COGNOME ______ NOME _____

Laurea: \square Matematica \square Fisica

A1. Calcolare il polinomio di Taylor di ordine 2 e centro $x_0 = e$ per $f(x) = \cos(\pi \ln(x)) + 1$.

A2. Calcolare
$$\lim_{n \to +\infty} \frac{n^{1/2} + \cos(n^{1/3} + 1)}{(-1)^n + n^{1/3} + 3}$$

A3. Calcolare
$$\lim_{x \to +\infty} x \sin\left(\frac{3}{x}\right) + 2\cos\left(\frac{3}{x^2}\right)$$

A4. Calcolare
$$\int_0^1 \frac{1}{4x+1} + \frac{1}{3x^2+1} dx$$
.

A5. Studiare il comportamento della serie
$$\sum_{n=3}^{+\infty} \frac{1+4n^2}{n^5+\ln(5n)}.$$

Studiare il comportamento della serie $\sum_{n=5}^{+\infty} \frac{\lambda^n 5^{\lambda}}{2^n}$ in funzione del parametro $\lambda \in \mathbb{R}$.

A6. Sia
$$g: \mathbb{R} \to \mathbb{R}$$
 la funzione $g(x) = \begin{cases} \frac{\arctan(x-1)}{x-1} & x \neq 1 \\ 1 & x = 1. \end{cases}$

Tracciare un grafico qualitativo di g, indicando gli eventuali punti di massimo e minimo (locali e globali). Calcolare inoltre immagine, sup ed inf di g.

A7. Si consideri la successione
$$\{x_k\}_{k\in\mathbb{N}}$$
 definita da
$$\begin{cases} x_0 = 1\\ x_{k+1} = \frac{1}{3}(3^{x_k} - 1). \end{cases}$$

Dimostrare (per induzione) che la successione $\{x_k\}$ è positiva. Dimostrare (per induzione) che $\{x_k\}$ è decrescente. Dedurre che $\lim_{k\to+\infty} x_k = \ell$ e dimostrare che $\ell = 0$ (usando $\lim_{k\to+\infty} x_{k+1} = \lim_{k\to+\infty} x_k$).

- **B1.** Sia $f:(a,b)\to\mathbb{R}$ derivabile con f' positiva e crescente. Allora f è
- A crescente e convessa. B decrescente e convessa. C decrescente e concava.
- D crescente e concava.
- **B2.** Sia $\{a_n\}_{n\mathbb{N}}$ una successione tale che $0 < a_n \le a_{n+1}/(n+1)$. Allora la serie $\sum_{n=0}^{\infty} a_n$
- A converge. B diverge $a + \infty$. C diverge $a \infty$. D oscilla.
- **B3.** Sia $f:[a,b]\to\mathbb{R}$ continua. Allora
- $\boxed{\mathbf{A}} \ \exists y \in \mathbb{R} / f(x) \le y \ \forall x \in [a, b]. \quad \boxed{\mathbf{B}} \ \forall y \in \mathbb{R} \ \exists ! \ x \in [a, b] / f(x) \ge y.$
- $\underline{\mathbf{C}} \exists ! \ y \in \mathbb{R} / f(x) > y \ \forall x \in [a, b]. \quad \underline{\boxed{\mathbf{D}}} \ \forall y \in \mathbb{R} \ \exists x \in [a, b] / f(x) = y.$
- **B4.** Fornire un esempio di successione $\{a_k\}$ strettamente crescente e tale che $\sum_{k=0}^{+\infty} a_k$ converga.
- **B5.** Fornire un esempio di funzione $f:(0,1)\to\mathbb{R}$ limitata tale che non esista $\lim_{x\to 0^+}f(x)$. Dimostrare che $\lim_{x\to 0^+}x^{1/2}f(x)=0$.
- **B6.** Sia $\{a_n\}_{n\in\mathbb{N}}$ una successione limitata. Fornire una definizione di lim sup a_n .
- B7. Enunciare e dimostrare il Teorema di Fermat.

Soluzioni dello scritto del 20/02/23

A1.
$$p_2(x) = \frac{1}{2}(\pi/e)^2(x-e)^2$$

A2.
$$+\infty$$
 La funzione è asintotica a $x^{\frac{1}{2}-\frac{1}{3}}$ per $x \to +\infty$.

A3. 5 Si ha
$$\sin(1/x) \sim 1/x$$
 e $\cos(1/x) \sim 1$ per $x \to +\infty$.

A4.
$$\boxed{\frac{1}{4}\ln 5 + \frac{1}{\sqrt{3}}\arctan(\sqrt{3}).}$$

A5. Converge. La successione e è asintotica a
$$4/n^3$$
 la cui serie (armonica generalizzata) converge.

Converge per
$$|\lambda| < 5$$
, diverge per $\lambda \ge 5$ e oscilla per $\lambda \le -5$. Si riscrive la serie come $5^{\lambda} \sum_{n=5}^{+\infty} (\lambda/2)^2$. Si ha quindi una serie armonica

A6. Punto di max in
$$x_0 = 1$$
. L'immagine è $(0, 1]$.

Si consideri $g(z) = \arctan(z)/z$ per $z \neq 0$ (funzione pari). Si vede facilmente che $\lim_{z \to \pm \infty} g(z) = 0$ e che g(z) > 0. Si ha $\arctan(z) = z - \frac{1}{3}z^3 + o(z^4)$, quindi $g(z) \sim 1 - \frac{1}{3}z^2$ per $z \to 0$, di conseguenza z = 0 è un punto di max locale di $g \in g'(0) = 0$. Per $z \neq 0$ si ha $g'(z) = (z/(1+z^2) - \arctan(z))/z^2 = \phi(z)/z^2$. Si ha $\phi(0) = 0$ e $\phi'(z) < 0$ per z > 0. Quindi $\phi(z) < 0$ per z > 0, da cui g'(z) < 0 per z > 0.

A7. Si ha
$$x_0 = 1$$
. Dimostrare che $x_k > 0 \Rightarrow x_{k+1} > 0$: essendo $x_k > 0$ si ha $3^{x_k} > 1$ e quindi $x_{k+1} = 3(3^{x_k} - 1) > 0$.

Si ha $1 = x_0 \ge x_1 = 2/3$. Dimostrare che $x_k \ge x_{k+1} \Rightarrow x_{k+1} \ge x_{k+2}$: per monotonia della funzione esponenziale si ha $3^{x_k} \ge 3^{x_{k+1}}$ e quindi $(3^{x_k} - 1) \ge (3^{x_{k+1}} - 1)$, da cui $x_{k+1} \ge x_{k+2}$.

Si ha $\{x_k\}$ positiva e monotona, quindi $x_k \to \ell$ con $0 \le \ell < 1 = x_0$. Passando al limite la formula di ricorrenza $3x_{k+1} = 3^{x_k} - 1$ si ha $3\ell = 3^\ell - 1$, quindi ℓ è l'ascissa di uno dei punti di intersezione tra il grafico di $f(\ell) = 3\ell$ e quello di $g(\ell) = 3^\ell - 1$. Di certo g(0) = f(0) e dunque $\ell = 0$ è un punto di intersezione. (A questo punto può essere utile tracciare un grafico di $f(\ell)$. Essendo f'(0) > g'(0) si ha $f(\ell) > g(\ell)$ in un intorno destro di 0. Essendo $f(\ell) < g(\ell)$ per ℓ sufficientemente grande ci sarà un altro punto di intersezione $\ell^* > 0$ (non ci sono altri punti di intersezione essendo $g(\ell)$ strettamente convessa). Essendo f(1) > g(1) si ha $\ell^* > 1$.

B2.
$$\boxed{\mathrm{B}} a_n \to +\infty$$

B3. A Per continuità si ha
$$f([a,b]) = [A,B]$$
 ed y è un maggiorante.

B4.
$$a_k = -1/k^2$$

B5. Es:
$$f(x) = \sin(1/x)$$
. Si ha $|f(x)| \le c$ e quindi $-cx^{1/2} \le x^{1/2} f(x) \le cx^{1/2}$, si conclude per confronto (teorema dei Carabinieri).