Operazioni sui Limiti

Se $\lim_{x \to x_0} f(x) = \alpha \in \mathbb{R}$ e $\lim_{x \to x_0} g(x) = \beta \in \mathbb{R}$, allora si ha:

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = \alpha + \beta$
- prodotto: $\lim_{x \to x_0} [f(x) \cdot g(x)] = \alpha \cdot \beta$
- quoziente: se $\beta \neq 0$, $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$

Le stesse proprietà valgono nei casi $x\to +\infty$, $x\to -\infty$ oppure $x\to x_0^+$, $x\to x_0^-$.

Operazioni sui Limiti

Se $\lim_{x\to x_0} f(x) = \alpha \in \mathbb{R}$ e $\lim_{x\to x_0} g(x) = +\infty$, allora si ha:

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = +\infty$
- prodotto: se $\alpha \neq 0$, $\lim_{x \to x_0} \left[f(x) \cdot g(x) \right] = \begin{cases} +\infty & \text{se } \alpha > 0 \\ -\infty & \text{se } \alpha < 0 \end{cases}$
- quoziente: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$

In particolare, si ha che $\lim_{x \to x_0} \frac{1}{g(x)} = 0$

Le stesse proprietà valgono nei casi $x\to +\infty$, $x\to -\infty$ oppure $x\to x_0^+$, $x\to x_0^-$.

Ampliamento di R

Per $c \in \mathbb{R}$ definiamo le seguenti operazioni:

•
$$+\infty + c = +\infty$$
, $-\infty + c = -\infty$

Questo significa che qualunque sia la funzione f che per $x \to x_0$ tende a $+\infty$, e qualunque sia la funzione g che per $x \to x_0$ tende a c, allora f + g per $x \to x_0$ tende a $+\infty$. Analogamente per $-\infty$.

- $+\infty + \infty = +\infty$, $-\infty \infty = -\infty$
- $(+\infty)\cdot(+\infty) = +\infty$, $(+\infty)\cdot(-\infty) = -\infty$, $(-\infty)\cdot(-\infty) = +\infty$
- $\frac{c}{\pm \infty} = 0$
- se inoltre $c \neq 0$,

$$(+\infty) \cdot c = \begin{cases} +\infty & \text{se } c > 0 \\ -\infty & \text{se } c < 0 \end{cases} \qquad (-\infty) \cdot c = \begin{cases} -\infty & \text{se } c > 0 \\ +\infty & \text{se } c < 0 \end{cases}$$

Esercizio

Calcolare i seguenti limiti:

$$\lim_{x \to +\infty} -2\left(3 + \frac{1}{x}\right) = -6$$

$$\lim_{x \to +\infty} \left(2 - e^{-x} \right) = 2$$

•
$$\lim_{x \to +\infty} \frac{2 - e^{-x}}{3 + \frac{1}{x}} = \frac{2}{3}$$

$$\lim_{x \to +\infty} \left(-1 + \frac{1}{x} \right) e^x = -\infty$$

$$\lim_{x \to +\infty} \frac{1 + \frac{1}{x}}{e^x} = 0$$

Operazioni sui Limiti

Il limite della somma, differenza, prodotto, quoziente di due funzioni risulta rispettivamente uguale alla somma, differenza, prodotto, quoziente (se il denominatore è diverso da zero) dei due limiti, purché non sia una delle forme indeterminate.

Se
$$\lim_{x\to x_0} f(x) = \alpha \in \mathbb{R} \cup \{\pm \infty\}$$
 e $\lim_{x\to x_0} g(x) = \beta \in \mathbb{R} \cup \{\pm \infty\}$, allora:

- somma: $\lim_{x \to x_0} \left[f(x) + g(x) \right] = \alpha + \beta$ (tranne nel caso $+\infty \infty$)
- prodotto: $\lim_{x \to x_0} f(x) \cdot g(x) = \alpha \cdot \beta$ (tranne nel caso $\pm \infty \cdot 0$)
- quoziente: $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$ (tranne nei casi $\frac{0}{0}$ e $\frac{\pm \infty}{\pm \infty}$)

Le stesse proprietà valgono nei casi $x \to +\infty$, $x \to -\infty$ oppure $x \to x_0^+$, $x \to x_0^-$.

Forme Indeterminate

Restano indeterminate le operazioni:

$$+\infty-\infty$$
, $0\cdot(\pm\infty)$, $\frac{\pm\infty}{\pm\infty}$, $\frac{0}{0}$

Cosa significa per esempio che $\frac{0}{0}$ è una forma indeterminata?

Significa che se f(x) e g(x) tendono a 0 per $x \to x_0$, da questa unica informazione NON si può dedurre qual è il comportamento di $\frac{f(x)}{g(x)}$ al tendere di x a x_0 .

Esempio: consideriamo f(x) = x, $g(x) = x^3$, h(x) = 2x.

Si ha
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = \lim_{x\to 0} h(x) = 0.$$

Tuttavia,
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = +\infty$$
, $\lim_{x \to 0} \frac{g(x)}{f(x)} = 0$, $\lim_{x \to 0} \frac{h(x)}{f(x)} = 2$.

Limite di un Polinomio all'Infinito

Il comportamento all'infinito di un polinomio è determinato dal termine di grado massimo.

Esempi:

$$\lim_{x \to +\infty} (2x^3 - x + 1) = \lim_{x \to +\infty} 2x^3 \cdot \left(1 - \frac{1}{2x^2} + \frac{1}{2x^3}\right) = \lim_{x \to +\infty} 2x^3 = +\infty$$

$$\lim_{x \to -\infty} (-x^4 + x^3 - x^2) = \lim_{x \to -\infty} -x^4 \cdot \left(1 - \frac{1}{x} + \frac{1}{x^2}\right) = \lim_{x \to -\infty} -x^4 = -\infty$$

Limite di una Funzione Razionale all'Infinito

Dati due polinomi di grado $\,m\,$ e $\,n\,$

$$P(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

$$Q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

si ha:

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{a_m x^m}{b_n x^n}$$

е

$$\lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{a_m x^m}{b_n x^n}$$

Esercizio

Calcolare i seguenti limiti:

•
$$\lim_{x \to +\infty} \frac{4x^3 + 5x + 3}{7x^3 - x^2 + 11} = \frac{4}{7}$$

$$\lim_{x \to -\infty} \frac{2x^3 + 5x^2 + 3}{x^5 - 3x^4 + 2x^2} = 0$$

•
$$\lim_{x \to +\infty} \frac{x^7 + 10x - 8}{x^2 + 3x + 8} = +\infty$$

•
$$\lim_{x \to +\infty} \frac{e^{3x} + 5e^x}{2e^{3x} - e^{2x} + 4} = \frac{1}{2}$$

(si può risolvere ponendo $t = e^x$)

Altri Limiti Fondamentali

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to +\infty} \frac{x^n}{a^x} = 0 \quad \forall n \in \mathbb{N}, \ a > 1$$

$$\lim_{x \to 0^+} x^n (\ln x)^p = 0 \quad \forall p, n \in \mathbb{N} - \{0\}$$

Esercizio. Calcolare i seguenti limiti:

$$\lim_{x \to +\infty} x^5 2^x = +\infty \qquad \lim_{x \to 0^+} x^9 \log x = 0 \qquad \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = 1$$

$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{t \to 0} 2 \cdot \frac{e^t - 1}{t} = 2 \qquad \lim_{x \to 0^+} \frac{\ln(x+1)}{x^2} = \lim_{x \to 0^+} \left(\frac{\ln(x+1)}{x} \cdot \frac{1}{x} \right) = +\infty$$

Il Teorema dei Due Carabinieri

Teorema. Sono date tre funzioni f,g,h definite in un intorno di un punto $x_0 \in \mathbb{R}$ e tali che

- $f(x) \le g(x) \le h(x)$ per ogni x,
- $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L.$

Allora, si ha che

$$\lim_{x \to x_0} g(x) = L.$$

Esempio: si vuole calcolare $\lim_{x\to +\infty}\frac{\cos x}{x}$. Si ha che $-\frac{1}{x}\leq \frac{\cos x}{x}\leq \frac{1}{x}$.

Poiché $\lim_{x\to +\infty} -\frac{1}{x} = \lim_{x\to +\infty} \frac{1}{x} = 0$, concludiamo che

$$\lim_{x \to +\infty} \frac{\cos x}{x} = 0.$$