Prof. Matteo Negri
Università degli Studi di Pavia
Dipartimento di Matematica
Via Ferrata 1 - 27100 Pavia - Italy
Ufficio E21
email matteo {dot} negri [at] unipv {dot} it
email prof {dot} matteo {dot} negri [at] universitadipavia {dot} it
|
|
Corsi a.a. 2023/24
Ricevimento studenti: su appuntamento.
Research
- Field: Calculus of Variations.
- Subjects: Free Discontinuity Problems, Γ- convergence, BV and BD spaces, Rate-Independent Evolutions, Gradient Flows, Finite Element Methods.
- Applications: Fracture Mechanics, Finite and Linearized Elasticity, Image Segmentation.
Recent Publications
- M. Negri: A quasi-static model for craquelure patterns.
In Mathematical Modeling in Cultural Heritage. Springer INdAM Series 41 (2021) 147-164
[arXiv] [publication]
- M. Kimura, M. Negri: Weak solutions for unidirectional gradient flows: existence, uniqueness, and convergence of time discretization schemes.
NoDEA Nonlinear Differential Equations Appl. 28 (2021) #59
[arXiv]
[journal]
- A.Marengo, A.Patton, M.Negri, U.Perego, A.Reali: A rigorous and efficient explicit algorithm for irreversibility enforcement in phase-field finite element and isogeometric modeling of brittle crack propagation. Comput. Methods Appl. Mech. Engrg. 387 (2021) 114137
[journal]
- M. Negri, R. Scala: Existence, energy identity and higher time regularity of solutions to a dynamic visco-elastic cohesive interface model.
SIAM J. Math. Anal. 53 (2021) 5682-5730
[arXiv]
[journal]
- M. Negri: Homogenization of Griffith's Criterion for brittle Laminates.
[arXiv]
- B. Grossman-Ponemon, A. Lew, M. Negri: Analysis of a Method to Compute Mixed-Mode Stress Intensity Factors for Non-Planar Cracks in Three-Dimensions. ESAIM Math. Model. Numer. Anal.
Recent and forthcoming conferences
- Homogenization of Griffith's criterion for brittle laminates
Beyond Elasticity: Advances and Research Challenges (Luminy, 2022)
- Gradient flows for separately convex phase-field energies
PHAME 2022 (Rome, 2022)
- Effective toughness of brittle composite laminates
Oberseminar Angewandte Mathematik (Freiburg, 2022)
- Stress and crack patterns in paintings on canvas
MACH23 (Rome, 2023)
- Phase-field evolutions generated by staggered minimization schemes
Variational Models for Material Failure (Erlangen, 2003)
- Evolutionary Gamma-convergence and homogenization of brittle fracture>
Variational and Geometric Structures for Evolution (Levico Terme, 2023)
A couple of numerical result
Segmentation of a noisy image (a detail from "La dama
dell'ermellino" by L. Da Vinci) using Mumford-Shah functional.
Craquelure patterns in pottery (simulations of local qualitative features developed in FreeFem++)