Metodi Matematici per l'Ingegneria - 18/01/2012

- **1-OT.** Si indichi la velocità di convergenza della successione $x_k \to x^*$ generata dai seguenti tre metodi di minimizzazione:
 - metodo del gradiente,
 - metodo quasi-newton con update bfgs,
 - metodo della trust-region.
- **2-OT.** Si consideri la funzione $f(\mathbf{x}) = b (x_1 a x_2)^2 + x_1^4$, con $a, b \in \mathbb{R} \setminus \{0\}$.
 - 1. Trovare i punti stazionari,
 - 2. enunciare (in generale) la condizione sufficiente del secondo ordine per i minimi,
 - 3. verificare se i punti stazionari soddisfano la condizione sufficiente,
 - 4. determinare se i punti stazionari risultano minimi,
 - 5. determinare il passo di Newton δ_k per $\mathbf{x}_k = (x_{k,1}, x_{k,1}/a)^T$,
 - 6. verificare che δ_k risulta una direzione di discesa,
 - 7. calcolare $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_{ott} \delta_k$ e $f(\mathbf{x}_{k+1})$; commentare il risultato.
- **3-OT.** Si consideri la funzione: $f(x_1, x_2) = x_1^2 x_1 x_2 + 2x_2^2 2 x_1 + e^{x_1 + x_2}$. Si utilizzi la function **fminunc** per trovare i minimi della funzione $f(x_1, x_2)$. Si applichi il metodo Quasi-Newton *bfgs* con punto di partenza $\mathbf{x}_0 = (-6, 3)^T$. Si assegni nelle **options** che :
 - il tipo di problema non è LargeScale;
 - si sceglie l'update bfqs
 - la direzione iniziale sia determinata prendendo come matrice iniziale approssimante l'Hessiana, la matrice di identità scalata;
 - si fornisce il gradiente
 - si assegnano le seguenti tolleranze: TolFun:1.e-12; TolX: 1.d-12;

Allegare il listato della prova riportando le iterate con i seguenti dati:

iteration Func-count f(x) step-size firsto-order condition

Sia nit è il numero totale di iterate; si costruisca il vettore ob(1:nit) ottenuto copiando il valore della funzione obiettivo nelle varie iterate da cui si è sottratto il valor fmin ottenuto nel minimo calcolato. Si eseguano le seguente istruzioni e si commenti il risultato:

- for i=1:nit
- it(i)=i;
- rf(i) = ob(i+1,1)/ob(i,1);
- \bullet end
- figure(1)
- $plot(it, log10(abs(ob(1:nit,1))), '-r^*')$
- rf'

1-TD. Sia $f(t) = t \cos(3t)$. Per $N = 2^{10}$ determinare i coefficienti della serie di Fourier $c_{-2}, c_{-1}, c_0, c_1, c_2$. Determinare il massimo di $|c_n|$. Calcolare, in funzione dei c_n , il seguente integrale:

$$\int_0^{2\pi} f(t) dt.$$

2-TD. Sia $f(t) = \sin^2(2.5t)$. Tracciare un grafico di modulo, parte reale ed immaginaria dei c_n ; commentarne l'andamento. Tracciare un grafico dei polinomi trigonometrici

$$S_k = \sum_{n=-k}^k c_n e^{int}$$

per k=1,3,5,7. Commentarne il comportamento al crescere di k.