Regola di de l'Hôpital

Teorema di de l'Hôpital. Siano f, g due funzioni derivabili nell'intervallo aperto (a,b), escluso al più il punto x_0 , tali che

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

e $g'(x) \neq 0$ per x vicino a x_0 . Se esiste il limite $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, allora esiste anche il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Osservazione: il teorema continua a valere, con le dovute modifiche, anche per $x \to \pm \infty$ e per le forme indeterminate $\frac{\infty}{\infty}$.

Regola di de l'Hôpital – Esempi

1)
$$\lim_{x\to 0} \frac{e^x - 1}{\ln(x+1)} = \lim_{x\to 0} (x+1)e^x = 1$$

2)
$$\lim_{x \to +\infty} \frac{\ln x}{x^5} = \lim_{x \to +\infty} \frac{1}{5x^5} = 0$$

3)
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

Osservazione: la regola di de l'Hôpital non sempre è risolutiva. Ad esempio:

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \dots$$

In questo caso basta osservare che

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = 1.$$

Esercizi

Esercizio 1. Date le funzioni $f(x) = |x^2 - 3x + 2|$ e g(x) = 2x - 1,

- (a) dire quanto vale $f \circ g$ e qual è il suo insieme di definizione;
- (b) dire quanto vale $g \circ f$ e qual è il suo insieme di definizione;
- (c) disegnare un grafico qualitativo di f, di g, di $f \circ g$ e di $g \circ f$.

Esercizio 2. Calcolare la derivata della funzione $f(x) = \ln |x|$ per $x \neq 0$.