nome e cognome:

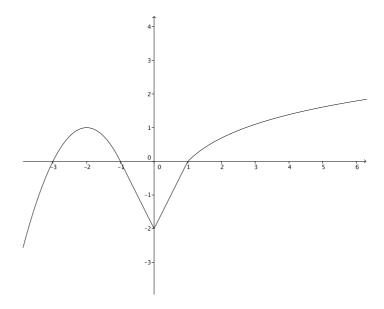
matricola

GALENO ()

IPPOCRATE ()

VECCHI ORDINAMENTI ()

Scrivere le risposte di ciascun quesito negli appositi spazi.


Esercizio 1. (Punti 8) È data la funzione

$$f(x) = \begin{cases} -x^2 - 4x - 3 & \text{per } x \le -1, \\ 2|x| + a & \text{per } -1 < x < 1, \\ \ln x & \text{per } x \ge 1. \end{cases}$$

• Determinare il valore del parametro $a \in \mathbb{R}$ in modo che la funzione f risulti continua nel punto x = -1.

$$a = -2$$

• Per tale valore di a, disegnare un grafico qualitativo di f. grafico:

• Sempre per il valore di a che rende continua la funzione, determinare ascissa e ordinata dei punti di massimo e minimo **assoluti** di f nell'intervallo [-3,1].

risposta: c'è un unico punto di massimo assoluto di ascissa x=-2 e ordinata y=1. C'è un unico punto di minimo assoluto di ascissa x=0 e ordinata y=-2.

Esercizio 2. (Punti 5) Sono date due soluzioni dello stesso soluto e dello stesso solvente: S_1 di concentrazione incognita x e S_2 concentrata al 20%. Mescolando il 40% di S_1 e il 60% di S_2 si ottiene una soluzione S_3 concentrata al 30%. Calcolare la concentrazione x.

$$x = 45\%$$

Per ottenere 2Kg di S_3 quanti Kg di S_1 e quanti Kg di S_2 occorre mescolare?

$$Kg di S_1: 0.8$$

Esercizio 3. (Punti 5) Data la funzione $y = 2\sqrt{(3x)^{-1}}$ determinare le coordinate logaritmiche (log-log o semi-log) in cui tale funzione viene rappresentata da una retta. Scrivere poi il coefficiente angolare di tale retta e l'ordinata del punto su tale retta avente ascissa X = 0.

coordinate: log-log

coefficiente angolare: $-\frac{1}{2}$

valore in X = 0: $-\frac{1}{2} \log_{10} 3 + \log_{10} 2$

Determinare la funzione che in tali coordinate logaritmiche corrisponde alla retta Y=-2X-1.

funzione: $y = \frac{1}{10x^2}$

Nota bene: lasciare i logaritmi indicati, cioè non approssimarli in forma decimale.

Esercizio 4. (Punti 4) Una certa famiglia di dati segue una distribuzione gaussiana di media $\mu = 5$ e deviazione standard $\sigma = 3$. Utilizzando la tabella allegata, determinare:

- la percentuale di dati che cadono nell'intervallo [1.4, 6.8]: 61.06%
- \bullet la percentuale di dati che cadono fuori dall'intervallo [3.2, 6.8]: 54.86%
- la percentuale di dati maggiori di 2: 84.13%

Esercizio 5. (Punti 6) Sono date le funzioni $f(x) = \sqrt{4-x^2}$ e $g(x) = \frac{1}{2x} + 3$. Calcolare:

- \bullet il campo di esistenza di $f\colon -2 \leq x \leq 2$
- la derivata di f: $f'(x) = \frac{-x}{\sqrt{4-x^2}}$
- il coefficiente angolare della retta tangente al grafico di f nel punto $x = \frac{1}{2}$: $-\frac{1}{\sqrt{15}}$
- l'espressione della funzione composta $g \circ f$: $(g \circ f)(x) = \frac{1}{2\sqrt{4-x^2}} + 3$
- \bullet il campo di esistenza di $g \circ f \colon -2 < x < 2$
- $\bullet \lim_{x \to +\infty} g(x) = 3$

Area sotto la curva normale standardizzata

valori	Nell'intervallo	Fuori dell'intervallo	Nell'intervallo
$\operatorname{di} u$	$[\mu - u\sigma, \mu + u\sigma]$	$[\mu - u\sigma, \mu + u\sigma]$	$[\mu + u\sigma, +\infty)$
0	0	1	0,5
0, 2	0,1586	0,8414	0,4207
0, 4	0,3108	0,6892	0,3446
0, 6	0,4514	0,5486	0,2743
0, 8	0,5762	0,4238	0,2119
1	0,6826	0,3174	0,1587
1, 2	0,7698	0,2302	0,1151
1,4	0,8384	0,1616	0,0808
1,6	0,8904	0,1096	0,0548
1,8	0,9282	0,0718	0,0359
2	0,9544	0,0456	0,0228
2, 2	0,9722	0,0278	0,0139
2, 4	0,9836	0,0164	0,0082
2,6	0,9906	0,0094	0,0047
2, 8	0,9950	0,0050	0,0025
3	0,9974	0,0026	0,0013
3, 2	0,9986	0,0014	0,0007