Analisi Matematica I - 24/09/18 - Tempo a disposizione: 3h Matricola Cognome e Nome

A1. Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' + 4y' + 4y = 4 \\ y(0) = 0, \quad y'(0) = 0. \end{cases}$$

A2 .	* Stabilire	per qu	ıali valori	del	parametro	α	>	0 la	serie	$\sum_{n=3}^{+\infty} \frac{(-1)^n}{\ln(n^\alpha)}$	$+ \frac{(n+3)^{\alpha}}{(n+2)^7}$	converge

A3. Scrivere il polinomio di Taylor di ordine 2 centrato in 0 di $f(x) = \sqrt{\cos(2x)}$.

A4. Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \arctan(1 + 2\sin x)$. Scrivere l'equazione della retta tangente al grafico di f nel punto di ascissa 0.

A5. Calcolare il seguente integrale $\int_0^3 [e^x x^2 + 1] dx$.

A6. * Sia $\alpha > 0$ un parametro reale. Determinare per quali valori di α converge l'integrale $\int_3^\infty \arctan\left(\frac{3}{x^\alpha}\right) \sin\left(\frac{1}{1+x^{1/3}}\right).$

A7. Risolvere in \mathbb{C} l'equazione $z^3 = 3$ (scrivere le soluzioni in forma esponenziale).

A8* Calcolare $\lim_{n \to +\infty} \frac{(-1)^n n^2 + [(n+1)!] 2^n}{[n!] 3^n - n^3}$.

A9* Calcolare $\lim_{x \to +\infty} \frac{1 + \ln\left(1 + \frac{2}{x^3}\right) - e^{\frac{2}{x^3}}}{\frac{3}{x^6}}$.

A10. Sia $F: \mathbb{R} \to \mathbb{R}$ definita da $F(x) = \int_0^x \left(\ln(1+4y^2) - \ln 2\right) dy$. Si determinino gli intervalli di monotonia di F. F è decrescente in

B1. Sia a_n una successione di numeri reali. Allora la serie $\sum_{n=1}^{\infty} \frac{\sin(a_n)}{n^2}$ A converge a 0. B converge per il criterio di Leibnitz. C può convergere o non convergere a seconda della scelta di a_n . D converge per il criterio di convergenza assoluta e del confronto.

B2.* Sia $f: [-1,1] \to \mathbb{R}$ una funzione continua in [-1,1] e derivabile in (-1,1) tale che f(-1) = f(0) = f(1). Allora A esiste un unico $x_1 \in (-1,1)$ tale che $f'(x_1) = 0$. B esistono $x_1, x_2 \in (-1,1), x_1 \neq x_2$ tali che $f'(x_1) = f'(x_2) = 0$. C $f'(x) \neq 0$ per ogni $x \in (-1,1)$. D f'(x) = 0 per ogni $x \in (-1,1)$.

B3* Si considerino le soluzioni dell'equazione differenziale $u'(x) = \lambda u(x)$ per $x \in [0, +\infty)$. A Se $\lambda > 0$ e u(0) > 0 allora u è crescente. B Se $\lambda < 0$ e u(0) < 0 allora u è convessa. C Se $\lambda < 0$ e u(0) > 0 allora u è crescente. D Se $\lambda > 0$ e u(0) < 0 allora u è convessa.

B4.* Sia $a_n > 0$ tale che $\lim_{n \to \infty} a_n = L$ finito. Allora $\boxed{\mathbf{A}} \ L \ge 0$. $\boxed{\mathbf{B}} \ \forall \, \epsilon > 0 \ \exists N > 0$ tale che $\forall \, n > N$ risulta $a_n < L - \epsilon$. $\boxed{\mathbf{C}} \ \lim_{n \to \infty} \sin(na_n)$ non esiste. $\boxed{\mathbf{D}} \ L > 0$.

B6. Sia $f:[a,b]\to\mathbb{R}$ continua e sia $I:[a,b]\to\mathbb{R}$ la funzione integrale $I(x)=\int_a^x f(t)\,dt$. Se F è una primitiva di f in (a,b) allora A esiste $c\in\mathbb{R}$ tale che I=cF in (a,b). B esiste $c\in\mathbb{R}$ tale che I=F+c in (a,b). C per ogni $c\in\mathbb{R}$ si ha I=F+c in (a,b). D I=F in (a,b).

B7. Sia $H = \frac{\arctan\sqrt{3}}{\pi} + 2\log_8 2 + \frac{2}{3}\sin\frac{\pi}{6}$. Allora $\boxed{A} H = \frac{7}{6}$. $\boxed{B} H = 1 + \frac{\sqrt{3}}{3}$. $\boxed{C} H = \frac{4}{3}$. $\boxed{D} H = 1$.

B8.* Sia $f:(a,b)\to\mathbb{R}$ limitata. Allora A esiste c<0 tale che $f(x)\leq c$ per ogni $x\in(a,b)$. B esiste $x_0\in(a,b)$ tale che $f(x)\leq f(x_0)$ per ogni $x\in(a,b)$. C esiste c>0 tale che $f(x)\leq c$ per ogni $x\in(a,b)$. D esiste $x_0\in(a,b)$ tale che $f(x)\geq f(x_0)$ per ogni $x\in(a,b)$.

B9. Sia $f:(-1,1)\to\mathbb{R}$ una funzione continua tale che $\lim_{x\to -1} f(x)=+\infty$ e $\lim_{x\to 1} f(x)=-\infty$. Allora A esiste un $x_0\in (-1,1)$ tale che $f(x_0)=0$. B $f(x)\neq 0$ per ogni $x\in (-1,1)$. C f è decrescente in (-1,1). D esiste un $x_0\in (-1,1)$ tale che $f(x_0)\leq f(x)$ per ogni $x\in (-1,1)$.

B10. Siano $f(x) = x^2 + \ln(x)$ e $g(x) = e^x$. Allora $g \circ f(x) = A x e^{x^2}$. B $x \ln(x)$. C $x e^x$. D $x + e^{2x}$.

Soluzioni della prova del 24/09/18

Parte A

- **A1.** Le soluzioni sono della forma $y(x)=y_0(x)+\bar{y}(x)$. Dal polinomio caratteristico si otteniene la soluzione generale dell'omogenea, $y_0(x)=c_1e^{-2x}+c_2xe^{-2x}$. Una soluzione particolare si trovare facilmente $\bar{y}(x)=1$. Sostituendo i dati iniziali si ottiene $y(x)=-e^{-2x}-2xe^{-2x}+1$.
- **A2.** La prima serie converge per ogni $\alpha > 0$ per il criterio di Leibniz. Per la seconda si ha $\frac{(n+3)^{\alpha}}{(n+2)^7} \approx n^{\alpha-7}$. Dunque la serie converge per $\alpha < 6$.
- **A3.** Dalla formula generale, oppure usando a catena le espansioni di cos(t) e $(1+x)^{1/2}$, si ottiene $p(x) = 1 x^2$.
- **A4.** $y = x + \frac{\pi}{4}$
- **A5.** Integrando due volte per parti il termine $e^x x^2$ si ottiene $5e^3 + 1$.
- **A6.** Per $x \to +\infty$ la funzione integranda è asinototica a $\frac{3}{x^{\alpha}} \frac{1}{x^{1/3}}$. quindi l'integrale converge per $\alpha > 2/3$.
- **A7.** Le soluzioni sono $z_k = \rho e^{i\theta_k}$ con $\rho = \sqrt[3]{3}$ e $\theta_k = \frac{2k\pi}{3}$ per k = 0, 1, 2.
- **A8.** La successione àsintotica a $\frac{[(n+1)!] 2^n}{[n!] 3^n} = (n+1)(\frac{2}{3})^2$ quindi è infinetesima.
- **A9.** Usando le espansioni al secondo ordine (o due volte l'Hopital) si ottiene $-\frac{4}{3}$.
- **A10.** Dal Teorema fondamentale si ha $F'(x) = \ln(1+4x^2) \ln 2$. Quindi $F'(x) \ge 0$ in $(-\infty, -\frac{1}{2}]$ e in $[\frac{1}{2}, +\infty)$ mentre $F'(x) \le 0$ in $[-\frac{1}{2}, \frac{1}{2}]$.

Parte B

- **B1.** D
- **B2.** B Dal Teorema di Lagrange
- **B3.** $\boxed{\mathbf{A}} u(x) = u(0)e^{\lambda x}$
- ${\bf B4.}$ \fbox{A} Dal Teorema di permanenza del segno
- **B5.** D Perchè $f''(x) \ge 0$.
- **B6.** B Dal Teorema Fondamentale del Calcolo
- **B7.** C
- **B8.** C Per definizione di funzione limitata
- **B9.** A Per il Teorema degli zeri.
- **B10.** A