiare il comportamento della serie
$$\sum_{n=3}^{+\infty} \sin^{\alpha} \left(\frac{\pi}{n^{\beta}+1} \right)$$
 in funzione dei parametri $\alpha > 0$ e $\beta > 0$.

Studiare il comportamento della serie
$$\sum_{n=\emptyset}^{+\infty} n(-1)^n - \frac{(-1)^n}{n}.$$

A6. Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione $f(x) = e^x - 3x$. Tracciare un grafico qualitativo di f, indicando gli eventuali punti di massimo e minimo (locali e globali). Stabilire se esiste x_* tale che $f(x_*) < 0$. Calcolare infine immagine, sup ed inf di f.

A7. Si consideri una successione $\{x_n\}$ tale che $nx_n \to 0^+$. Sia f una funzione di classe $C^1(-1,1)$. Calcolare $\lim_{n \to +\infty} n \int_0^{x_n} f(t) dt$ e $\lim_{n \to +\infty} n \int_0^{x_n} t f'(t) dt$.

B1. Sia $F:[0,+\infty)\to\mathbb{R}$ definita da $F(x)=\int_0^x f(t)\,dt$ dove f è continua e f>0. Allora

non esistono nè un punto di minimo nè un punto di massimo.

В esistono sia un punto di minimo che un punto di massimo.

С esiste un punto di minimo ma non esiste un punto di massimo.

D esiste un punto di massimo ma non esiste un punto di minimo.

B2. Sia $f: \mathbb{R} \to \mathbb{R}$ convessa e derivabile in $x_0 \in \mathbb{R}$. Allora

A
$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \ \forall x \in \mathbb{R}.$$
 B $f(x) < f(x_0) + f'(x_0)(x - x_0) \ \forall x \in \mathbb{R}.$

 $f(x) \ge f(x_0) + f'(x_0)(x - x_0) \ \forall x \in \mathbb{R}.$ B $f(x) < f(x_0) + f'(x_0)(x - x_0) \ \forall x \in \mathbb{R}.$ D $f(x) \le f(x_0) + f'(x_0)(x - x_0) \ \forall x \in \mathbb{R}.$ С

B3. Sia $\{a_n\}$ una successione infinitesima. Allora

$$\overline{A}$$
 $\forall n \in \mathbb{N} \text{ si ha } a_n < 1/n.$ \overline{B} $\forall n \in \mathbb{N} \text{ si ha } a_n < 1.$ \overline{C} $\exists n \in \mathbb{N} / a_n < 1/n.$

 $\exists n \in \mathbb{N} / a_n < 1.$

B4. Fornire un esempio di funzione $f:[a,b]\to\mathbb{R}$ integrabile, non-monotona e non-continua.

B5. Sia $f:(0,+\infty)\to[-2,2]$ suriettiva e derivabile. Dimostrare che esistono $x_1,x_2\in(0,+\infty)$ con $x_1 \neq x_2$ tali che $f'(x_1) = f'(x_2) = 0$. Dimostrare che esiste $x_3 \in (0, +\infty)$ tale che $f'(x_3) \neq 0$.

B6. Sia $f:(a,b)\to\mathbb{R}$ e sia $x_0\in(a,b)$. Fornire una definizione di continuità di f in x_0 .

B7. Sia $\{a_n\}$ una successione. Stabilire se le seguenti affermazioni siano vere o false (fornendo una dimostrazione o un contro-esempio).

- se $\sum_{n=0}^{+\infty} a_n$ converge allora $a_n \to 0$.
- se $a_n \to 0$ allora $\sum_{n=0}^{+\infty} a_n$ converge.

[A1]
$$\int_{-\infty}^{\infty} (x) = \frac{2 \cos(2x)}{\sin(2x)}$$
 $\int_{-\infty}^{\infty} (x) = \frac{-4}{\sin^2(2x)}$ $\int_{-\infty}^{\infty} (x_0) = 1 + \ln(52/2)$

$$f_{2}(x) = 1 + lu(\sqrt{2}/2) + 2(x - \frac{n}{8}) - 4(x - \frac{n}{8})^{2}$$

$$\frac{\ln(1+4x)\cos(3x)}{\sin(5x)e^{2x}} \sim \frac{4}{5}$$

$$\int_{0}^{42} \frac{2}{e^{x}+2} dx \qquad t=e^{x} dt = e^{x} dx \qquad \int_{1}^{2} \frac{2}{t+2} \frac{1}{t} dt = \int_{1}^{2} \frac{1}{t} - \frac{1}{t+2} dt$$

$$= \left[\ln t - \ln \left(t + 2 \right) \right]_{1}^{2} = \left[\ln \left(\frac{t}{t + 2} \right) \right]_{1}^{2} = \ln \frac{3}{2}$$

$$\widehat{A5.I} \quad Su(\xi) \sim \xi \quad pu \quad \xi \to 0 \qquad \xi = \frac{\widehat{v}}{n^{\beta}+1} \sim \frac{\widehat{u}}{n^{\beta}} \to 0$$

$$0 \le \operatorname{sun}\left(\frac{1}{n\beta+1}\right) \sim \frac{1}{n} \operatorname{ab}^{\lambda}$$
 vituio ch. $v = 1$ serie $\begin{cases} \operatorname{converge} & \operatorname{ab} > 1 \\ \operatorname{devage} \alpha + \infty & \operatorname{ab} \leq 1 \end{cases}$

$$\sum_{n=1}^{\infty} (-1)^n n = \lim_{n \to \infty} S_{n} = \sum_{n=1}^{\infty} (-1)^n n$$

$$\{a_n = (-1)^n \} = \{-1, 2, -3, 4, -5, \dots \}$$

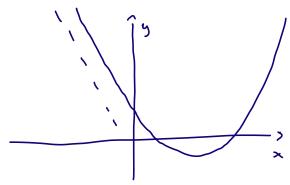
$$\{s_n\} = \{-1, 1, -2, 2, -3, \dots\} \text{ quindi lim } s_n \}$$

$$\widehat{A6} \quad f'(x) = e^{x} - 3$$

$$\int_{0}^{1}(x) \begin{cases} 0 & x \leq \ln 3 \\ 0 & x \leq \ln 3 \end{cases}$$

$$x_a = lu3$$
 pto di minimo (assolute)
 $\int (x_c) = 3 - 3 lu 3 < 0$

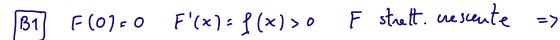
$$Imm = \left[3 - 3 \ln 3 + \infty\right] \quad \text{inf} = \min = 3 - 3 \ln 3 \quad \text{sup} = +\infty$$



$$(47) \quad x_n \rightarrow 0^+ \quad \text{in} \quad \begin{cases} x_n \\ f(t) dt = n \times n \end{cases} \int_0^{x_n} f(t) dt = n \times n f(x_n') \quad \text{per lear media integr.}$$

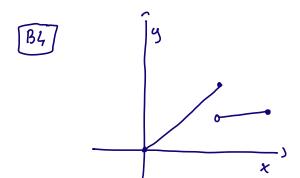
$$\begin{array}{ccc}
n \times_n f(x'_n) & -> 0 \\
\downarrow & \downarrow \\
0 & f(0)
\end{array}$$

$$\begin{array}{ccc}
n x_n & f(x_n) \\
\vdots & \vdots \\
o & f(o)
\end{array}$$



xo=0 pto dimin, & pto di max

[32]
$$f(x_c) + f'(x_c) (x - x_c) = y$$
 eq. netta tanjente
 $f(x) > f(x_c) + f'(x_c) (x - x_c)$ per convessita



B5
$$\times$$
, / $f(\times,) = -2$ pto di minimo

$$x_{1}/f(x_{2})=2$$
 pto di max

$$f'(x_{2})=0$$

$$f'(x_1) = 0$$

$$f'(x_2) = 0$$
Se $x_1 \in x_2$ per Ten Lagrange $\frac{3}{x_3} = \frac{2}{x_1} = \frac{2}{x_2} = \frac{2}$

analogamente per X, > X2