Prof. Matteo Negri
Università degli Studi di Pavia
Dipartimento di Matematica
Via Ferrata 1 - 27100 Pavia - Italy
Ufficio E21
email matteo {dot} negri [at] unipv {dot} it
email prof {dot} matteo {dot} negri [at] universitadipavia {dot} it
|
|
Corsi a.a. 2022/23
Ricevimento studenti: su appuntamento.
Research
- Field: Calculus of Variations.
- Subjects: Free Discontinuity Problems, Γ- convergence, BV and BD spaces, Rate-Independent Evolutions, Gradient Flows, Finite Element Methods.
- Applications: Fracture Mechanics, Finite and Linearized Elasticity, Image Segmentation.
Data:
Google Scholar - ResearchGate
|
"Simplicity is not the goal. It is the by-product of a good idea and modest expectations." [P. Rand] |
Recent Publications
- M. Negri: A unilateral L2- gradient flow and its quasi-static limit in phase-field fracture by alternate minimization.
Adv. Calc. Var. 12(1) (2019) 1-29
[preprint] [journal]
- S. Almi, S. Belz, M. Negri: Convergence of discrete and continuous unilateral flows for Ambrosio-Tortorelli energies and application to mechanics.
ESAIM Math. Model. Numer. Anal. 53(2) (2019) 659-699
[preprint] [journal]
- M. Negri: Γ- convergence for high order phase field fracture: continuum and isogeometric formulation.
Comput. Methods Appl. Mech. Engrg. 362 (2020) 112858
[arXiv] [journal]
- M. Montardini, M. Negri, G. Sangalli, M. Tani: Space-time least-squares isogeometric method and efficient solver for parabolic problems.
Math. Comp. 89 (2020) 1193–1227
[arXiv] [journal]
- S. Almi, M. Negri: Analysis of staggered evolutions for nonlinear energies in phase field fracture.
Archive Rational Mech. Anal. 236 (2020) 189–252
[arXiv] [journal]
- M. Negri: A quasi-static model for craquelure patterns.
In Mathematical Modeling in Cultural Heritage. Springer INdAM Series 41 (2021) 147-164
[arXiv] [publication]
- M. Kimura, M. Negri: Weak solutions for unidirectional gradient flows: existence, uniqueness, and convergence of time discretization schemes.
NoDEA Nonlinear Differential Equations Appl. 28 (2021) #59
[arXiv]
[journal]
- A.Marengo, A.Patton, M.Negri, U.Perego, A.Reali: A rigorous and efficient explicit algorithm for irreversibility enforcement in phase-field finite element and isogeometric modeling of brittle crack propagation. Comput. Methods Appl. Mech. Engrg. 387 (2021) 114137
[journal]
- M. Negri, R. Scala: Existence, energy identity and higher time regularity of solutions to a dynamic visco-elastic cohesive interface model.
SIAM J. Math. Anal. 53 (2021) 5682-5730
[arXiv]
[journal]
- M. Negri: Homogenization of Griffith's Criterion for brittle Laminates.
[arXiv]
- B. Grossman-Ponemon, A. Lew, M. Negri: Analysis of a Method to Compute Mixed-Mode Stress Intensity Factors for Non-Planar Cracks in Three-Dimensions. ESAIM Math. Model. Numer. Anal.
Recent and forthcoming conferences
- Constraints and penalties for phase-field flows in ℝ2 and ℝN
Phase-Field Models of Fracture (BIRS, Banff, 2019)
- Quasi-static evolutions for layered brittle materials and applications to craquelure
Mathematical modeling and Analysis of degradation and restoration in Cultural Heritage (Rome, 2019)
- Convergence of evolutions generated by staggered minimization schemes
Recent advances in phase-field modeling: from engineering to biology (Pavia, 2019)
- Characterization of quasi-static evolutions generated by alternate minimization
SIMAI 2020+2021 (Parma, 2021)
- Homogenization of quasi-static crack propagation in brittle layered materials
Mathematical modeling and Analysis of degradation and restoration in Cultural Heritage (Rome, 2021)
- Effective toughness of brittle composite laminates
WPI Math Colloquium (online)
- Homogenization of Griffith's criterion for brittle laminates
Beyond Elasticity: Advances and Research Challenges (Luminy, 2022)
- Gradient flows for separately convex phase-field energies
PHAME 2022 (Rome, 2022)
- Effective toughness of brittle composite laminates
(Oberseminar Angewandte Mathematik, Freiburg, 2022)
- TBA
MACH23 (Rome, 2023)
A couple of numerical result
Segmentation of a noisy image (a detail from "La dama
dell'ermellino" by L. Da Vinci) using Mumford-Shah functional.
Craquelure patterns in pottery (simulations of local qualitative features developed in FreeFem++)