nome e cognome:

matricola

GALENO ()

IPPOCRATE ()

VECCHI ORDINAMENTI ()

Scrivere le risposte di ciascun quesito negli appositi spazi.

Esercizio 1. (Punti 6) Sono date le funzioni $f(x) = \sqrt{2x}$ e g(x) = -2x + 1.

• Dire quanto vale $f \circ g$ e qual è il suo insieme di definizione.

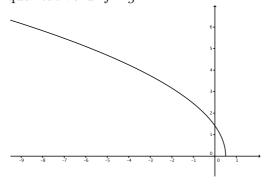
$$f \circ g)(x) = \sqrt{-4x + 2}$$

definita per: $x \leq \frac{1}{2}$

• Dire quanto vale $g \circ f$ e qual è il suo insieme di definizione.

$$(q \circ f)(x) = -2\sqrt{2x} + 1$$

definita per: $x \ge 0$


• Calcolare la derivata della funzione $f \circ g$ nel punto $x = -\frac{7}{2}$.

$$(f \circ g)'(-\frac{7}{2}) = -\frac{1}{2}$$

• Calcolare il coefficiente angolare m della retta tangente al grafico della funzione $f \circ g$ nel punto di ascissa $x = -\frac{7}{2}$.

$$m = -\frac{1}{2}$$

• Disegnare un grafico qualitativo di $f \circ g$.

Esercizio 2. (Punti 6) Nella seguente tabella sono riportati i pesi in grammi di 1000 bambini registrati alla nascita. Le classi sono di uguale ampiezza e si suppone che i dati siano uniformemente distribuiti all'interno di ogni classe.

peso p in grammi	f_i
$1750 \le p < 2250$	80
$2250 \le p < 2750$	120
$2750 \le p < 3250$	380
$3250 \le p < 3750$	250
$3750 \le p < 4250$	120
$4250 \le p < 4750$	50

Calcolare il peso medio in grammi. Calcolare la mediana in grammi usando l'ogiva di frequenza. Esprimere i risultati arrotondati al grammo.

peso medio = 3180

mediana = 3145

Esercizio 3. (Punti 3) Data la funzione $y = \sqrt{\frac{3}{x^3}}$ scegliere le coordinate logaritmiche (log-log o semi-log) in cui tale funzione viene rappresentata da una retta. Scrivere poi il coefficiente angolare di tale retta e l'ordinata del punto su tale retta che ha ascissa X=0.

coordinate: log-log

coefficiente angolare: $-\frac{3}{2}$

ordinata del punto: $\frac{1}{2}\log_{10} 3$

Esercizio 4. (Punti 8) È data la funzione $f(x) = |x^2 + 2x - 3|$.

• Determinare il campo di esistenza di f.

campo di esistenza: \mathbb{R}

 \bullet Stabilire se f è continua in ogni punto del suo campo di esistenza e scrivere l'ascissa degli eventuali punti in cui non è continua.

f non è continua in: alcun punto, perché f è continua in ogni punto

ullet Stabilire se f è derivabile in ogni punto del suo campo di esistenza e scrivere l'ascissa degli eventuali punti in cui non è derivabile.

f non è derivabile in: x = -3 e x = 1

• Stabilire se f ha massimi e minimi assoluti nel suo campo di esistenza e, in caso affermativo, scriverne l'ascissa.

ascisse degli eventuali massimi: non ci sono massimi

ascisse degli eventuali minimi: x = -3 e x = 1

• Determinare massimo e minimo assoluti di f nell'intervallo [-4, 4].

ascisse dei massimi: x = 4

ordinata dei massimi: y = 21

ascisse dei minimi: x = -3 e x = 1 ordinata dei minimi: y = 0

Esercizio 5. (Punti 5) Sono date due soluzioni S_1 e S_2 dello stesso soluto e dello stesso solvente, S_1 al 10% e S_2 di concentrazione incognita. Mescolando due parti di S_1 con tre parti di S_2 si ottiene una nuova soluzione S_3 concentrata al 13%. Quale è la concentrazione di S_2 ?

concentrazione = 15%

Per ottenere 10 Kg di S_3 quanti Kg di S_1 e quanti Kg di S_2 occorre mescolare?

$$Kg \ di \ S_1 = 4$$

$$Kg di S_2 = 6$$