Analisi Matematica 1 - 24/02/2014

Nome e Cognome - Firma

A1. Sia
$$F(x) = \int_x^2 \frac{\arctan(5t)}{t^2} dt$$
. Calcolare $\lim_{x\to 0^+} F(x)$.

A2. (I) Calcolare u(0) dove u risolve il problema di Cauchy

$$\begin{cases} u'(t) = \frac{2t^2}{u^{1/2}(t)} & \text{in } (-2, +\infty) \\ u(-2) = 0. \end{cases}$$

(II) Stabilire per quali valori del parametro α la seguente serie converge

$$\sum_{n=1}^{+\infty} \frac{n^2 + \arctan(n)}{1 + n^{\alpha}}.$$

A3. Sia
$$f(x) = e^{2x} + x - 1$$
 e sia $g(x) = f^{-1}(x)$. Calcolare $g'(0)$.

A4.* Siano $f(x) = e^x - e^3$ e $g(x) = (f(x))^2$. Trovare i punti stazionari di g e classificarli.

A5. Calcolare
$$\lim_{n\to+\infty} n^{-1/2} \sin(n) - 4\arctan(1-n) + e^{-5n}$$
.

A6. Sia $f(x) = e^{2x^2}$. Stabilire se f è crescente o descrescente e concava o convessa in un intorno di $x_0 = -2$.

A7. Trovare l'integrale generale dell'equazione differenziale

$$u''(t) + 2u'(t) + 2 = 0.$$

A8. Calcolare
$$\lim_{x\to 1} \frac{2\ln x}{x-1} + \frac{\sin(\pi x)}{\cos(-2x)}$$
.

A9. Siano z_1, z_2, z_3 le radici complesse di $z^3 + z^2 + z = 0$. Calcolare $z_1 + z_2 + z_3$.

A10.* Calcolare
$$\int_0^2 x \ln(x/2) dx$$
.

B1.	Sia $f: \mathbb{R} \to \mathbb{R}$	$\mathbb R$ continua in $\mathbb R$ e deri	vabile in $(-\infty, x_0) \cup (x_0)$	$(x_0, +\infty)$. Se $f' > 0$ in un intorno
sinistro di x_0 e $f' < 0$ in un intorno destro di x_0 , allora possiamo dedurre che x_0 è un punto di				
$\boxed{\mathbf{A}}$ m	assimo locale	B minimo globale	C massimo globale	D minimo locale .

- **B2.** Sia y = mx + q l'equazione della retta tangente al grafico di f in x_0 . Allora il polinomio di Taylor di ordine uno rispetto al punto x_0 è A p(x) = qx m B p(x) = mx + q C p(x) = -mx + q D p(x) = qx + m.
- **B3.** Sia $f:[a,b] \to \mathbb{R}$ e derivabile e tale che $f'(x) = \frac{f(b) f(a)}{b-a}$ per ogni $x \in [a,b]$. Allora $\boxed{A} f' > 0 \quad \boxed{B} f'' < 0 \quad \boxed{C} f'' = 0 \quad \boxed{D} f'' > 0$.
- **B4.** Sia I un intervallo in \mathbb{R} e sia $f: I \to \mathbb{R}$ continua. Per applicare il teorema di Weierstrass è necessario che l'intervallo I sia del tipo $A (-\infty, b]$ B (a, b) $C [a, +\infty)$ D [a, b].
- **B5.*** Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x \sin(1/x)$ se $x \neq 0$ e f(x) = 0 se x = 0. Allora monotona in \mathbb{R} B f è discontinua in $x_0 = 0$ C f è dispari D f è continua in \mathbb{R} .
- **B6.** Sia $f: \mathbb{R} \to \mathbb{R}$ monotona crescente e sia $g: \mathbb{R} \to \mathbb{R}$ monotona decrescente. Allora $\boxed{\mathbf{A}} \ f \circ g$ è costante $\boxed{\mathbf{B}} \ f \circ g$ è monotona crescente $\boxed{\mathbf{C}} \ f \circ g$ è monotona decrescente $\boxed{\mathbf{D}} \ \text{se} \ x_0$ è un punto stazionario per g allora x_0 è un punto di minino relativo per f.
- **B7.** Sia $F(x) = \int_0^x e^{t^2} dt$. Allora Allora A Fè monotona decrescente in \mathbb{R} B Fè pari in \mathbb{R} C Fè monotona crescente in \mathbb{R} D Fè convessa in \mathbb{R} .
- **B8*** Siano f di classe $C^1(\mathbb{R})$ ed L > 0 tali che: per ogni $x_0 \in \mathbb{R}$ si ha $|f(x_0 + h) f(x_0)| \le L|h|$ per ogni $h \in \mathbb{R}$. Allora $A \cap f$ è monotona crescente $A \cap f$ è limitata $A \cap f$
- **B9.** Sia a_n un successione reale tale che $\lim_{n\to+\infty}a_n=\ell$ con $\ell\in\mathbb{R}$. Quale delle seguenti affermazioni è vera? A Se $\ell\geq 0$ allora $a_n<0$ definitivamente B Se $\ell\geq 0$ allora $a_n\geq 0$ definitivamente C Se $\ell\geq 0$ allora $a_n>0$ definitivamente .

Soluzioni della prova del 24/02/2014

Parte A

- A1. $+\infty$
- **A2.** 4 e $\alpha > 3$
- **A3.** 1/3
- **A4.** x = 3 minimo assoluto
- **A5.** 2π
- A6. decrescente e convessa
- **A7.** $c_1 + c_2 e^{-2t} t$
- **A8.** 2
- **A9.** −1
- **A10.** −1

Parte B

- **B1.** A
- **B2.** B
- **B3.** C
- **B4.** D
- **B5.** D
- **B6.** C
- **B7.** C
- **B8.** C
- **B9.** D
- **B10.** D