1. Disegnare il grafico qualitativo della seguente funzione:

$$f(x) = \begin{cases} 1 - x^2 & \text{per } x \le 0 \\ |x - 1| & \text{per } x > 0 \end{cases}$$

e determinarne gli eventuali punti di massimo e minimo assoluti e relativi nell'intervallo $(-\infty, 4]$.

2. Disegnare il grafico qualitativo della seguente funzione:

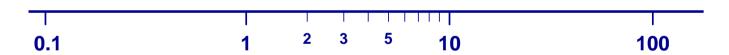
$$f(x) = \begin{cases} |x^2 - 1| & \text{per } x \le 1\\ \ln x & \text{per } x > 1 \end{cases}$$

e determinarne gli eventuali punti di massimo e minimo assoluti e relativi in \mathbb{R} .

Scale Logaritmiche

Scala Logaritmica:

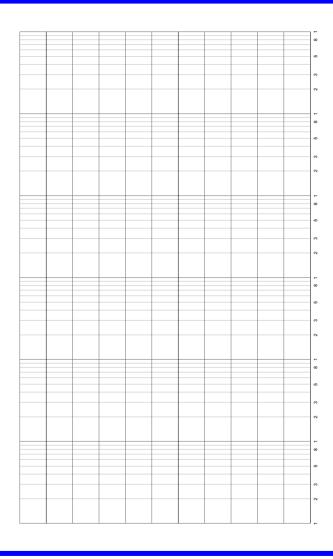
- sull'asse prescelto (ad esempio, l'asse x) si rappresenta il punto di ascissa $1=10^{0}$
- nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti di ascissa 10¹, 10², 10³, . . .
- nella direzione negativa si rappresentano, a distanze uguali fra di loro, i punti di ascissa 10^{-1} , 10^{-2} , 10^{-3} , . . .
- i valori intermedi tra una potenza di 10 e la successiva (ad esempio, 2, 3, ..., 9) sono posizionati in corrispondenza dei valori dei rispettivi logaritmi decimali



Applicazioni:

- rappresentare misure positive con ordini di grandezza molto diversi fra loro
- linearizzare funzioni esponenziali $y = K \cdot a^x$ (scale semilogaritmiche)
- linearizzare funzioni potenza $y = A \cdot x^b$ (scale logaritmiche)

Carta Semilogaritmica



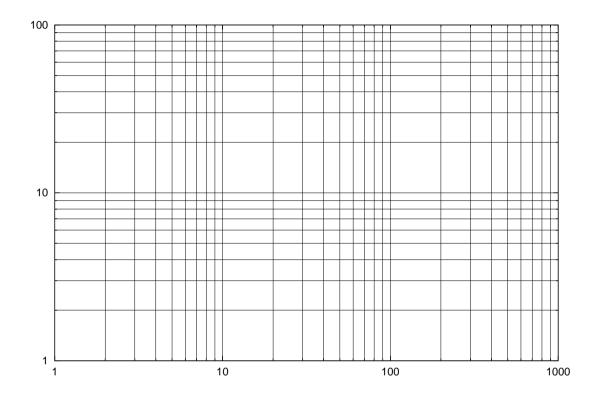
Carta Semilogaritmica:

scala lineare sull'asse delle ascisse X e scala logaritmica sull'asse delle ordinate Y (o viceversa)

Trasformazione di variabili:

$$X = x$$
 $Y = \log_{10} y$

Carta Logaritmica



Carta Logaritmica: scala logaritmica sull'asse delle ascisse X e scala logaritmica sull'asse delle ordinate Y

Trasformazione di variabili: $X = \log_{10} x$ $Y = \log_{10} y$

Carte SemiLogaritmiche

Data la funzione esponenziale

$$y = K \cdot a^x,$$

passando ai logaritmi decimali e utilizzando le proprietà dei logaritmi, si ottiene

$$\log_{10} y = \log_{10} (K \cdot a^x) \Rightarrow \log_{10} y = \log_{10} K + x \cdot \log_{10} a$$

Ponendo $X = x e Y = \log_{10} y$, si ha

$$Y = \log_{10} K + X \cdot \log_{10} a,$$

che è l'equazione di una retta y = mx + q con coefficiente angolare $m = \log_{10} a$ e intercetta $q = \log_{10} K$.

Carte Logaritmiche

Data la funzione potenza

$$y = K \cdot x^b,$$

passando ai logaritmi decimali e utilizzando le proprietà dei logaritmi, si ottiene

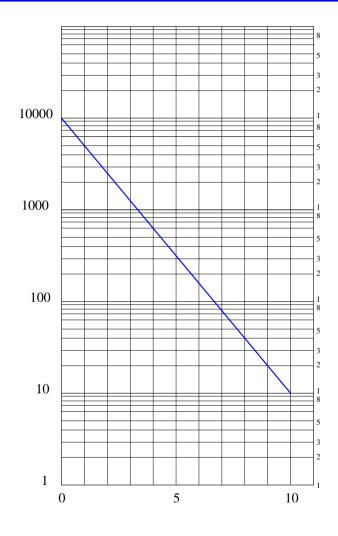
$$\log_{10} y = \log_{10} (K \cdot x^b) \Rightarrow \log_{10} y = \log_{10} K + b \cdot \log_{10} x$$

Ponendo $X = \log_{10} x$ e $Y = \log_{10} y$, si ha

$$Y = \log_{10} K + b \cdot X,$$

che è l'equazione di una retta y = mx + q con coefficiente angolare m = b e intercetta $q = \log_{10} K$.

Carta SemiLogaritmica – Esempio



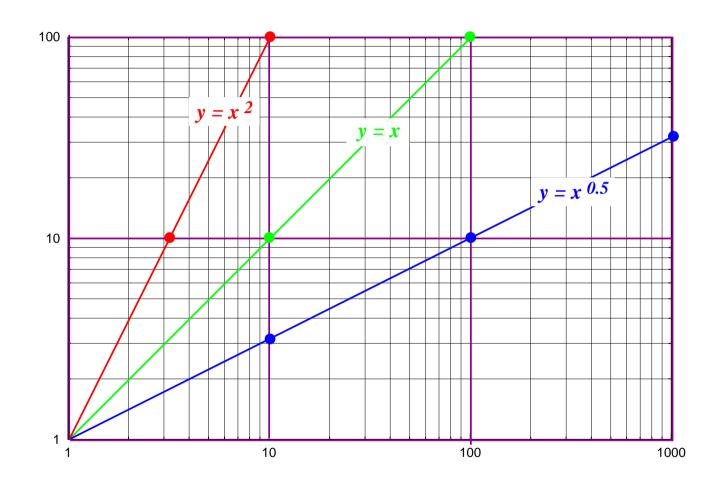
$$y = 10.000 \cdot \left(\frac{1}{2}\right)^x$$

$$\log y = \log(10.000) + x \cdot \log\left(\frac{1}{2}\right)$$

$$Y = 4 - X \cdot \log 2$$

$$\log 2 \simeq 0.3$$

Carta Logaritmica – Esempio



Esercizio 1. (a) In un grafico con scala semilogaritmica è rappresentata la retta di equazione $Y = -\log_{10} 2 + (\log_{10} 3)X$. Trovare il legame funzionale tra x e y, dove X = x e $Y = \log_{10} y$.

(b) Trovare il coefficiente angolare della retta che rappresenta, su tale scala, la funzione $y=\left(\frac{1}{3}\right)^x$. Dire se tale coefficiente angolare è positivo o negativo.

Soluzione:

- (a) Sostituendo le relazioni X=x e $Y=\log_{10}y$ nell'equazione della retta, si ha: $\log_{10}y=-\log_{10}2+x\cdot\log_{10}3=\log_{10}3^x-\log_{10}2=\log_{10}\frac{3^x}{2}$ da cui $y=\frac{3^x}{2}$.
- (b) Prendendo i logaritmi di entrambi i membri si ha:

$$\log_{10} y = \log_{10} \left(\frac{1}{3}\right)^x = x \cdot \log_{10} \frac{1}{3}, \quad \text{da cui } Y = \left[\log_{10} \left(\frac{1}{3}\right)\right] x$$
 quindi $m = -\log_{10} 3 < 0$.

Esercizio 2. In un grafico con scala logaritmica (scala logaritmica sia sull'asse delle ascisse che sull'asse delle ordinate)

- (a) è rappresentata la retta di equazione Y = -3X + 5. Trovare il legame funzionale tra x e y, dove $X = \log_{10} x$ e $Y = \log_{10} y$;
- (b) scrivere l'equazione della retta che rappresenta su tale scala la funzione $y = (\sqrt{2x})^3$.

Soluzione:

(a) Sostituiamo le relazioni $X = \log_{10} x$ e $Y = \log_{10} y$ nell'equazione della retta. Otteniamo $\log_{10} y = -3\log_{10} x + 5$, da cui

$$y = 10^{-3\log_{10}x + 5} = 10^5 (10^{\log_{10}x})^{-3} = \frac{10^5}{x^3},$$
 cioè $y = \frac{100.000}{x^3}.$

(b) Prendendo i logaritmi di entrambi i membri si ha:

$$\log_{10} y = \log_{10}(2x)^{\frac{3}{2}} = \frac{3}{2}\log_{10} 2x$$
, quindi la retta è

$$Y = \frac{3}{2}X + \frac{3}{2}\log_{10}2.$$

Esercizio 3. (a) In un grafico in scala semilogaritmica è rappresentata la retta di equazione $Y = \log_{10} 2 + (\log_{10} 3)X$, dove X = x e $Y = \log_{10} y$. Trovare il corrispondente legame funzionale tra x e y.

(b) Rispondere alla stessa domanda nel caso che sia assegnata su carta logaritmica la retta di equazione $Y = -\log_{10} 5 + 2X$, dove $X = \log_{10} x$ e $Y = \log_{10} y$.

Soluzione:

- (a) $\log_{10} y = \log_{10} 2 + x \cdot \log_{10} 3 = \log_{10} (2 \cdot 3^x)$, da cui $y = 2 \cdot 3^x$.
- (b) $\log_{10} y = -\log_{10} 5 + 2\log_{10} x = \log_{10} \frac{x^2}{5}$, da cui $y = \frac{x^2}{5}$.