Analisi Matematica 1 - 18/06/14

Cognome e Nome - Firma

- **A1.** Calcolare $\int_0^1 2e^x \left(x + \frac{1}{2}\right) dx.$
- **A2.** I. Stabilire per quali $\alpha \in \mathbb{R}$ converge l'integrale $\int_{1}^{+\infty} \frac{4x + \cos(4x^4)}{x^{\alpha} + e^{-x}}$.
- II. Stabilire per quali $\alpha \in \mathbb{R}$ converge la serie

$$\sum_{n=1}^{+\infty} \frac{\arctan(n)}{n^4(e^{-n} + n^{\alpha})}.$$

- **A3.** Si consideri il polinomio di McLaurin $P_4(x)$ di ordine 4 della funzione $f(x) = x + \sin(3x^3) 3x^2$. Calcolare $P_4(1)$.
- **A4.** Sia $z = \rho e^{i\theta} = \rho(\cos \theta + i\sin \theta)$ con $\rho = 2$ e $\theta = \pi/3$. Calcolare $w = z^2/\bar{z}$.
- **A5.**[⋆] Risolvere il problema di Cauchy

$$\begin{cases} u''(t) - 4u(t) = 2 - 4t^2 & \text{in } (0, +\infty) \\ u(0) = 10 & \\ u'(0) = 0 & \end{cases}$$

- **A6.** Calcolare il seguente limite $\lim_{n\to+\infty}\frac{\cos(n)}{6n}+\frac{1-\cos(1/n)}{6/n}+\frac{\sin(n)}{-4n}+\frac{\sin(1/n)}{7/n}$
- A7. Sia $F(x) = \int_0^x \arctan(t^7) dt$. Stabilire il massimo intervallo di \mathbb{R} in cui F è crescente e quello in cui F è convessa.
- **A8.** Sia $f(x) = \ln(g(x))$, dove $g(x) = (6 + x^2)$. Trovare, se esistono, e classificarli eventuali punti stazionari di f.
- **A9.** Calcolare il limite $\lim_{x\to 0^+} \frac{x\ln(3x) + 7xe^{3x+1}}{7x^2 + 2x}$
- A10. Si scriva l'integrale generale dell'equazione

$$xu'(x) + x^2u(x) - 8x^2 = 0 \text{ per } x > 0.$$

B1.* Sia $f:(a,+\infty)\to\mathbb{R}$ continua e tale che $\lim_{x\to a^+} f(x)=\lim_{x\to +\infty} f(x)=0$. Allora $\boxed{\mathbf{A}}$ f è limitata $\boxed{\mathbf{B}}$ esiste $x_0\in(a,+\infty)$ tale che $f(x_0)=0$ $\boxed{\mathbf{C}}$ esiste un punto di minimo globale per f $\boxed{\mathbf{D}}$ $f\geq 0$ in $(a,+\infty)$.

- **B2.** Sia $g:[0,1] \to \mathbb{R}$ continua con g(0) = -1 e g(1) = 1. Allora $\boxed{\mathbf{A}}$ esiste $x_0 \in [0,1]$ tale che $g'(x_0) = 2$ $\boxed{\mathbf{B}}$ esiste $x_0 \in [0,1]$ tale che $g(x_0) = 0$ $\boxed{\mathbf{C}}$ esiste un unico $x_0 \in [0,1]$ tale che $g'(x_0) = 2$ $\boxed{\mathbf{D}}$ esiste un unico $x_0 \in [0,1]$ tale che $g(x_0) = 0$.
- **B3.** Sia $f : \mathbb{R} \to \mathbb{R}$ con f'' = 0. Se f(-1) = 0 e f(1) = 5 allora A f(-2) < 0 B f(2) < 0 $C f(2) \le 0$ $D f(-2) \ge 0$.
- **B4.** Sia $f:[a,b]\to\mathbb{R}$ monotona decrescente. Allora $\boxed{\mathbf{A}}$ $f(a)\geq f(b)$ $\boxed{\mathbf{B}}$ $\int_a^b f(x)\,dx\geq 0$ $\boxed{\mathbf{C}}$ f' è continua in [a,b] $\boxed{\mathbf{D}}$ f è derivabile in (a,b) con $f'\leq 0$.
- **B5.** Sia $u:(a,b)\to\mathbb{R}$ e siano F,G due primitive di u. Allora $\boxed{\mathbf{A}}$ $\int_a^b F(x)dx=\int_a^b G(x)$ $\boxed{\mathbf{B}}$ $\exists c>0$ tale che F(x)=G(x)+c $\boxed{\mathbf{C}}$ $\exists c\in\mathbb{R}$ tale che F(x)-G(x)=c $\boxed{\mathbf{D}}$ $\forall c>0$ F(x)=G(x)+c
- **B6.** Sia u soluzione dell'equazione u'(x) = F(u(x)) in un intervallo $I \subseteq \mathbb{R}$, dove $F \in C^1(\mathbb{R})$ e F > 0. Allora A $u(x) = \int_0^x F(t)dt$ B u è monotona crescente in I C u(x) > 0 in I D u è convessa in I.
- **B7.** Sia $f \in C^0([a,b])$. Allora $\boxed{\mathbf{A}} \exists c \in [a,b] \text{ tale che } f'(c)(b-a) = f(b)-f(a) \boxed{\mathbf{B}} \exists c \in [a,b] \text{ tale che } f(c) = \int_a^b f(x) dx \boxed{\mathbf{C}} \exists c \in [a,b] \text{ tale che } f(c)(b-a) = \int_a^b f(x) dx \boxed{\mathbf{D}} f(b)-f(a) = \int_a^b f(x) dx.$
- **B8.** Siano $f(x) = 2\log(x)$, $g(x) = x^3$ ed $h: (0, +\infty) \to \mathbb{R}$ data da $h = f \circ g$. Allora $h(x) = \boxed{A \log(x^5)} \boxed{B} 5\log(x) \boxed{C} (2\log(x))^3 \boxed{D} 6\log(x)$.
- **B9.** Sia a_n una successione monotona crescente tale che $\sup_n a_n = 0$ e sia $f : \mathbb{R} \to \mathbb{R}$ continua tale che f(0) = 1. Allora A $\lim_{n \to +\infty} f(a_n) = 1$ B $\lim_{n \to +\infty} f(a_n) = 0$ C $f(a_n)$ diverge D $f(a_n)$ è monotona crescente .
- **B10*** Sia $p : \mathbb{R} \to \mathbb{R}$ definita da $p(x) = |x^3 x^2|$. Allora $x_0 = 1$ è A un punto angoloso B un punto di disontinuità C un punto di cuspide D un punto di flesso.

Soluzioni della prova del 18/06/2014

Parte A

- **A1.** e + 1
- **A2.** $\alpha > 2 \text{ o } \alpha > -3$
- **A3.** 1
- **A4.** -2
- **A5.** $5e^{2t} + 5e^{-2t} + t^2$
- **A6.** 1/7
- **A7.** $(0,+\infty) \in \mathbb{R}$
- **A8.** x = 0 minimo
- **A9.** $-\infty$
- **A10.** $ce^{-x^2/2} + 8$

Parte B

- **B1.** A
- **B2.** B
- **B3.** A
- **B4.** A
- **B5.** C
- **B6.** B
- **B7.** C
- **B8.** D
- **B9.** A
- **B10.** A