Regola di de l'Hôpital

Teorema di de l'Hôpital. Siano f, g due funzioni derivabili nell'intervallo aperto (a,b), escluso al più il punto x_0 , tali che

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

e $g'(x) \neq 0$ per x vicino a x_0 . Se esiste il limite $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, allora esiste anche il limite $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ e vale la seguente relazione:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Osservazione: il teorema continua a valere, con le dovute modifiche, anche per $x \to \pm \infty$ e per le forme indeterminate $\frac{\infty}{\infty}$.

Regola di de l'Hôpital – Esempi

1)
$$\lim_{x \to 0} \frac{e^x - 1}{\sin 2x} = \lim_{x \to 0} \frac{e^x}{2\cos 2x} = \frac{1}{2}$$

2)
$$\lim_{x \to +\infty} \frac{\ln x}{x^5} = \lim_{x \to +\infty} \frac{1}{5x^5} = 0$$

3)
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

ATTENZIONE: la regola di de l'Hôpital è utile quando il limite di f'/g' esiste. Ad esempio:

$$\lim_{x \to +\infty} \frac{3x - \cos x}{2x + 1} = \frac{3}{2}, \quad \text{mentre non esiste } \lim_{x \to +\infty} \frac{3 + \sin x}{2}.$$

Statistica

La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni.

Statistica descrittiva: dalla mole di dati numerici a disposizione trae degli indicatori sintetici che possano riassumere le proprietà salienti dell'intera distribuzione.

Statistica inferenziale: utilizza dati statistici per previsioni di tipo probabilistico su situazioni future (incerte), su popolazioni più ampie . . .

Popolazione: serie di dati, che rappresenta l'insieme che si vuole indagare (reali, sperimentali, matematici)

Campione: serie di dati, che rappresenta una porzione della popolazione (campione rappresentativo)

Variabili: qualitative, quantitative (continue, discrete)

Distribuzione di Frequenza: Esempio

Supponiamo di avere un campione di n=200 famiglie, di cui rileviamo il seguente carattere: titolo di studio del capofamiglia.

Questo carattere può presentare m=5 differenti realizzazioni (categorie).

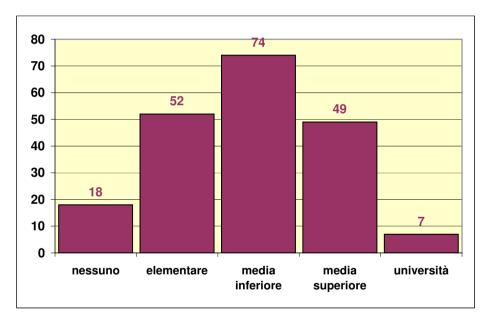
Costruiamo la tabella della distribuzione di frequenza:

	f_i	f_i/n	F_{i}	F_i/n
Nessun titolo	18	0.090	18	0.090
Licenza elementare	52	0.260	70	0.350
Diploma scuola media inferiore	74	0.370	144	0.720
Diploma scuola media superiore	49	0.245	193	0.965
Laurea	7	0.035	200	1.000
	200	1.000		

Distribuzione di Frequenza: Esempio

Rappresentiamo i dati riportati nella tabella della distribuzione delle frequenze con un istogramma delle frequenze.

titolo di studio	fi	fi / n
nessuno	18	0,09
elementare	52	0,260
media inferiore	74	0,370
media superiore	49	0,245
università	7	0,035
	200	1,000



- ogni rettangolo rappresenta un carattere
- l'area del rettangolo è proporzionale alla frequenza di quel carattere

Distribuzione di Frequenza

Dati raggruppati in classi o categorie: $(x_i, f_i)_{i=1,...,m}$

Frequenza assoluta f_i : è il numero di *osservazioni* che ricadono in ciascuna classe.

Il numero totale di osservazioni è $n = \sum_{i=1}^{m} f_i$.

Frequenza relativa f_i/n : è il rapporto tra la frequenza assoluta e il numero totale n di osservazioni. Rappresenta la percentuale di osservazioni in ogni classe o categoria.

Frequenza assoluta cumulata F_i : $F_i = \sum_{k=1}^i f_k$

Frequenza relativa cumulata F_i/n : $\frac{1}{n}\sum_{k=1}^i f_k$

Statistica Descrittiva

Misure, indici (numerici) che descrivono le caratteristiche della distribuzione di una o più variabili in modo sintetico.

• indici di posizione o centralità:

```
valore centrale, medie algebriche, mediana, moda (detti anche misure di intensità, centri . . .)
```

• indici di dispersione o variabilità:

intervallo di variazione, varianza, varianza stimata, deviazione standard, deviazione standard stimata

• indici di simmetria o asimmetria: ...

Valore Centrale

Dato l'insieme di valori $\{x_1, x_2, \dots, x_n\}$, il valore centrale considera solo i due valori estremi (non tiene conto di tutti i valori):

$$\frac{x_{\max} + x_{\min}}{2}$$

dove $x_{\max} = \max\{x_1, x_2, \dots, x_n\}$ e $x_{\min} = \min\{x_1, x_2, \dots, x_n\}$.

Esempio: {3, 20, 27, 25, 30, 310}

$$\frac{x_{\text{max}} + x_{\text{min}}}{2} = \frac{310 + 3}{2} = 156.5$$

Media Aritmetica

Media semplice: dato l'insieme di valori $\{x_1, x_2, \dots, x_n\}$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Media ponderata (dati raggruppati): dato l'insieme di valori $\{x_1, x_2, \dots, x_m\}$ con le rispettive frequenze assolute $\{f_1, f_2, \dots, f_m\}$

$$\bar{x} = \frac{\sum_{i=1}^{m} f_i x_i}{\sum_{i=1}^{m} f_i} = \frac{1}{n} \cdot \sum_{i=1}^{m} f_i x_i = \frac{f_1 x_1 + f_2 x_2 + \dots + f_m x_m}{n}$$

Media Aritmetica – Esercizi

Esercizio 1. Dato l'insieme di valori $\{12, 25, 37, 41, 0, 53\}$, calcolare la media aritmetica. [media aritmetica = 28]

Esercizio 2. Dato l'insieme di valori {28, 28, 28, 28, 28, 28}, calcolare la media aritmetica.

Esercizio 3. (dati raggruppati) In un campione di 200 persone si sa che 20 pesano 50kg, 30 pesano 55kg, 50 pesano 60kg, 70 pesano 65kg, 20 pesano 75Kg e 10 pesano 80kg. Calcolare il peso medio. [peso medio = 62.5Kg]

Media Aritmetica – Osservazioni

Alcune osservazioni:

- la media può non appartenere all'insieme dei dati
- insiemi di dati diversi possono avere la stessa media
- utilizza tutti i dati
- centro di gravità dei dati
- riduce l'effetto dei dati estremi (outlier)

Media Aritmetica – Proprietà

1) Se applico una trasformazione lineare ai dati:

$$y_i = a x_i + b \quad \Rightarrow \quad \bar{y} = a \bar{x} + b$$

2) La somma degli scarti dalla media è nulla:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0$$

3) La somma dei quadrati degli scarti dalla media è minima:

$$\sum_{i=1}^{n} (x_i - x)^2$$
 assume il valore minimo per $x = \bar{x}$

Media Aritmetica – Proprietà

• La somma degli scarti dalla media è nulla:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x} = \sum_{i=1}^{n} x_i - n\bar{x} = \sum_{i=1}^{n} x_i - n \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = 0$$

La somma dei quadrati degli scarti dalla media è minima:

poniamo
$$g(x) = \sum_{i=1}^{n} (x_i - x)^2$$
. Abbiamo che

$$g(x) = \sum_{i=1}^{n} (x_i)^2 - 2\sum_{i=1}^{n} x_i x + \sum_{i=1}^{n} x^2 = \sum_{i=1}^{n} (x_i)^2 - 2n\bar{x}x + nx^2$$

Quindi, g è un polinomio di secondo grado in x.

Pertanto, assume il suo valore minimo in
$$x = -\frac{-2n\bar{x}}{2n} = \bar{x}$$
.

Media Geometrica

Media semplice: dato l'insieme di valori $\{x_1, x_2, \dots, x_n\}$ con la condizione che siano *tutti positivi*

$$x_g = \sqrt[n]{\prod_{i=1}^n x_i} = \sqrt[n]{x_1 \cdot x_2 \cdots x_n} \quad \Rightarrow \quad \log x_g = \frac{1}{n} \cdot \sum_{i=1}^n \log x_i$$

Media ponderata: dato l'insieme di valori $\{x_1, x_2, \dots, x_m\}$, tutti positivi, con le rispettive frequenza assolute $\{f_1, f_2, \dots, f_m\}$

$$x_g = \sqrt[n]{\prod_{i=1}^m (x_i)^{f_i}} \quad \Rightarrow \quad \log x_g = \frac{1}{n} \cdot \sum_{i=1}^m f_i \log x_i$$

Mediana

Dato l'insieme di valori ordinati $x_1 \le x_2 \le \cdots \le x_{n-1} \le x_n$, si chiama mediana (o valore mediano) il valore M_e che occupa la posizione centrale:

• se n è dispari, c'è un unico termine mediano di posto $\frac{n+1}{2}$

$$M_e = x_{\frac{n+1}{2}}$$

ullet se n è pari ci sono due termini mediani di posti $\frac{n}{2}$ e $\frac{n}{2}+1$

$$M_e = \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2} + 1} \right)$$

Utilizza tutti i valori ma si basa soltanto sull'ordinamento degli stessi.

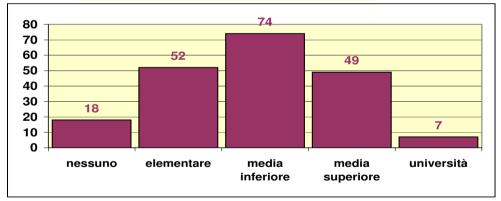
Esempio 1. $\{503, 25, 0, 81, 13\} \Rightarrow M_e = 25$

Esempio 2. $\{327, 2, 93, 1, 503, 81\} \Rightarrow M_e = 87$

Moda

Moda: valore (o classe) al quale è associata la frequenza più alta

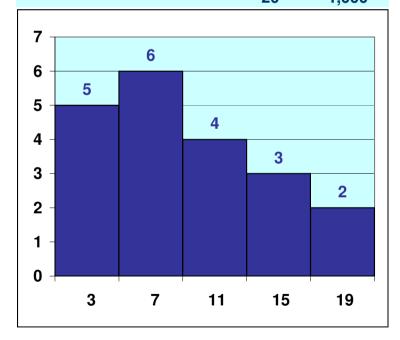
titolo di studio	fi	fi / n
nessuno	18	0,09
elementare	52	0,260
media inferiore	74	0,370
media superiore	49	0,245
università	7	0,035
	200	1,000



Si può applicare anche a dati qualitativi espressi su scala nominale.

Esempio: Media, Mediana, Moda

classe	ri	fi	fi / n
		_	
1-5	3	5	0,25
5-9	7	6	0,300
9-13	11	4	0,200
13-17	15	3	0,150
17-21	19	2	0,100
		20	1.000



- Media: $\bar{x}=9.2$ si calcola come media ponderata
- Mediana: $M_e=7$ è la media del decimo e dell'undicesimo termine che hanno entrambi valore 7
- Moda: è la classe 5-9 o il suo rappresentante $r_2=7$, corrispondenti a $f_2=6$
- moda < mediana < media
 distribuzione obliqua a destra

Esercizi

Esercizio 1. Vengono intervistati 50 capofamiglia, ponendo la seguente domanda: Quanti figli ci sono nella sua famiglia?

numero figli	0	1	2	3	4	5	6
$f_{ m assoluta}$	6	12	16	9	4	1	2

Calcolare: frequenze relative, frequenze cumulate, valore centrale, media, mediana.

Esercizi

Soluzione:

numero figli	0	1	2	3	4	5	6
$f_{ m assoluta}$	6	12	16	9	4	1	2
frelativa	0.12	0.24	0.32	0.18	0.08	0.02	0.04
$F_{\sf cumulata}$	6	18	34	43	47	48	50

$$valore\ centrale = \frac{0+6}{2} = 3.00$$

$$mediana = \frac{x_{25} + x_{26}}{2} = 2.00$$

$$media = \frac{1}{50}(0 + 12 + 32 + 27 + 16 + 5 + 12) = 2.08$$