Analisi Matematica I - $19/02/2021$ - Matricola COGNOME e Laurea: \Box Matematica \Box Fisica	
Note:	
A1-A4: scrivere solo la soluzione	A5-A7: scrivere la soluzione e lo svolgimento
A1. Sia $f(x) = \frac{1}{2}e^x + \ln(3x + 1)$. Calcolar	$e(f^{-1})'(\frac{1}{2}).$
A2. Calcolare $\lim_{x\to 0} \frac{3(\cos(x^{3/2}) - e^{-\frac{1}{2}x^3})}{\sin^2(x^3)}$.	
A3. Calcolare $\lim_{n \to +\infty} \frac{3 \operatorname{sen}(n) + 2 \operatorname{senh}(n)}{5 \operatorname{cos}(n) + 3 \operatorname{cosh}(n)}$	
A4. Calcolare $\int_0^1 3 e^{-x^2 + 2x} (x - 1) dx$.	
A5. Studiare il comportamento della serie	$\sum_{n=5}^{+\infty} \frac{n^{-\alpha} \cos(n^{-5})}{\ln(1+n^{-3})} \text{ in funzione del parametro reale } \alpha.$
Studiare il comportamento della serie $\sum_{n=8}^{+\infty}$	$\frac{\beta^n + 2^n}{5^n + 5^{-n}}$ in funzione del parametro reale $\beta > 0$.
	$=\ln(e^x-\frac{2}{3}e^{2x})$. Calcolare i limiti agli estremi del dominio e gli cificando se locali o globali). Tracciare un grafico qualitativo di

 $\mathbf{A7.}^{\star}$ Sia $f:[0,+\infty)\to\mathbb{R}$ la funzione $f(x)=\mathrm{senh}(\arctan(x-3))$. Studiare il segno e la monotonia di f,

calcolare $\lim_{x\to +\infty} f(x)$. Si consideri la funzione integrale $F(x)=\int_0^x f(t)\,dt$ per $x\in [0,+\infty)$. Calcolare le soluzioni dell'equazione

F(x) = 0. Calcolare $\lim_{x \to +\infty} F(x)$.

B1. Sia $f:(a,b)\to\mathbb{R}$ derivabile in $x_0\in(a,b)$. Allora $\lim_{h\to 0^+}\frac{f(x_0+h)-f(x_0)}{h^{1/2}}$

 $\boxed{\mathbf{A}} = f'(x_0). \quad \boxed{\mathbf{B}} = \frac{1}{2}f'(x_0). \quad \boxed{\mathbf{C}} \quad \text{non esiste.} \quad \boxed{\mathbf{D}} = 0.$

B2. Sia $\{a_n\}$ per $n \in \mathbb{N}$ una successione a termini positivi. Se la $\sum_{n=0}^{+\infty} a_n$ converge allora

A la $\sum_{n=1}^{+\infty} a_n^{-3}$ converge.

B la $\sum_{n=1}^{+\infty} a_n^3$ diverge.

C la $\sum_{n=1}^{+\infty} a_n^{-1}$ diverge.

D la $\sum_{n=1}^{+\infty} a_n^{1/3}$ converge.

B3. Sia $\{a_n\}$ per $n \in \mathbb{N}$ una successione. Associare le seguenti proprietà alla risposta corrispondente.

1 la successione $\{a_n\}$ è superiormente limitata;

|2| la successione $\{a_n\}$ non è superiormente limitata.

 $\boxed{\mathbf{A}} \ \forall k \ \exists \ n \in \mathbb{N} \ / \ a_n > k. \quad \boxed{\mathbf{B}} \ \exists \ k \ / \ a_n < k \ \forall n \in \mathbb{N}. \quad \boxed{\mathbf{C}} \ \exists \ k \ / \ a_n > k \ \forall n \in \mathbb{N}. \quad \boxed{\mathbf{D}} \ \forall k \ \exists \ n \in \mathbb{N} \ / \ a_n < k.$

B4. Sia $f: \mathbb{R} \to \mathbb{R}$ e sia $\bar{x} \in \mathbb{R}$. Stabilire se la seguente affermazione sia vera o falsa, fornendo un contro-esempio o una dimostrazione: "se $\lim_{x \to \bar{x}} f(x)$ esiste finito allora f è continua in \bar{x} ".

B5. Fornire una dimostrazione delle seguenti implicazioni:

• $f:[a,b]\to\mathbb{R}$ lipschitziana $\Rightarrow f$ limitata;

• $f:[a,b]\to\mathbb{R}$ lipschitziana $\Rightarrow f^2$ lipschitziana;

• $f:(a,b)\to\mathbb{R}$ lipschitziana $\Rightarrow f$ limitata.

B6. Siano $\{a_n\}$ e $\{b_n\}$ due successioni. Fornire una definizione di $a_n \sim b_n$ e $a_n = o(b_n)$.

B7. Enunciare e dimostrare il Teorema della media integrale.

Soluzioni dello scritto del 19/02/21

Parte A

A1.
$$2/7$$
 Si ha $f(0) = 1/2$ e quindi $(f^{-1})'(1/2) = 1/f'(0)$.

A2. $\boxed{-1/4}$ Al denominatore si ha sen $^2(x^3)\sim x^6$. Al numeratore utilizzare l'espansione di e^z di ordine 2 con $z=-\frac{1}{2}x^3$ e l'espansione di $\cos(z)$ di ordine 4 con $z=x^{3/2}$ che forniscono errore $o(x^6)$ o superiore.

A3.
$$2/3$$
 La successione è asintotica a $2 \operatorname{senh}(n) / 3 \cosh(n) \sim 2e^n / 3e^n = 2/3$

A4.
$$\left[\frac{3}{2}(1-e)\right]$$
 Una primitiva è $F(x) = -\frac{3}{2}e^{-x^2+2x}$.

A5. La prima serie converge per
$$\alpha > 4$$
 e diverge a $+\infty$ per $\alpha \le 4$.

Successione a termini positivi asintotica a $1/n^{\alpha-3}$. Si conclude per cfr. asintotico con la serie armonica generalizzata.

La seconda serie converge per
$$\beta < 5$$
, altrimenti diverge a $+\infty$.

Successione a termini positivi. Denominatore: asintotico a 3^n . Numeratore: asintotico a 2^n se $0 < \beta < 2$, asintotico a 2^{n+1} se $\beta = 2$, asintotico a β^n se $\beta > 2$. Si conclude per cfr. asintotico con la serie geometrica.

- **A6.** Si ha $\lim_{x\to 0^-} f(x) = f(0) = \ln(1/3)$ per continuità mentre $\lim_{x\to -\infty} f(x) = -\infty$. Dal segno di $f'(x) = (e^x \frac{4}{3}e^{2x})/(e^x \frac{2}{3}e^{2x})$ si deduce che $x = \ln(3/4)$ è un punto di massimo assoluto, mentre x = 0 è un punto di minimo relativo, perché f non è inferiormente limitata.
- **A7.** Si ha f > 0 per x > 3, f(3) = 0 e f < 0 per $0 \le x < 3$. Inolte $f(x) \to \operatorname{senh}(\pi/2)$ per $x \to +\infty$. La funzione f è monotona crescente in quanto composizione di funzioni monotone crescenti. La funzione f è inoltre "simmetrica" rispetto a x = 3 in quanto traslazione della funzione dispari $\operatorname{senh}(\arctan(x))$.

La funzione integrale è di classe C^1 (perché f è continua) e F'=f. Quindi F è strettamente decrescente in (0,3) e strettamente crescente in $(3,+\infty)$. Sappiamo che F(0)=0 e per "simmetria" avremo F(6)=0. Per stretta monotonia non ci sono altre soluzioni.

Per x > 6 si ha $F(x) = \int_6^x f(x) dx \ge (x-6)f(6)$ per monotonia di f. Si ha f(6) > 0 e quindi $F(x) \to +\infty$ per $x \to +\infty$.

Parte B (es. 1-5)

B1.
$$\boxed{D} \frac{f(x_0+h)-f(x_0)}{h^{1/2}} = \frac{f(x_0+h)-f(x_0)}{h}h^{1/2} \to 0$$

B2.
$$\boxed{C}$$
 $a_n \to 0^+$ quindi $a_n^{-1} \to +\infty$.

B3. 1 - B per definizione di successione superiormente limitata,2 - A negando la definizione precedente

B4. [falso]
$$f(x) = \begin{cases} 3 & x \neq 0 \\ 5 & x = 0 \end{cases}$$
 non è continua in $\bar{x} = 0$

B5. Sia
$$|f(x_1) - f(x_0)| \le C_L |x_1 - x_0|$$
,

• f è continua in [a, b] e quindi limitata;

• sia $|f(x)| \leq C$ (per il punto precedente) allora

$$|f^{2}(x_{1}) - f^{2}(x_{0})| = |f(x_{1}) + f(x_{0})| |f(x_{1}) - f(x_{0})| \le 2CC_{L}|x_{1} - x_{0}| = C'_{L}|x_{1} - x_{0}|$$

• sia $x_0 \in (a, b)$ allora

$$|f(x)| \leq |f(x) - f(x_0)| + |f(x_0)| \leq C_L |x - x_0| + |f(x_0)| \leq C_L |b - a| + |f(x_0)| = C$$
oppure partendo da

$$|f(x_0) - C_L|x - x_0| \le f(x) \le f(x_0) + C_L|x - x_0|$$

e proseguendo come sopra.