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Introduction

The plastic behaviour of metals is mainly caused by the presence of dislocations, which
are 1-dimensional defects of the crystal lattice.
To illustrate an example of such defects, in Figure 1 we consider the simple case of a cubic
crystal lattice. In the example, the defect is due to the presence of an extra half-plane of
atoms in the crystal lattice, that produces a local distortion of its geometry. The boundary
of this extra half-plane of atoms constitutes the dislocation line.
At a discrete level, the presence of a dislocation can be described by the following pro-
cedure. For simplicity, we consider a section of the lattice which is orthogonal to the
dislocation line. We take a closed atom-to-atom path surrounding the defect, the Burgers
circuit, in the deformed crystal. Then we represent the same path on the section of the
perfect crystal in the reference configuration. We see that, in the perfect crystal, the path
does not close. The vector required to close the circuit is the Burgers vector (see Figure
2). We could equivalently consider a 3-dimensional path and we would obtain the same
Burgers vector. Note that this vector lies on a plane that is orthogonal to the dislocation
line. Dislocations of edge type, which are the ones considered in the present work, are
characterized by this property.
In response to a shear stress, dislocations can move through the crystal lattice and their
motion leads to the plastic deformation of the metal. The gliding mechanism that allows
dislocations to move is roughly sketched in Figure 3.
For a complete treatment of the theory of dislocations, we refer to [2], [16].

Figure 1: The cubic crystal lattice with the extra half-plane of atoms. The dark atoms
form the dislocation line.
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Introduction

Figure 2: We consider the Burgers circuit ABCD in the deformed crystal. The corre-
sponding path in the perfect crystal does not close, since it ends at E. The
Burgers vector is given by EA.

Figure 3: (a) The dislocation is located at A. (b) The breaking of bonds between the
atoms and the formation of new ones produces the motion of the defect from
A to B. (c) The defect has moved through the lattice, producing a shear
deformation of the crystal.
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Introduction

From the mathematical point of view, dislocations have been studied by means of both
discrete and continuum models. In this thesis we consider an intermediate scale model,
often called discrete dislocation model, introduced by Cermelli and Gurtin (see [5]).
In this model a system of a finite number of parallel straight edge dislocations with multiple
Burgers vectors is considered. Each defect is identified with a point on a cross section
orthogonal to the dislocation lines, so that the model can be reduced to a 2-dimensional
setting.
The model is in the framework of linearized elasticity. The strain field is given by a map β
defined on the cross-section Ω ⊂ R2 and taking values in R2×2. In presence of dislocations,
the strain field is singular. More precisely, for a system of dislocations located at the
points z1, . . . , zn ∈ Ω with Burgers vectors b1, . . . ,bn ∈ R2, the equilibrium equations of
the system are given by:

(1)
{

divCβ = 0
curlβ =

∑n
i=1 biδzi

in Ω,

where C is the elasticity tensor. Since any strain β satisfying the second equation does
not have finite elastic energy, no variational principle can be applied to determine the
equilibrium configurations of the system.
A common strategy to overcome this incompatibility is to adopt the so-called core-region
approach. It consists in regularizing the problem by removing small balls centred at the
defects and computing the elastic energy stored in the resulting domain.
This approach is employed in [6]. More precisely, given the core-radius ε > 0 and the
dislocation density

µ = 1
n

n∑
i=1

δzi ,

the energy functional is defined as

(2) Eε(µ,β) =
ˆ

Ωε(µ)
W (β) dx,

where Ωε(µ) = Ω\(
⋃n
i=1B(zi, ε)) andW : R2×2 → R is the quadratic elastic energy density

given by W (β) = 1
2Cβ : β, for every β ∈ R2×2. The admissible strains are required to

satisfy the following conditions:

(3) curlβ = 0 in Ωε(µ),
ˆ
∂B(zi,ε)

β t dH 1 = bi, i = 1, . . . , n.

The energy induced by the system of dislocations is then obtained by minimizing the
elastic energy (2) among all strain fields satisfying (3). In [6], the existence of an energy
minimizing strain βεµ is proved. In particular, it is shown that, as ε → 0+, the field
βεµ converges in L2

loc(R2 \ {z1, . . . , zn};R2×2) to a solution of system (1). Moreover, an
asymptotic estimate of the minimum energy, as ε→ 0+, is obtained.
Since the typical number of dislocations in a metal is very large, it is natural to study
the asymptotic behaviour of the system, as the number of dislocations tends to infinity,
performing a homogenization procedure. The ultimate goal would be to gain insight into
the macroscopic response of the metal, starting from the knowledge of its microscopic
features.
A homogenization analysis of this type is performed in [12]. Here the asymptotic behaviour
of the elastic energy, considered as a function of the strain, is studied in terms of Γ-
convergence, as the core-radius ε goes to zero and the number of dislocations nε goes to
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infinity. It is shown that the energy can be decomposed into two terms: the self-energy,
concentrated in the core-regions, and the interaction energy, among pairs of dislocations.
The self-energy is of order nε| log ε|, while the interaction energy is of order n2

ε. The
limiting behaviour of the energy depends on the relative size of nε and | log εn|. Thus,
three regimes are identified: sub-critical (nε � | log ε|), critical (nε ≈ | log ε|), and super-
critical (nε � | log ε|). At the limit, the self-energy prevails in the sub-critical regime, while
the interaction energy is dominant in the super-critical regime. In the critical regime, a
strain-gradient model for plasticity is derived.
As we mentioned, plastic deformations are due to the simultaneous motion of disloca-
tions. Therefore, a dynamical approach in terms of dislocation densities seems to be more
appropriate for the study of this problem.
The paper [21] by Mora, Peletier, and Scardia is conceived in this spirit. The aim of this
work is to study rate-independent, quasi-static evolutions of systems conserving the total
number n of dislocations. Here, the choice is to consider as main variable the dislocation
density µ ∈ P(Ω), which is the most natural variable for dislocation dynamics. It is as-
sumed that all dislocations have the same Burgers vector b and that they are all contained
in a closed rectangle of positive distance from the boundary and well-separated from each
other by a distance rn � εn, where εn > 0 is the core-radius. The circulation condition in
(3) is written as:

(4)
ˆ
∂B(zi,εn)

β t dH 1 = b
n
, i = 1, . . . , n.

Moreover, precise asymptotic relations between the two scales εn and rn are assumed.
Since the number n of dislocations is constant during the evolution, the self-energy is of
no relevance, even if n is large. In other words, the evolution is driven by the interaction
energy. Hence, the energy is renormalized by considering

(5) En(µ) = min
β
Eεn(µ,β)− 1

2n2

n∑
i=1

ˆ
Ωεn (µ)

CKεn
b (x; zi) : Kεn

b (x; zi) dx.

The fundamental strain field Kb(·, z0) generated by a single dislocation at the point z0 with
Burgers vector b and its perturbation Kε

b(·, z0) are defined in (1.9) and (1.32), respectively.
The second term at the right hand side of (5) represents the self-energy of the system,
which is thus removed from the energy.
The first result proved in [21] is the Γ-convergence, with respect to the narrow topology
of probability measures, of the renormalized energy En, as n→∞, to the functional

E(µ) = 1
2

¨
Ω×Ω

V (y, z) d(µ⊗ µ)(y, z) + min
v
I(µ,v),

where
V (y, z) =

ˆ
Ω
CKb(x; y) : Kb(x; z) dx

and I(µ, ·) is an auxiliary functional defined on H1(Ω;R2). In this limit functional µ
represents the density of dislocations at the continuum level, the first term of the energy
describes interactions among dislocations, while the second term takes into account the
interactions of dislocations with the boundary of the domain Ω. Then the evolution driven
by the renormalized energy with a Wasserstein type dissipation with slip-plane confinement
is studied.
The aim of this thesis is to extend the Γ-convergence result of [21] to the case of two
different Burgers vectors b1,b2 ∈ R2 with b1 ·b2 > 0. Clearly, the case of a finite number

viii



Introduction

of Burgers vectors with positive pairwise scalar product can be treated exactly in the same
way.
Our choice is to decompose the dislocation density as the sum of two measures, describing
the position of the two families of dislocations with Burgers vector b1 and b2, respec-
tively. Thus, the renormalized energy is now a function of these two measures and the
Γ-convergence result is obtained with respect to the product narrow topology. The struc-
ture of the Γ-limit that we obtain is analogous to the case of a single Burgers vector, but
it contains different potentials describing the interaction between dislocations of possible
different species. Indeed, if we set

V1(y, z) =
ˆ

Ω
CK1(x; y) : K1(x; z) dx,

V2(y, z) =
ˆ

Ω
CK2(x; y) : K2(x; z) dx,

V1,2(y, z) =
ˆ

Ω
CK1(x; y) : K2(x; z) dx,

where K1 = Kb1 and K2 = Kb2 , then the limiting energy for a pair of admissible measures
is given by

E(µ1µ2) = 1
2

¨
Ω×Ω

V1(y, z) d(µ1 ⊗ µ1)(y, z)

+ 1
2

¨
Ω×Ω

V2(y, z) d(µ2 ⊗ µ2)(y, z)

+
¨

Ω×Ω
V1,2(y, z) d(µ1 ⊗ µ2)(y, z) + min

v
I(µ1, µ2,v),

where I(µ1, µ2, ·) is an auxiliary functional defined on H1(Ω;R2). In the limit functional
µ1 and µ2 represent the proportion of the two species of dislocations at the continuum
level, the first two terms of the energy describe interaction among dislocations of the same
species, while the third term among dislocations of different species. The last term, as
before, takes into account the interaction with the boundary.
Our assumptions are the same as in [21]. The confinement hypothesis (that is, the as-
sumption of positive distance of dislocations from the boundary) is due to the fact that
we do not impose any boundary condition to the system. Indeed, since the interaction
potentials have a logarithmic repulsive behaviour (as already noted in [6]), dislocations can
reduce their energy by moving to the boundary. The well-separation hypothesis rn � εn,
which was already introduced in [12], is physically reasonable, since the typical distance
between dislocations (represented by the scale rn) is much larger than the atomic distance
(represented by the scale εn). Moreover, we assume the following:

(6) εn → 0, rn → 0, εn/r
3
n → 0, nr2

n → 0, as n→∞.

The first two conditions are clear. The third condition arises from the choice of imposing
the incompatibility condition via the circulation condition (4), rather than as a singularity
of the field as in (1). Indeed, the difference between the interaction energy corresponding
to the fields Ki and Kεn

i is of order
√
εn/r3

n, and the third condition in (6) ensures that it
is negligible, as n→∞. The fourth condition is natural: it says that the total area of the
core-regions goes to zero, as n→∞.
The proof of the Liminf inequality, which is rather straightforward, follows that of the
original paper [21]. The proof of the Limsup inequality requires an adaptation of the
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geometric construction used in [21] to produce a recovery sequence. The main difficulty
is due to the singular character of the interaction potentials, that makes the energy not
continuous with respect to narrow convergence and requires to suitably allocate the dislo-
cations to guarantee convergence of the energies. On the other hand, a convenient feature
of our setting is the compactness of the space on which the functionals are defined. This
is due to the choice of working with probability measures.
A further interesting result that we show in the thesis, is that the class of measures on
which the Γ-limit is finite is contained in H−1(Ω). This fact is consistent with previous
works (see [12], [21]) and with the physical observation that dislocations in crystals prefer
to distribute along lines, the so-called dislocation walls.
A great restriction in our work is given by the assumption b1 · b2 > 0, which is, however,
crucial to avoid the creation of dipoles. Removing this hypothesis in our setting is a very
challenging problem that, at the moment, seems to be way beyond reach. A first attempt
in this direction is proposed in [13], where Burgers vectors of opposite signs are allowed,
but some suitable regularizations of the interaction potential are needed to perform the
analysis.
It is worth mentioning that the well-separation hypothesis has been overcome, in the
setting of [12], in [10] for the sub-critical regime and in [14] for the critical regime. In
both cases, the main tool used is an ad hoc version of the so-called ball construction. This
technique has been introduced in the study of the Ginzburg-Landau functional (see [17],
[24]), and consists in constructing a family of growing and merging balls that identifies a
family of annuli, where most of the energy is concentrated. The fundamental contribution
in [10] and [14] is that, in this construction, the ratio between the radii of the annuli can
be controlled, so that the constants of the Korn inequality in these annuli can be uniformly
bounded. We expect that a suitable version of the ball construction could possibly be of
help also in our setting to remove the well-separation hypothesis.
Other interesting questions could concern the extension to our framework of the results
of [21] about quasi-static evolution, as well as the inclusion of creation and annihilation
phenomena in the dislocation model.
The thesis is structured as follows. In Chapter 1, the analysis of the variational model is
performed, following [6]; the case of multiple Burgers vectors without any assumption on
their scalar product is studied and the existence of an energy minimizing strain is proved.
In Chapter 2, the renormalized energy is introduced with the assumption of two Burgers
vectors b1,b2 satisfying b1 · b2 > 0; then, the Γ-convergence result is proved (Theorem
2.1) and the characterization of measures with finite energy is established (Theorem 2.11).
In the Appendix, a Korn type inequality for fields on the plane with prescribed curl, taken
from [12], is discussed (Theorem A.2).
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Notation and preliminaries

Notation and preliminaries

We use standard notation for scalars, vectors and matrices.

• For a, b ∈ R, we set a ∧ b = min{a, b}, a ∨ b = max{a, b} and we denote by bac the
integer part of a, namely bac = max{k ∈ Z : k ≤ a}.

• For a ∈ R2, we denote by a⊥ the vector obtained from a by a counter-clockwise
rotation of π/2. Namely, if a = (a1, a2), we set a⊥ = (−a2, a1).

• We denote by R2×2 the space of square matrices of order 2 and by I the identity
matrix. The subspaces of symmetric and skew-symmetric matrices are denoted by
Sym(2) and Skew(2), respectively.

• For A ∈ R2×2 we define its symmetric and skew-symmetric part by setting symA =(
A + A>

)
/2 and skewA =

(
A−A>

)
/2.

• For a,b ∈ R2 with a = (a1, a2) and b = (b1, b2), we define the rank-one matrix
a ⊗ b = (ai bj)i,j=1,2.

• We denote by : the inner product of square matrices. Namely, for A,B ∈ R2×2

with A = (aij) and B = (bij), we have A : B =
∑
i,j aij bij . We denote by | · | the

associated norm, that is, |A| = (A : A)1/2.

• For A ∈ R2×2 given by A = (aij), we set

A⊥ =
(
−a12 a11
−a22 a21

)
.

We adopt the common convention of denoting by C a positive constant that can change
from line to line and that can be computed in terms of known quantities. When necessary,
we are going to underline its dependence on some quantities using parentheses.
For what concerns normal and tangent unit vectors, we fix the following notation. For
any bounded set in R2 with Lipschitz boundary, we always denote by n the outward unit
normal on its boundary and we define the unit tangent vector as t = n⊥. Thus, for
example, given a ball centered at x0 with radius r > 0, we have

n(x) = x− x0
|x− x0|

, t(x) = (x− x0)⊥

|x− x0|
,

for every x ∈ ∂B(x0, r).
We recall the following known fact: given a sequence (xn) in a topological space X and
given x ∈ X, then xn → x, as n → ∞, if and only if for every subsequence (xnk) there
exists a futher subsequence (xnk` ) such that xnk` → x, as ` → ∞. Henceforth, we are
going to refer to this fact as the Urysohn property.
We use standard notation of Measure Theory. For example, we denote the characteristic
function of a set E ⊂ R2 by χE . The spaces of signed and vector-valued Radon measures
with bounded variation defined on the Borel subsets of Ω ⊂ R2 are denoted byMb(Ω) and
Mb(Ω;R2), respectively. The set of Borel probability measures is denoted by P(Ω). Given
µ ∈Mb(Ω) and given a continuous map g : R2 → R2, we denote by g]µ the push-forward
measure. For the notions of Measure Theory, in particular for the definition of Radon
measure, we refer to [7], [11].
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Notation and preliminaries

We briefly recall the definition of the narrow topology on Mb(Ω). This is the topology
induced by the weak* topology of rba(Ω) = (Cb(Ω))′. Thus, given (µn) ⊂ Mb(Ω) and
µ ∈Mb(Ω), we have that µn → µ narrowly if and only if

ˆ
Ω
v dµn →

ˆ
Ω
v dµ, as n→∞,

for every v ∈ Cb(Ω). The properties of narrow convergence and its relation with the weak*
convergence inMb(Ω) are treated in [11]. Here we simply recall some basic facts that are
going to be used in what follows. Given (µn), (νn) ⊂ Mb(Ω) and µ, ν ∈ Mb(Ω), we have
the following:

• if suppµn ⊂ K for every n, where K is a closed subset of Ω, and µn → µ narrowly,
as n→∞, then suppµ ⊂ K;

• if suppµn ⊂ K for every n, where K is a closed subset of Ω, then µn → µ narrowly
if and only if ˆ

Ω
u dµn →

ˆ
Ω
u dµ, as n→∞,

for every u ∈ C(Ω) which is bounded on K;

• if µn → µ narrowly and νn → ν narrowly, as n→∞, then µn⊗νn → µ⊗ν narrowly,
that is, weakly* in (Cb(Ω× Ω))′, as n→∞.

We use standard notation for Lebesgue and Sobolev spaces and for spaces of functions
of bounded variation. For this topics, we refer to [1], [18]. Note that for E ⊂ R2 and
1 ≤ p ≤ ∞, the space Lp(∂E) is always intended with respect to the measure H 1 ∂E.
Let Ω ⊂ R2 be a bounded Lipschitz domain. Given u ∈ H1(Ω;R2), we define its sym-
metric gradient as Eu = sym Du. We call infinitesimal rigid-body motion every field
η ∈ H1(Ω;R2) such that Eη = 0. It is easy to check that such functions are given, for
x ∈ Ω, by η(x) = Ax + a for some A ∈ Skew(2) and a ∈ R2.
In what follows we are going to make an extensive use of the Korn inequality that we
present in the following form.
Theorem. (Korn inequality) Let Ω ⊂ R2 be a bounded Lipschitz domain and let B ⊂ Ω
a ball. There exists a constant C > 0, depending only on Ω, such that, for every field
u ∈ H1(Ω;R2) satisfying

ˆ
B

u dx = 0,
ˆ
B

(Du−Du>) dx = 0,

we have
||u||H1(Ω;R2) ≤ C||Eu||L2(Ω;R2×2).

For a proof we refer to [23]. In the Appendix we are going to prove an extension of this
result which is peculiar of dimension 2 (see Theorem A.2).
For matrix-valued fields, the divergence and curl operators are always understood to act
row-wise. More precisely, for β : Ω→ R2×2 with β = (βij), we set

divβ =
(
∂1β11 + ∂2β12
∂1β21 + ∂2β22

)
, curlβ =

(
∂1β12 − ∂2β11
∂1β22 − ∂2β21

)
.
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Notation and preliminaries

In the following we are going to consider maps u ∈ L2(Ω;R2) which distributional curl is
in L2(Ω). This means that there exists v ∈ L2(Ω) such that, for every ϕ ∈ C∞c (Ω), we
have

−
ˆ

Ω
u ·Dϕ⊥ dx =

ˆ
Ω
v ϕ dx.

In this case, we set curl u = v. The space of such maps u is usually denoted by H(curl; Ω)
and this is endowed with the norm

||u||H(curl;Ω) = ||u||L2(Ω;R2) + ||curl u||L2(Ω).

The space C1(Ω;R2) is dense in H(curl; Ω). Moreover the map ϕ 7→ ϕ|∂Ω · t defined on
C1(Ω;R2), admits a unique continuous linear extension

γt : H(curl; Ω)→ H−1/2(∂Ω)

defined by

H−1/2(∂Ω)〈γt(u), ζ〉H1/2(∂Ω) =
ˆ

Ω
curl u ζ̃ dx +

ˆ
Ω

u ·
(
Dζ̃
)⊥

dx

where ζ̃ is a lifting of ζ, that is, a function in H1(Ω) such that ζ̃ = ζ on ∂Ω in the sense of
traces. As for usual traces, we simply write γt(u) as u · t. Furthermore, if the boundary
of Ω has several connected components, say ∂Ω =

⋃m
i=1 Γi, we write

ˆ
Γi

u · t dH 1 = H−1/2(∂Ω)〈γt(u), χΓi〉H1/2(∂Ω),

for i = 1, . . . ,m. For details about the space H(curl; Ω) and about the tangential trace
operator, we refer to [9], [15], [20].
In particular, in what follows, we are going to deal with functions u ∈ L2(Ω;R2) such
that curl u = 0 in Ω in the sense of distributions. For such functions, results analogous to
that of the classical theory hold. For example, if u ∈ L2(Ω;R2) with curl u = 0 in Ω is
such that the circulation (in the sense specified above) along any closed curve contained
in Ω is zero, then it admists a potential. This is substantially the content of Lemma 1.1.
Moreover, in the case of simply connected domains, the following weak formulation of the
classical Poincaré Lemma holds.
Theorem. (Weak Poincaré Lemma)Let Ω ⊂ R2 be a bounded simply connected Lip-
schitz domain. Let u ∈ L2(Ω;R2) be such that curl u = 0 in Ω. Then, there exists a
potential f ∈ H1(Ω), which is unique up to additive constants, such that u = Df .
Note that, for 1 ≤ p <∞, an analogous result holds with u ∈ Lp(Ω;R2) and f ∈W 1,p(Ω).
The proof is based on regularization by convolution and can be found in [15] and [20] (in
the references the case p = 2 is considered, but the general case with 1 ≤ p < ∞ can be
proved in the same way).
Finally, we are going to use the notion of Γ-convergence in metric spaces. For this topic,
we refer to [3], [8].
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Chapter 1

The variational model

In this chapter we introduce a semi-discrete model that describes a system of straight and
parallel edge dislocations in an elastic body, as presented in [6]. For more information
about the derivation of this model we refer to [5]. We work in the setting of linearized
elasticity and we adopt the so-called core-region approach.

1.1 Description of the model

Let Ω ⊂ R2 be a simply connected bounded Lipschitz domain representing the cross section
of an elastic body whose crystalline structure has a cylindrical symmetry. In the context
of linear elasticity, one considers the displacement, given by a function u ∈ H1(Ω;R2),
with the aim of minimizing the elastic energy defined as the functional

(1.1) u 7→
ˆ

Ω
W (Du) dx,

where
W (β) = 1

2 Cβ : β

is the elastic energy density and C is the elasticity tensor. The tensor C identifies a linear
operator from R2×2 in itself that, in the case of an isotropic material as considered here,
has the following form:

Cβ = λ(trβ)I + µ(β + β>) = λ(tr symβ)I + 2µ symβ,

where λ,µ ∈ R are the Lamé moduli. Note that Cβ ∈ Sym(2) for every β ∈ R2×2 and that

(1.2) Cβ1 : β2 = C symβ1 : symβ2

for every β1,β2 ∈ R2×2. Moreover the elasticity tensor is symmetric, i.e., we have

(1.3) Cβ1 : β2 = Cβ2 : β1

for every β1,β2 ∈ R2×2. In addition to this, we assume the elasticity tensor to be positive
definite on symmetric matrices, that is, there exist two constants C1, C2 > 0 such that

(1.4) C1|symβ|2 ≤ Cβ : β ≤ C2|symβ|2

for any β ∈ R2×2. It is easy to check that this is equivalent to requiring λ + µ > 0 and
µ > 0.

1



1. The variational model 1.1 Description of the model

Figure 1.1: (a) The cross section Ω orthogonal to the dislocation lines. (b) The core-
regions and the reduced domain Ωε(µ).

We consider a system of a finite number n of straight edge dislocations orthogonal to
the cross section with Burgers vectors given by b1, . . . ,bn ∈ R2, respectively. In the
model, these defects are identified with the points z1, . . . , zn ∈ Ω given by the intersection
of the dislocation lines with the cross section (see Figure 1.1). The information about
the location of the defects is encoded in the dislocation density, which is the probability
measure defined by

µ = 1
n

n∑
i=1

δzi .

In the presence of dislocations the strain field is a map β : Ω → R2×2 satisfying the
following incompatibility condition:

(1.5) curlβ =
n∑
i=1

bi δzi .

Clearly, for β ∈ L2(Ω;R2×2), equation (1.5) cannot be satisfied since the right hand side
is not in H−1(Ω;R2). On the other hand, by (1.4), it is evident that, in order to minimize
the elastic energy (1.1), we have to consider β ∈ L2(Ω;R2×2). To overcome this problem,
we follow the so called core-region approach (see [6], [10], [12], [21]).
We introduce a small parameter ε > 0, called the core-radius, which should be thought to
be comparable with the atomic spacing in the underlying crystal lattice. Then, for each
defect, we remove from the domain a ball of radius ε centered at the point zi and we
consider the effective domain

Ωε(µ) = Ω \
(

n⋃
i=1

B(zi, ε)
)
.

Here we implicitly assume that the core-radius is sufficiently small in order to have that
B(zi, ε) ⊂⊂ Ω for i = 1, . . . , n. Hence, in analogy with (1.1), we introduce the following
energy functional

(1.6) Eε(µ,β) =
ˆ

Ωε(µ)
W (β) dx

2



1. The variational model 1.2 Structure of admissible strains

defined for β ∈ L2(Ωε(µ);R2×2). The class of admissible fields is then given by

Aε(µ; b1, . . . ,bn) =
{
β ∈L2(Ωε(µ)) : curlβ = 0 in Ωε(µ),

ˆ
∂B(zi,ε)

β t dH 1 = bi
n

for every i = 1, . . . , n
}
.

(1.7)

The condition curlβ = 0 in (1.7) should be intended in the sense of distributions, namely,
for every ϕ ∈ C∞c (Ωε(µ)), it is required that

ˆ
Ωε(µ)

β(x) Dϕ(x)⊥ dx = 0.

The boundary integral in (1.7) should be interpreted as a duality pairing in the sense
of traces. More explicitly, since curlβ = 0, this means that for every i = 1, . . . , n, any
admissible field need to satisfy

−
ˆ

Ωε(µ)
β(x) Dζ(x)⊥ dx = 1

n

n∑
i=1

bi

for every ζ ∈ H1
0 (Ω) such that ζ = 1 on B(zi, ε). Note the order 1/n of the integral

incompatibility condition in (1.7) which is due to the choice of working with probability
measures.
We remark that, instead of the two conditions in (1.7), we could alternatively require the
following circulation condition for the strain:

curlβ = 1
2πnεn

n∑
i=1

biH 1 ∂B(zi, εn) in Ω.

Sometimes, with an abuse of terminology, we are going to refer to the admissible fields
as strain fields. Finally, the equilibrium configurations of the system will be given by the
solutions of the following minimization problem:

(1.8) min
β∈Aε(µ;b1,...,bn)

Eε(µ,β).

1.2 Structure of admissible strains

In order to proceed, we need to introduce a particular class of functions that are going to
be used extensively in our study. For any z0 ∈ Ω and any b ∈ R2, we set

(1.9) Kb(x; z0) = 1
2π|x− z0|2

b⊗ (x− z0)⊥ + Dvb(x− z0),

where
vb(x) = − µ log |x|

2π(λ + 2µ)b⊥ − λ + µ

4π(λ + 2µ)|x|2
(
(b · x⊥)x + (b · x)x⊥

)
.

Henceforth we will refer to this function as the fundamental strain. Indeed the function
in (1.9) can be regarded as the deformation of the whole plane due to the presence of a
single dislocation with Burgers vector b located at the point z0. Clearly we have that

3



1. The variational model 1.2 Structure of admissible strains

Kb(·; z0) ∈ C∞(R2 \ {z0};R2×2). The explicit expressions of the strain (1.9) and of the
corresponding stress are given by

Kb(·; z0) = 1
2π(λ + 2µ)%

{
µ(b · eϑ)e% ⊗ e% + (2λ + 3µ)(b · e%)e% ⊗ eϑ

− µ(b · e%)eϑ ⊗ e% + µ(b · eϑ)eϑ ⊗ eϑ
}(1.10)

and

CKb(·; z0) = µ(λ + µ)
π(λ + 2µ)%

{
(b · eϑ)e% ⊗ e% + (b · e%)e% ⊗ eϑ

+ (b · e%)eϑ ⊗ e% + (b · eϑ)eϑ ⊗ eϑ
}(1.11)

respectively, where we denoted by (%, ϑ) the polar coordinates centered at z0 and by
(e%, eϑ) the associated frame. From (1.10) and (1.11) we deduce that

(1.12) |Kb(x; z0)| ≤ C|b|
|x− z0|

, |CKb(x; z0)| ≤ C|b|
|x− z0|

for every x 6= z0, thus we have Kb(·; z0) ∈ L1
loc(R2;R2×2) and CKb(·; z0) ∈ L1

loc(R2;R2×2).
The fundamental strain satisfies the following circulation condition:

(1.13)
ˆ
∂B(y0,r)

Kb(x; y0) t(x) dH 1(x) = b

for every r > 0. Moreover, straightforward computations show that

(1.14) divCKb(x; z0) = 0, curl Kb(x; z0) = 0 for every x 6= z0,

and actually the field Kb(·; z0) is a distributional solution of the following system:

(1.15)
{

divCKb(·; z0) = 0,
curl Kb(·; z0) = b δz0

in R2.

To prove this, without loss of generality, we can assume that z0 = 0. Consider any
ϕ ∈ C∞c (R2) and take R > 0 such that suppϕ ⊂ B(0, R). We begin with the proof of the
first equation (1.15). We have to show that

(1.16)
ˆ
B(0,R)

CKb(x; z0) Dϕ(x) dx = 0.

By the integrability of the fundamental stress CKb(·; 0), we can write
ˆ
B(0,R)

CKb(x; 0) Dϕ(x) dx = lim
r→0+

ˆ
B(0,R)\B(0,r)

CKb(x; 0) Dϕ(x) dx

= − lim
r→0+

ˆ
B(0,R)\B(0,r)

divCKb(x; 0)ϕ(x) dx

− lim
r→0+

ˆ
∂B(0,r)

CKb(x; 0) n(x)ϕ(x) dH 1(x),

(1.17)

4



1. The variational model 1.2 Structure of admissible strains

where in the last equality we used integration by parts. From (1.14) we deduce that the
first integral at the right hand side of (1.17) is zero, while for the second one we haveˆ

∂B(0,r)
CKb(x; 0) n(x)ϕ(x) dH 1(x)

= µ(λ + µ)
π(λ + 2µ)

ˆ
∂B(0,r)

1
r3

(
(b · x⊥)x + (b · x)x⊥

)
ϕ(x) dH 1(x)

= µ(λ + µ)
π(λ + 2µ)

ˆ
∂B(0,1)

(
(b · y⊥)y + (b · y)y⊥

)
ϕ(ry) dH 1(y),

where in the last equality we performed the change of variables x = ry. Then, using the
Dominated Convergence Theorem, we obtainˆ

∂B(0,1)

(
(b · y⊥)y+(b · y)y⊥

)
ϕ(ry) dy

→
ˆ
∂B(0,1)

(
(b · y⊥)y + (b · y)y⊥

)
ϕ(0) dy, as r → 0+,

and the last integral is zero. Indeed, denoting b = (b1, b2) and y = (y1, y2), we have that
(b · y⊥)y + (b · y)y⊥ = y1y2(b2 − b1)(1, 1) and

´
∂B(0,1) y1y2 dy = 0. Thus (1.16) is proved

and we move to the proof of the second equation in (1.15). We have to prove that

(1.18) −
ˆ
B(0,R)

Kb(x; z0) Dϕ(x)⊥ dx = bϕ(0)

for every ϕ ∈ C∞c (Ω) with suppϕ ⊂ B(0, R). Recalling (1.9), it is sufficient to show that

(1.19) −
ˆ
B(0,R)

1
2π|x|2

(
b⊗ x⊥

)
Dϕ(x)⊥ dx = bϕ(0).

As before, we writeˆ
B(0,R)

1
2π|x|2

(
b⊗ x⊥

)
Dϕ(x)⊥ dx

= lim
r→0+

ˆ
B(0,R)\B(0,r)

1
2π|x|2

(
b⊗ x⊥

)
Dϕ(x)⊥ dx

= − lim
r→0+

ˆ
B(0,R)\B(0,r)

curl
( 1

2π|x|2
(
b⊗ x⊥

))
ϕ(x) dx

− lim
r→0+

ˆ
∂B(0,r)

1
2π|x|2

(
b⊗ x⊥

)
t(x) ϕ(x) dH 1(x),

(1.20)

where we used integration by parts. Again (1.14) entails that the first integral at the right
hand side of (1.20) is zero. For the second one we haveˆ

∂B(0,r)

1
2π|x|2

(
b⊗ x⊥

)
t(x) ϕ(x) dH 1(x) =

ˆ
∂B(0,r)

1
2πrb ϕ(x) dH 1(x)

=
ˆ
∂B(0,1)

1
2πb ϕ(ry) dH 1(y),

where in the last line we set x = ry. Finally, using again the Dominated Convergence
Theorem, we getˆ

∂B(0,1)

1
2πb ϕ(ry) dH 1(y)→

ˆ
∂B(0,1)

1
2πb ϕ(0) dH 1(y) = b ϕ(0), as r → 0+,

5



1. The variational model 1.2 Structure of admissible strains

which gives (1.19).
Now we are going to use the fundamental strains to study the class of admissible strains.
This turns out to have an affine structure as stated in the following result.

Lemma 1.1. (Structure of admissible strains) For every pair of admissible strains
β1,β2 ∈ Aε(µ; b1, . . . ,bn) there exists a function u ∈ H1(Ωε(µ);R2) such that

β1 − β2 = Du in Ωε(µ).

Proof. It is clearly sufficient to show that every β ∈ L2(Ωε(µ);R2×2) satisfying

(1.21) curlβ = 0 in Ωε(µ)

in the sense of distributions and

(1.22)
ˆ
∂B(zi,ε)

β(x) t(x) dH 1(x) = 0, i = 1, . . . , n,

in the sense of traces, is the gradient of a function u ∈ H1(Ωε(µ);R2). Firstly we prove
that this is true in every open set compactly contained in Ωε(µ).
Given δ > 0 small enough, we define Ω′ = {x ∈ Ωε(µ) : d(x, ∂Ωε(µ)) > δ}, so that
Ω′ ⊂⊂ Ωε(µ). Using (1.21) and (1.22), it is easy to see that

(1.23)
ˆ
∂B(zi,ε+δ)

β(x) t(x) dH 1(x) = 0, i = 1, . . . , n

in the sense of traces. We consider a sequence of standard mollifiers (ρk) and we define
the regularized functions βk = β ∗ ρk ∈ C∞(Ω′;R2×2). By the usual properties of the
mollification, for any k we have

curlβk(x) = −
ˆ

Ωε(µ)
β(y) Dρk(x− y)⊥ dy, for every x ∈ Ω′.

From (1.21) it follows that

(1.24) curlβk = 0 in Ω′, for k � 1

in the classical sense. Moreover, we also have βk → β in L2(Ω′;R2×2) as k → ∞ which,
combined with (1.21) and (1.24), says that

βk → β in H(curl; Ω′), as k →∞.

Therefore, by the continuity of the tangential trace operator in H(curl; Ω′), we deduce
that βk t→ β t in H−1/2(∂Ω′;R2), as k →∞, and in particular

(1.25)
ˆ
∂B(zi,ε+δ)

βk(x) t(x) dH 1(x)→
ˆ
∂B(zi,ε+δ)

β(x) t(x) dH 1(x), as k →∞

for i = 1, . . . , n. If we denote by bik ∈ R2 the left hand side in the previous limit, then
from (1.23) and (1.25) we have that bik → 0 as k → ∞. For i = 1, . . . , n we consider the
fundamental strains Kbi

k
(·; zi) which, analogously to (1.13) and (1.14), satisfy

(1.26) curl Kbi
k
(·; zi) = 0 in Ω′

6



1. The variational model 1.2 Structure of admissible strains

and

(1.27)
ˆ
∂B(zj ,ε+δ)

Kbi
k
(x; zi) t(x) dH 1(x) = δijbik

for every k and for j = 1, . . . , n. Here δij denotes the usual Kronecker delta symbol
defined by δij = 1, if i = j, and by δij = 0, otherwise. We now focus on the field
βk −

∑n
i=1 Kbi

k
(·; zi) ∈ C∞(Ω′;R2×2). From (1.24) and (1.26) we know that this field has

zero curl on Ω′ for k � 1. Moreover, recalling the definition of bik and using (1.27), we have
that its circulation along any closed curve in Ω′ is zero. Therefore, by the classical theory,
we know that this field admits a potential, that is, there exists a function uk ∈ C∞(Ω′;R2)
such that

(1.28) βk −
n∑
i=1

Kbi
k
(·; zi) = Duk in Ω′

for k � 1. It is clear that the function uk can be chosen to have zero mean on a fixed ball
B ⊂⊂ Ω′. For i = 1, . . . , n, using (1.12), we have that

(1.29) |Kbi
k
(x; zi)| ≤

C|bik|
|x− zi|

≤ C|bik|
ε+ δ

for every x ∈ Ω′. Since bik → 0 as k → ∞, we deduce from (1.29) that Kbi
k
(·; zi) → 0

uniformly on Ω′ and hence in L2(Ω′;R2×2), as k →∞. Thus, recalling (1.28), we have

||Duk||L2(Ω′;R2×2) ≤ ||βk||L2(Ω′;R2×2) +
n∑
i=1
||Kbi

k
(·; zi)||L2(Ω′;R2×2) ≤ C

and applying the Poincaré-Wirtinger inequality we obtain

||uk||L2(Ω′;R2) =
∥∥∥∥uk −  

B
uk dx

∥∥∥∥
L2(Ω′;R2)

≤ C||Duk||L2(Ω′;R2×2) ≤ C.

Hence, by weak compactness, there exist a subsequence (uk`) and a function u ∈ H1(Ω′;R2)
such that uk` ⇀ u in H1(Ω′;R2), as ` → ∞. On the other hand, passing to the limit in
(1.28), as ` → ∞, we see that Duk` → β in L2(Ω′;R2×2), as ` → ∞. Therefore, we
conclude that β = Du a.e. in Ω′, as claimed.
Now we extend the result to the whole domain Ωε(µ). Consider a sequence of open sets
(Ωh) ⊂ Ωε(µ) such that Ωh ⊂⊂ Ωh+1 ⊂⊂ Ωε(µ) and Ωε(µ) =

⋃∞
h=1 Ωh. Using the previous

arguments, we can show that, for every h, there exists uh ∈ H1(Ωh;R2) such that β = Duh
a.e. in Ωh and

ffl
B uh dx = 0, where B is a fixed ball with B ⊂⊂ Ω1. In this case, for

every h we have Duh+1 = Duh a.e. in Ωh, hence uh+1 = uh + a a.e. in Ωh for some
constant a ∈ R2. Using the zero mean condition on B, we deduce that uh+1 = uh a.e. in
Ωh. Therefore, if we set u(x) = uh(x) for x ∈ Ωh, then the resulting function u is well-
defined with u ∈ L2

loc(Ωε(µ);R2) and Du = β in Ωε(µ) in the sense of distributions. Since
Ωε(µ) is a Lipschitz domain, this implies that u ∈ L2(Ωε(µ);R2) (see Corollary at p.23 in
[19] or Theorem 7.6 in [22]), so that u ∈ H1(Ωε(µ);R2), as desired. This fact can be also
proved directly by means of the following truncation argument. Set u = (u1, u2) and define
uM1 = (u1 ∧M)∨ (−M) where M > 0. Then uM1 ∈ H1(Ωε(µ)) with DuM1 = Du1χ{|u1|<M}
and by the Poincaré-Wirtinger inequality we have∥∥∥∥uM1 −  

B
uM1 (x) dx

∥∥∥∥
L2(Ωε(µ))

≤ C||DuM1 ||L2(Ωε(µ);R2) ≤ C||β||L2(Ωε(µ);R2×2).

7



1. The variational model 1.3 Existence and uniqueness of the minimizer

Thus, since uM1 → u1 a.e. and
ffl
B u

M
1 →

ffl
B u1 = 0 as M → +∞, by the Fatou Lemma we

obtain ˆ
Ωε(µ)

|u1|2 dx =
ˆ

Ωε(µ)

∣∣∣∣u1 −
 
B
u1 dy

∣∣∣∣2 dx

≤ lim inf
M→+∞

ˆ
Ωε(µ)

∣∣∣∣uM1 −  
B
uM1 dy

∣∣∣∣2 dx

≤ C
ˆ

Ωε(µ)
|β|2 dx < +∞

that is, u1 ∈ L2(Ωε(µ)). Applying the same argument to u2, we finally conclude that
u ∈ L2(Ωε(µ);R2).

1.3 Existence and uniqueness of the minimizer

We are now ready to prove the existence of solutions for the minimization problem (1.8).
Since our assumptions ensure the convexity of the functional Eε(µ, ·), we have the following
minimality criterion.

Proposition 1.2. Let β ∈ Aε(µ; b1, · · · ,bn). Then β is a solution of the minimization
problem (1.8) if and only if β is a weak solution of the following Neumann problem

(1.30)
{

divCβ = 0 in Ωε(µ),
Cβ n = 0 on ∂Ωε(µ).

Proof. By (1.4), the quadratic form W is positive semidefinite and thus the functional
Eε(µ, ·) is convex. Moreover, the class of admissible fields is also convex. Hence, by
standard arguments in the Calculus of Variations, we know that β is a minimizer if and
only if it satisfies the Euler-Lagrange equations. By Lemma 1.1, any admissible field is of
the form β+ Dw for some w ∈ H1(Ωε(µ);R2). Hence, for a real parameter t, we compute

Eε(µ,β + tDw) =
ˆ

Ωε(µ)
W (β) dx + t

ˆ
Ωε(µ)

Cβ : Dw dx + t2
ˆ

Ωε(µ)
W (Dw) dx,

where we used (1.3). Thus we easily deduce that the Euler-Lagrange equations take the
following form;

(1.31) ∀w ∈ H1(Ωε(µ);R2),
ˆ

Ωε(µ)
Cβ : Dw dx = 0,

which is the weak formulation of (1.30).

Remark 1.3. Consider any strain field β. Note that, by (1.2), for every infinitesimal
rigid-body motion η, we have Eε(µ,β+ Dη) = Eε(µ,β). Hence it is clear that we cannot
expect uniqueness of solutions for problem (1.8). Note that this fact is consistent with the
form (1.31) of the Euler-Lagrange equations.

In the particular case of a single dislocation in the whole plane, the solutions of (1.30) are
explicitly known in the literature (see [16]). For Ω = R2, we consider a defect located at
the point z0 and with Burgers vector given by b. Then, using the previous notation, we
have µ = δz0 and Ωε(µ) = R2 \B(z0, ε). We define

(1.32) Kε
b(x; z0) = Kb(x; z0) + ε2Dwb(x− z0),

8



1. The variational model 1.3 Existence and uniqueness of the minimizer

where
wb(x) = λ1 + λ2

4π(λ1 + 2λ2)|x|4
{

(b · x⊥)x + (b · x)x⊥
}

while the fundamental strain Kb(·; z0) has been introduced in (1.9). Clearly, wb ∈
C∞(R2 \ {0};R2) and it easy to check that

(1.33) |wb(x)| ≤ C|b|
|x|2 , |Dwb(x)| ≤ C|b|

|x|3 , |CDwb(x)| ≤ C|b|
|x|3

for every x 6= z0. Then, a direct computation shows that

(1.34)
{

divCKε
b(·; z0) = 0 in R2 \B(z0, ε),

CKε
b(·; z0)n = 0 on ∂B(z0, ε)

in the classical sense. Note that the field in (1.32) satisfies the two conditions in (1.7).
Indeed, from (1.13) and (1.15), we trivially have that

(1.35)
ˆ
∂B(y0,r)

Kε
b(x; z0) t(x) dH 1(x) = b

and

(1.36) curl Kε
b(·, z0) = 0 in R2 \B(z0, ε).

Moreover, it also satisfies

(1.37)
ˆ

Ωε(µ)

(
Kε

b(x; z0)−Kε
b(x; z0)>

)
dx = 0.

However, the field Kε
b(·; z0) is not admissible since it is not in L2(R2 \B(z0, ε);R2×2), so

that its energy is not finite.
Now we go back to the general case of n dislocations in the bounded domain Ω ⊂ R2. Set,
for simplicity, Ki = Kbi , wi = wbi and Kε

i = Kε
bi . From (1.35) and (1.36), we have that

1
n

n∑
i=1

Kε
i (·; zi) ∈ Aε(µ; b1, · · · ,bn),

hence, by Lemma 1.1, every admissible field has the form

(1.38) β = 1
n

n∑
i=1

Kε
i (·; zi) + Du

for some u ∈ H1(Ωε(µ);R2). Hence, using (1.3) and (1.38), we can write the energy
corresponding to an admissible field β as

Eε(µ,β) = 1
2n2

n∑
i,j=1

ˆ
Ωε(µ)

CKε
i (x; zi) : Kε

j(x; zj) dx

+
ˆ

Ωε(µ)
W (Du(x)) dx + 1

n

n∑
i=1

ˆ
Ωε(µ)

CKε
i (x; zi) : Du(x) dx.

Applying integration by parts to the last integral at the right hand side and recalling
(1.34), we obtain that

Eε(µ,β) = 1
2n2

n∑
i,j=1

ˆ
Ωε(µ)

CKε
i (x; zi) : Kε

j(x; zj) dx + Iε(µ,u),(1.39)
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1. The variational model 1.3 Existence and uniqueness of the minimizer

where we have introduced the auxiliary functional

(1.40) Iε(µ,v) =
ˆ

Ωε(µ)
W (Dv(x)) dx + 1

n

n∑
i=1

ˆ
∂Ωε(µ)

v(x) · CKε
i (x; zi)n(x) dH 1(x)

defined for v ∈ H1(Ωε(µ);R2). Therefore, from (1.39), we see that solving (1.8) is equiva-
lent to solving the following minimization problem:

(1.41) min
u∈H1(Ωε(µ);R2)

Iε(µ,u).

Recalling Remark 1.3, we deduce from (1.39) that the functional Iε(µ, ·) is invariant with
respect to infinitesimal rigid-body motion. This suggests to look for a minimizer in the
class
(1.42)

Y ε
µ (Ω) =

{
v ∈ H1(Ωε(µ);R2) :

ˆ
B0

v(x) dx = 0,
ˆ
B0

(Dv(x)−Dv(x)>) dx = 0
}
,

where B0 ⊂⊂ Ωε(µ) is a fixed ball. Moreover, the conditions in (1.42) are needed in order
to guarantee the coerciveness of Iε(µ, ·) and, in turn, the existence of a minimizer.

Lemma 1.4. (Minimization of the auxiliary functional) There exists a unique
minimizer uεµ ∈ H1(Ωε(µ);R2) of the functional Iε(µ, ·) in the class Y ε

µ (Ω).

Proof. First of all we note that, for i = 1, . . . , n, the function CKε
i (·, zi) is bounded on

∂Ωε(µ). Indeed, for every x ∈ ∂Ωε(µ) we have |x − zi| ≥ ε for i = 1, . . . , n, hence, from
(1.12), (1.32) and (1.33), we easily deduce that

(1.43) |CKε
i (x; zi)| ≤ |CKε

i (x; zi)|+ ε2|CDwi(x− zi)| ≤
C|bi|
ε

for every x ∈ ∂Ωε(µ). Taking into account this fact, it is easy to see that the functional
Iε(µ, ·) is continuous on H1(Ωε(µ);R2). Moreover, by (1.4), it is also convex, and hence it
is weakly lower semicontinuous on H1(Ωε(µ);R2). Take any v ∈ Y ε

µ (Ω). Using (1.4) and
the Korn inequality, we have that

(1.44)
ˆ

Ωε(µ)
W (Dv(x)) dx ≥ C||v||2H1(Ωε(µ);R2).

Futhermore, using (1.43) and the trace inequality, we have∣∣∣∣∣ 1n
n∑
i=1

ˆ
∂Ωε(µ)

v(x)·CKε
i (x; zi)n(x) dH 1(x)

∣∣∣∣∣
≤ 1
n

n∑
i=1
||CKε

i (·; zi)||L∞(∂Ωε(µ);R2×2)

ˆ
∂Ωε(µ)

|v(x)| dH 1(x)

≤ C||v||L2(∂Ωε(µ);R2) ≤ C||v||H1(Ωε(µ);R2),

(1.45)

where the constant C > 0 depends on ε, n and, the Burgers vectors. Thus, combining
(1.44) and (1.45), we obtain that there exists two constants C1, C2 > 0 such that

(1.46) Iε(µ,v) ≥ C1||v||2H1(Ωε(µ);R2) − C2||v||H1(Ωε(µ);R2)

for every v ∈ Y ε
µ (Ω), that is the functional Iε(µ, ·) is weakly coercive on Y ε

µ (Ω). Therefore,
by the Direct Method, we have the existence of a minimizer in this class. To prove its

10
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uniqueness, suppose that u1,u2 ∈ Y ε
µ (Ω) are two minimizers. Then they solve the following

Euler-Lagrange equations:
(1.47)

∀v ∈ Y ε
µ (Ω),

ˆ
Ωε(µ)

CDu1 : Dv dx + 1
n

n∑
i=1

ˆ
∂Ωε(µ)

v(x) · CKi(x; zi)n(x) dH 1(x) = 0,

(1.48)

∀v ∈ Y ε
µ (Ω),

ˆ
Ωε(µ)

CDu2 : Dv dx + 1
n

n∑
i=1

ˆ
∂Ωε(µ)

v(x) · CKi(x; zi)n(x) dH 1(x) = 0.

Subtracting (1.47) and (1.48) and then choosing v = u1 − u2, we obtain
ˆ

Ωε(µ)
CD(u1 − u2) : D(u1 − u2) dx = 0,

from which, using (1.4), we deduce E(u1 − u2) = 0. Thus, u1 and u2 differ for an
infinitesimal rigid-body motion and, by (1.42), we conclude that u1 = u2.

Remark 1.5. In order to conclude that uεµ is also a solution of (1.41), we have to show
that

(1.49) inf
u∈H1(Ωε(µ);R2)

Iε(µ,u) = inf
u∈Y εµ (Ω)

Iε(µ,u).

To prove this, we take any u ∈ H1(Ωε(µ);R2) and we show that there exist a competitor
in Y ε

µ (Ω) with the same energy. We set

A = 1
2

 
B0

(Du(y)> −Du(y)) dy, a = −A
 
B0

y dy−
 
B0

u(y) dy.

Then A ∈ Skew(2), so that η(x) = Ax + a defines an infinitesimal rigid-body motion. If
we consider v = u + η, then we can easily check that v ∈ Y ε

µ (Ω). Moreover, we have that
Iε(µ,v) = Iε(µ,u) and this proves (1.49).

Finally, given a solution of (1.41), a solution of (1.8) is trivially obtained. In the proof of
the following result, we briefly resume the whole argument used.

Theorem 1.6. (Existence and uniqueness of the minimizer) The problem (1.8)
has a unique solution βεµ ∈ Aε(µ; b1, . . . ,bn) satisfying

(1.50)
ˆ

Ωε(µ)

(
βεµ(x)− βεµ(x)>

)
dx = 0.

Proof. Consider the unique solution uεµ ∈ H1(Ωε(µ);R2) of (1.41) given by Lemma 1.4.
Looking at the decomposition (1.38), we define

βεµ = 1
n

n∑
i=1

Ki(·; zi) + Duεµ.

By (1.39) and the minimality of uεµ we clearly have that βεµ is a minimizer of the functional
Eε(µ, ·) in the class of admissible fields. Moreover, combining (1.37) and (1.42), we see
that the field βεµ satisfies the condition (1.50).

11



1. The variational model 1.3 Existence and uniqueness of the minimizer

To prove uniqueness, suppose that β1,β2 ∈ Aε(µ; b1, . . . ,bn) are two minimizers satisfying
condition (1.50). By Proposition 1.2, β1 and β2 solve the Euler-Lagrange equations (1.31).
If we subtract the two corresponding expressions, then we obtain

(1.51) ∀w ∈ H1(Ωε(µ);R2),
ˆ

Ωε(µ)
C(β1 − β2) : Dw dx = 0.

By Lemma 1.1, we have that β1−β2 = Du for some u ∈ H1(Ωε(µ);R2). Hence, choosing
w = u in (1.51), we obtain ˆ

Ωε(µ)
CDu : Du dx = 0,

from which, by (1.4), we deduce that Eu = 0. Therefore β1 and β2 differ for a constant
skew-symmetric matrix but, by (1.50), it has to be the zero matrix.

12



Chapter 2

The Γ-convergence of the
renormalized energy

In this chapter we introduce the renormalized energy and we compute its Γ-limit, as the
total number of dislocations goes to infinity. This is a slight generalization of the analogous
statement obtained in [21] and constitutes the original contribution of this work. Here the
case of two different Burgers vectors is considered, under the hypothesis that their scalar
product is positive, so that the energy is a function of two measures, each encoding the
information about the location of the defects corresponding to one Burgers vector.

2.1 The main result

In this chapter we restrict ourselves to the situation in which there are only two possible
Burgers vectors b1,b2 ∈ R2 with the assumption that b1 · b2 > 0. In this case we have
two families of dislocations, each corresponding to one of them, located respectively at the
points {yi : i = 1, . . . , N} and {zi : i = 1, . . . ,M} with n = N +M .
Since we are interested in the behaviour of the system as the total number n of dislocations
goes to infinity, we introduce the following setting. We consider two sequences of positive
integers (Nn) and (Mn) giving the number of dislocations with Burgers vector b1 and b2,
respectively, so that n = Nn + Mn for every n. Moreover we denote by 0 < m < 1 the
asymptotic proportion of the family of dislocations with Burgers vector b1, namely we
assume that Nn/n→ m and Mn/n→ 1−m, as n→∞. We introduce also two sequences
of positive real parameters (εn) and (rn) representing the core-radius and the minimum
distance between the defects. Moreover we fix a positive real parameter r0 and we assume
the following:

• (Confinement) All the dislocations are located in a fixed open set Ω0 ⊂⊂ Ω, with
d(Ω0, ∂Ω) ≥ r0;

• (Well-separation) For every n, the distance between any pair of dislocations is at
least rn;

• (Asymptotic relations) The following relations hold:

(2.1) εn → 0, rn → 0, εn/r
3
n → 0, nr2

n → 0, as n→∞.

We can assume that εn < r0/2 for every n. Moreover we choose the ball B0 in (1.42) in
order to have d(x, ∂Ω) < r0/2 for every x ∈ B0. Taking into account the confinement

13



2. The Γ-convergence of the renormalized energy 2.1 The main result

hypothesis, we introduce the following space of measures

X (Ω) = {µ ∈M+
b (Ω) : suppµ ⊆ Ω0, µ(Ω) ≤ 1}

and we endow it with the topology induced by the weak* topology of rba(Ω), that is
by the narrow topology of bounded Radon measures. It is easy to see that X (Ω) is
isomorphic toM+

1 (Ω0) = {µ ∈M+
b (Ω0) : µ(Ω0) ≤ 1} with respect to the weak* topology.

This, as a bounded subset of rba(Ω0) ∼=
(
Cb(Ω0)

)′
, is weakly* compact by the Banach-

Alaoglu Theorem; moreover, since Ω0 is compact so that Cb(Ω0) is separable, it is weakly*
metrizable. Thus we get that also X (Ω) is compact, hence closed, and metrizable.
For each n, we define the two sets of empirical measures

(2.2) X1
n =

{
1
n

Nn∑
i=1

δyi : yi ∈ Ω0

}
, X2

n =
{

1
n

Mn∑
i=1

δzi : zi ∈ Ω0

}

and we introduce the family of the dislocation densities satisfying the well-separation
condition

Xn =
{

1
n

n∑
i=1

δxi : xi ∈ Ω0, |xi − xj | ≥ rn ∀i 6= j

}
.

Now, consider two empirical measures µ1 ∈ X1
n and µ2 ∈ X2

n for a certain n. We recall
from (1.39) that, highlighting the dependence on the Burgers vector, the minimum energy
is given by

Eεn(µ1 + µ2,βεµ1+µ2) = 1
2n2

Nn∑
i=1

ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; yi) : Kεn

1 (x; yi) dx

+ 1
2n2

Mn∑
i=1

ˆ
Ωεn (µ1+µ2)

CKεn
2 (x; zi) : Kεn

2 (x; zi) dx

+ 1
2n2

Nn∑
i=1

∑
i 6=j

ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; yi) : Kεn

1 (x; yj) dx

+ 1
2n2

Mn∑
i=1

∑
i 6=j

ˆ
Ωεn (µ1+µ2)

CKεn
2 (x; zi) : Kεn

2 (x; zj) dx

+ 1
n2

Nn∑
i=1

Mn∑
j=1

ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; yi) : Kεn

2 (x; zj) dx

+ Iεn(µ1 + µ2,uεnµ1+µ2)

where βεµ1+µ2 and uεµ1+µ2 are defined as in Theorem 1.6 and Lemma 1.4, respectively. The
renormalized energy is obtained from the right hand side in the equation above by removing
the self-energy, which is given by the first two terms, and is defined as a functional acting
on the pair of measures (µ1, µ2).
Therefore we define the functionals

Fn : X (Ω)×X (Ω)→ R ∪ {+∞}

and
Gn : X (Ω)×X (Ω)→ R ∪ {+∞}

14



2. The Γ-convergence of the renormalized energy 2.1 The main result

as follows: if µ1 ∈ X1
n and µ2 ∈ X2

n are such that µ1 + µ2 ∈ Xn, then we set

Fn(µ1, µ2) = 1
2n2

Nn∑
i=1

∑
i 6=j

ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; yi) : Kεn

1 (x; yj) dx

+ 1
2n2

Mn∑
i=1

∑
i 6=j

ˆ
Ωεn (µ1+µ2)

CKεn
2 (x; zi) : Kεn

2 (x; zj) dx

+ 1
n2

Nn∑
i=1

Mn∑
j=1

ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; yi) : Kεn

2 (x; zj) dx

and
Gn(µ1, µ2) = Iεn(µ1 + µ2,uεnµ1+µ2)

otherwise we define Fn(µ1, µ2) = Gn(µ1, µ2) = +∞. The functional Fn represents the
pairwise interaction between dislocations, and we call it the interaction energy, while
Gn takes into account the interaction of dislocations with the boundary. Finally, the
renormalized energy is defined as

En : X (Ω)×X (Ω)→ R ∪ {+∞}

given by
En(µ1, µ2) = Fn(µ1, µ2) + Gn(µ1, µ2).

As we mentioned, we are going to study its behaviour, as n → ∞, in the sense of Γ-
convergence. To this aim, it is convenient to rewrite the interaction energy for a pair of
admissible empirical measure, using the notation above, as

Fn(µ1, µ2) = 1
2

¨
Ω×Ω

(ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; y) : Kεn

1 (x; z) dx
)

d(µ1 � µ1)(y, z)

+ 1
2

¨
Ω×Ω

(ˆ
Ωεn (µ1+µ2)

CKεn
2 (x; y) : Kεn

2 (x; z) dx
)

d(µ2 � µ2)(y, z)

+
¨

Ω×Ω

(ˆ
Ωεn (µ1+µ2)

CKεn
1 (x; y) : Kεn

2 (x; z) dx
)

d(µ1 ⊗ µ2)(y, z),

where we defined µ1�µ1 =
∑Nn
i=1

∑
j 6=i δ(yi,yj) and analogously µ2�µ2 =

∑Mn
i=1

∑
j 6=i δ(zi,zj).

This expression suggests to introduce the interaction potentials

V1, V2, V1,2 : Ω× Ω→ R ∪ {+∞}

defined as

V1(y, z) =
{´

Ω CK1(x; y) : K1(x; z) dx y 6= z,
+∞ y = z,

V2(y, z) =
{´

Ω CK2(x; y) : K2(x; z) dx y 6= z,
+∞ y = z,

V1,2(y, z) =
{´

Ω CK1(x; y) : K2(x; z) dx y 6= z,
+∞ y = z.

The limiting interaction energy will be given by the functional

F : X (Ω)×X (Ω)→ R ∪ {+∞}

15



2. The Γ-convergence of the renormalized energy 2.1 The main result

defined for a pair of measures (ν1, ν2) by setting

F(ν1, ν2) = 1
2

¨
Ω×Ω

V1(y, z) d(ν1 ⊗ ν1)(y, z)

+ 1
2

¨
Ω×Ω

V2(y, z) d(ν2 ⊗ ν2)(y, z)

+
¨

Ω×Ω
V1,2(y, z) d(ν1 ⊗ ν2)(y, z)

(2.3)

if ν1(Ω) = m and ν2(Ω) = 1 − m, and F(ν1, ν2) = +∞ otherwise. For what concerns
Gn, we recall from Lemma 1.4 and Remark 1.5 that it is defined, for a pair of admissible
measures as above, as

Gn(µ1, µ2) = min
{
Iεn(µ1 + µ2,v) : v ∈ H1(Ωεn(µ1 + µ2);R2)

}
,

where

Iεn(µ1 + µ2,v) =
ˆ

Ωεn (µ1+µ2)
W (Dv(x)) dx

+ 1
n

Nn∑
i=1

ˆ
∂Ωεn (µ1+µ2)

v(x) · CKεn
1 (x; yi)n(x) dH 1(x)

+ 1
n

Mn∑
i=1

ˆ
∂Ωεn (µ1+µ2)

v(x) · CKεn
2 (x; zi)n(x) dH 1(x).

Again, if we rewrite the energy by highlighting the dependence on the empirical measures,
that is,

Iεn(µ1 + µ2,v) =
ˆ

Ωεn (µ1+µ2)
W (Dv(x)) dx

+
ˆ

Ω

(ˆ
∂Ωεn (µ1+µ2)

v(x) · CKεn
1 (x; y)n(x) dH 1(x)

)
dµ1(y)

+
ˆ

Ω

(ˆ
∂Ωεn (µ1+µ2)

v(x) · CKεn
2 (x; z)n(x) dH 1(x)

)
dµ2(z)

then we can guess the form of the corresponding limiting energy. This turns out to be
given, for a pair of measures (ν1, ν2), as the infimum of the following auxiliary functional

I(ν1, ν2,v) =
ˆ

Ω
W (Dv(x)) dx

+
ˆ

Ω

(ˆ
∂Ω

v(x) · CK1(x; y)n(x) dH 1(x)
)

dν1(y) +

+
ˆ

Ω

(ˆ
∂Ω

v(x) · CK2(x; z)n(x) dH 1(x)
)

dν2(z)

(2.4)

defined for v ∈ H1(Ω;R2). More explicitly, we define

G : X (Ω)×X (Ω)→ R ∪ {+∞}

by setting

(2.5) G(ν1, ν2) = inf
{
I(ν1, ν2,v) : v ∈ H1(Ω;R2)

}
16
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if ν1(Ω) = m and ν2(Ω) = 1−m, and G(ν1, ν2) = +∞ otherwise. As we will see later, this
infimum turns out to be actually a minimum.
Thus the limiting energy is defined as

E : X (Ω)×X (Ω)→ R ∪ {+∞}, E(ν1, ν2) = F(ν1, ν2) + G(ν1, ν2).

We are now ready to present the main result. We are going to assume the following:

(2.6) there exists a point x0 ∈ Ω0 such that, given the homothety ωϑ
centered at x0 with parameter 0 < ϑ < 1, we have ωϑ(Ω0) ⊂⊂ Ω0.

Note that this assumption is satisfied, for example, if Ω0 is convex.

Theorem 2.1. (Γ-convergence) Assume (2.1) and (2.6). Then the renormalized energy
En Γ-converges to the functional E, as n → ∞, with respect to the product topology of
X (Ω)×X (Ω).

Note that, since the topology of X (Ω) is metrizable, we can use the sequential notion of
Γ-convergence. As we are going to see, assumption (2.6) is needed in the construction of
the recovery sequence in the Limsup inequality.

2.2 Preliminary results

Before proving the Γ-convergence theorem, we need some preliminary results. The first
one states some properties of the interaction potentials that appear in the expression (2.3)
of the limiting interaction energy. Before presenting it, we note that, by (1.9), we have∣∣∣∣ˆ

Ω
CKi(x; y) : Kj(x; z) dx

∣∣∣∣ ≤ C |bi| |bj | ˆ
Ω

1
|x− y| |x− z| dx < +∞

for y 6= z and i, j = 1, 2, so that the interaction potentials are well-defined.

Lemma 2.2. (Properties of the interaction potentials) Let V be one of the interac-
tion potentials V1, V2 and V1,2. Then V is continuous on Ω×Ω and the following estimates
hold:

(i) there exists two constants C > 0 and L > 0 such that for every y, z ∈ Ω with y 6= z

(2.7) |V (y, z)| ≤ C(1 + logL− log |y− z|);

(ii) for every open set Ω′ ⊂⊂ Ω there exists two positive constants C ′ > 0 and R′ > 0,
both depending on Ω′, such that for every y, z ∈ Ω′ with 0 < |y− z| < R′

(2.8) V (y, z) ≥ C ′(1− log |y− z|).

Moreover the potentials V1 and V2 are symmetric.

Remark 2.3. The constants C and C ′ given by Lemma 2.2 depend on b1, b2 or both
in the case that, as V , we consider V1, V2, or V1,2, respectively. In particular, as we are
going to point out in the proof, the hypothesis b1 ·b2 > 0 is needed in order to ensure the
positivity of the constant C ′ for V = V1,2.
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Proof. The symmetry of the potentials V1 and V2 follows from that of the elasticity tensor.
For the proof of (i), fix y, z ∈ Ω with y 6= z. Choose L ≥ 2|y− z| such that Ω ⊆ B(z, L),
say L = 2 diamΩ, and set x̃ = x− z and ỹ = y− z. Then

|V (y, z)| ≤ C

ˆ
Ω

1
|x− y| |x− z| dx

≤ C

ˆ
B(z,L)

1
|x− y| |x− z| dx

= C

ˆ
B(0,L)

1
|x̃| |x̃− ỹ| dx̃

= C

ˆ
B(0,2|ỹ|)

1
|x̃| |x̃− ỹ| dx̃ + C

ˆ
B(0,L)\B(0,2|ỹ|)

1
|x̃| |x̃− ỹ| dx̃

(2.9)

For the first integral, we split it as
ˆ
B(0,2|ỹ|)

1
|x̃| |x̃− ỹ| dx̃ =

ˆ
B(0,|ỹ|/2)

1
|x̃| |x̃− ỹ| dx̃ +

ˆ
B(ỹ,|ỹ|/2)

1
|x̃| |x̃− ỹ| dx̃

+
ˆ
B(0,2|ỹ|)\{B(0,|ỹ|/2)∪B(ỹ,|ỹ|/2)}

1
|x̃| |x̃− ỹ| dx̃.

Note that, if |x̃| ≤ |ỹ|/2, then

|x̃− ỹ| ≥ ||x̃| − |ỹ|| = |ỹ| − |x̃| ≥ |ỹ| − |ỹ|/2 = |ỹ|/2

and thus

(2.10)
ˆ
B(0,|ỹ|/2)

1
|x̃| |x̃− ỹ| dx̃ ≤ 2

|ỹ|

ˆ
B(0,|ỹ|/2)

1
|x̃|

dx̃ = 2π.

Analogously, if |x̃ − ỹ| ≤ |ỹ|/2, then it is easy to see that |x̃| ≥ |ỹ|/2 and, using this, to
show that

(2.11)
ˆ
B(ỹ,|ỹ|/2)

1
|x̃| |x̃− ỹ| dx̃ ≤ 2π.

Finally,

(2.12)
ˆ
B(0,2|ỹ|)\{B(0,|ỹ|/2)∪B(ỹ,|ỹ|/2)}

1
|x̃| |x̃− ỹ| dx̃ ≤ 4

|ỹ|2

ˆ
B(0,2|ỹ|)

dx̃ = 16π.

Hence, combining (2.10)-(2.12), we obtain
ˆ
B(0,2|ỹ|)

1
|x̃| |x̃− ỹ| dx̃ ≤ 20π.

The second integral in the last line of (2.9) can be easily bounded using the reverse triangle
inequality and polar coordinates as follows:
ˆ
B(0,L)\B(0,2|ỹ|)

1
|x̃| |x̃− ỹ| dx̃ ≤

ˆ
B(0,L)\B(0,2|ỹ|)

1
|x̃| (|x̃| − |ỹ|) dx̃ = 2π

ˆ L

2|ỹ|

1
r − |ỹ| dr

= 2π log
(
L

|ỹ| − 1
)

= 2π log
(

L

|y− z| − 1
)

≤ 2π log L

|y− z| .
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Figure 2.1: Connecting cut technique

Thus, we conclude that

|V (y, z)| ≤ C
(

20π + 2π log L

|y− z|

)
≤ C

(
1 + log L

|y− z|

)
which is exactly (2.7).
We now prove (ii). For simplicity, we deal with the case V = V1. Take an open set Ω′
with Ω′ ⊂⊂ Ω and fix two distinct points y, z ∈ Ω′. Here we use an argument taken
from [6]. Consider the line ` passing through y and z and denote by γy,z the segment
on it connecting z to ∂Ω; this can be parametrized via s 7→ z + s (z− y)/|z− y| where
0 ≤ s ≤ sy,z, so that the unit normal is given by my,z = (z− y)⊥/|z− y|. Since Ω \ γy,z
is simply-connected and K1(·; z) is smooth in this set with vanishing curl, by the classical
Poincaré Lemma there exists a function vy,z ∈ C∞(Ω\γy,z;R2) such that Dvy,z = K1(·; z)
with zero mean on B0. It is easy to see that, except at the ending points, if x ∈ γy,z, then
the one-sided limits

v+
y,z(x) = lim

ξ→x, ξ·my,z>0
vy,z(ξ), v−y,z(x) = lim

ξ→x, ξ·my,z<0
vy,z(ξ)

exists and are finite, and thus the jump [vy,z](x) = v+
y,z(x) − v−y,z(x) is well-defined.

Moreover, if we compute the circulation of K1(·; z), for example, along ∂B(z, r) with
r = |x−z| using a counter-clockwise parametrization α : [0, 1]→ R2 with α(0) = α(1) = x,
then we obtain

b1 =
ˆ
∂B(z,r)

K1(ξ; z)t(ξ) dH 1(ξ) =
ˆ
∂B(z,r)

Dvy,z(ξ)t(ξ) dH 1(ξ) =

=
ˆ 1

0
Dvy,z(α(t))α′(t) dt = lim

h→0+

ˆ 1−h

h
Dvy,z(α(t))α′(t) dt =

= lim
h→0+

{vy,z(α(1− h))− vy,z(α(h))} = v−y,z(x)− v+
y,z(x) = −[vy,z](x).

(2.13)

Thus we have that [vy,z] = −b1. Clearly vy,z ∈ W 1,1
loc (Ω \ γy,z;R2) with Dvy,z ∈

L1(Ω;R2×2). Therefore we can conclude that vy,z ∈ L1(Ω;R2) (see Corollary at p.23
in [19] or Theorem 7.6 in [22]). This can be also proved directly using the following
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truncation argument. Set vy,z = (v1, v2) and consider vM1 = (v1 ∧ M) ∨ (−M) where
M > 0. Clearly vM1 ∈ L∞(Ω), moreover it is easy to see that vM1 ∈ W 1,1(Ω \ γy,z) with
DvM1 = Dv1χ{|v1|<M}. Using the Poincaré-Wirtinger inequality, we get∥∥∥∥∥vM1 −

 
B0

vM1 dx
∥∥∥∥∥
L1(Ω)

≤ C||DvM1 ||L1(Ω;R2) ≤ C||Dv1||L1(Ω;R2).

Since vM1 → v1 a.e. and
ffl
B v

M
1 dx→

ffl
B v1 dx = 0 as M → +∞, by the Fatou Lemma we

conclude thatˆ
Ω
|v1| dx =

ˆ
Ω

∣∣∣∣∣v1 −
 
B0

v1 dξ
∣∣∣∣∣ dx

≤ lim inf
M→+∞

ˆ
Ω

∣∣∣∣∣vM1 −
 
B0

vM1 dξ
∣∣∣∣∣ dx ≤ C

ˆ
Ω
|Dv1| dx < +∞,

that is, v1 ∈ L1(Ω). Applying the same argument to v2, we prove that vy,z ∈ L1(Ω;R2),
hence vy,z ∈W 1,1(Ω \ γy,z;R2).
Let γ̃y,z be the segment on ` connecting z to ∂Ω parametrized by s 7→ z + s(z−y)/|z−y|
with s̃y,z ≤ s ≤ 0. Denote by Ω1 and Ω2 the two open sets in which Ω is partitioned by
γ̃y,z ∪ γy,z. Consider ϕ ∈ C∞c (Ω;R2). Integrating by parts, we have

ˆ
Ω1

vy,z divϕ dx = −
ˆ

Ω1

Dvy,z ϕ dx +
ˆ
∂Ω1

vy,z (ϕ · n) dH 1 =

= −
ˆ

Ω1

K1(x; z) ϕ(x) dx−
ˆ
γ̃y,z

vy,z (ϕ ·my,z) dH 1

−
ˆ
γy,z

v+
y,z (ϕ ·my,z) dH 1

(2.14)

and ˆ
Ω2

vy,z divϕ dx = −
ˆ

Ω2

Dvy,z ϕ dx +
ˆ
∂Ω2

vy,z (ϕ · n) dH 1 =

= −
ˆ

Ω2

K1(x; z) ϕ(x) dx +
ˆ
γ̃y,z

vy,z (ϕ ·my,z) dH 1

+
ˆ
γy,z

v−y,z (ϕ ·my,z) dH 1.

(2.15)

Hence, summing (2.14) and (2.15) and recalling that [vy,z] = −b1, we obtain

−
ˆ

Ω
vy,z divϕ dx =

ˆ
Ω

K1(x; z) ϕ(x) dx−
ˆ
γy,z

b1(ϕ ·my,z) dH 1

which says that Dvy,z = K1(·; z)L 2 Ω−b1⊗my,zH 1 γy,z ∈Mb(Ω;R2×2) in the sense
of distributions. Thus vy,z ∈ BV (Ω;R2).
We now claim that the family {vy,z : y, z ∈ Ω′} is bounded in BV (Ω;R2). Indeed, if we
set δ = d(Ω′, ∂Ω), we haveˆ

Ω
|K1(x; z)| dx ≤ C

ˆ
Ω

1
|x− z| dx

= C

ˆ
B(z,δ/2)

1
|x− z| dx + C

ˆ
Ω\B(z,δ/2)

1
|x− z| dx

≤ Cπδ + 2C/δL 2(Ω)
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and ˆ
γy,z

|b1 ⊗my,z| dH 1 ≤ |b1|H 1(γy,z) ≤ |b1|diam Ω

so that ||Dvy,z||Mb(Ω;R2×2) ≤ C(Ω, δ). Moreover, using the Poincaré-Wirtinger inequality
(see Remark 3.50 in [1]), we see that

||vy,z||L1(Ω;R2) =
∥∥∥∥∥vy,z −

 
B0

vy,z dx
∥∥∥∥∥
L1(Ω;R2)

≤ C||Dvy,z||Mb(Ω;R2×2) ≤ C(Ω, δ),

and thus we conclude that ||vy,z||BV (Ω;R2) ≤ C(Ω, δ) for every y, z ∈ Ω′, as claimed. From
this bound and from the continuity of the trace operator on BV (Ω;R2), we also deduce
that ||vy,z||L1(∂Ω;R2) ≤ C(Ω, δ) for every y, z ∈ Ω′. We compute

V1(y, z) =
ˆ

Ω\γy,z

CK1(x; y) : K1(x; z) dx =
ˆ

Ω\γy,z

CK1(x; y) : Dvy,z(x) dx =

=
ˆ
∂Ω

vy,z(x) · CK1(x; y)n(x) dH 1(x)

−
ˆ
γy,z

[vy,z](x) · CK1(x; y)my,z(x) dH 1(x),

(2.16)

where we have used that divCK1(·; y) = 0. For the first integral at the right hand side of
(2.16), we note that |x− y| > δ for x ∈ ∂Ω and y ∈ Ω′. This implies that

(2.17)
∣∣∣∣ˆ
∂Ω

vy,z(x) · CK1(x; y)n(x) dH 1(x)
∣∣∣∣ ≤ C

δ

ˆ
∂Ω
|vy,z| dH 1 ≤ C1,

where C1 > 0 depends only on Ω and δ. For the second integral at the right hand
side of (2.16), we consider again polar coordinates (%, ϑ) centered at y and we note that
e%(x) ·my,z(x) = 0 and eϑ(x) ·my,z(x) = 1 for x ∈ γy,z. Therefore we have that

CK1(x; y) my,z(x) = µ(λ + µ)
π(λ + 2µ)

{
(b1 · e%(x))e%(x) + (b1 · eϑ(x))eϑ(x)

} 1
|x− y|

= µ(λ + µ)
π(λ + 2µ)

b1
|x− y|

for every x ∈ γy,z, and we obtain

−
ˆ
γy,z

[vy,z](x) · CK1(x; y)my,z(x) dH 1(x)

= µ(λ + µ)|b1|2

π(λ + 2µ)

ˆ
γy,z

1
|x− y| dH 1(x)

= C2

ˆ sy,z

0

1
|y− z|+ s

ds

= C2
(

log(|y− z|+ sy,z)− log |y− z|
)

(2.18)

where we set C2 = µ(λ+µ)|b1|2/(π(λ+2µ)). Combining (2.16)-(2.18) with the inequality
|y− z|+ sy,z ≥ sy,z ≥ d(z, ∂Ω) ≥ δ, we can bound the interaction potential from below as
follows:

V1(y, z) ≥ −C1 + C2(log(|y− z|+ sy,z)− log |y− z|) ≥
≥ −C1 + C2 log δ − C2 log |y− z|.
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If we set C ′ = C2/2 and we choose R′ > 0 such that C2 log |y− z| ≤ −2C1 −C2 +C2 log δ
for 0 < |y − z| < R′, the previous inequality implies (2.8).
The proof of (ii) for V = V2 and V = V1,2 is completely analogous. Simply note that, in
the second case, in (2.18) we are going to obtain b1 ·b2 in place of |b1|2. Thus we see that
the assumption b1 · b2 > 0 is necessary in order to obtain a positive constant C2.
It remains to show the continuity of the interaction potential. Again, for simplicity, we
take V = V1. Consider two points y, z ∈ Ω and two sequences (yn), (zn) ⊂ Ω such that
yn → y and zn → z for n → ∞. If y 6= z, then yn 6= zn for n � 1. Moreover, by
continuity, CK1(x; yn) : K1(x; zn) → CK1(x; y) : K1(x; z) for a.e. x ∈ Ω, as n → ∞,
and thus we only need to find a domination in order to apply the Dominated Convergence
Theorem. Take 0 < δ < |y− z|/4. Then, by (1.12), one has

(2.19) χΩ\{B(yn,δ)∪B(zn,δ)}|CK1(x; yn) : K1(x; zn)| ≤ C

δ2 .

On the other hand, if x ∈ B(yn, δ) ∪ B(zn, δ), then either x ∈ B(yn, δ) or x ∈ B(zn, δ).
In the first case, for n� 1 we have

|x− zn| ≥ |y− z| − |y− yn| − |yn − x| − |zn − z|

≥ |y− z|
2 + 2δ − δ/2− δ − δ/2 = |y− z|

2
and thus

1
|x− zn|

≤ 2
|y− z|

for n� 1. In the second case, we obtain in a similar way that

1
|x− yn|

≤ 2
|y− z|

for n� 1. Thus, by (1.12)

χB(yn,δ)∪B(zn,δ)(x)|CK1(x; yn) : K1(x; zn)|

≤
(
χB(yn,δ)(x) + χB(zn,δ)(x)

) C

|x− yn| |x− zn|

≤ χB(yn,δ)(x) 2C
|y− z| |x− yn|

+ χB(zn,δ)(x) 2C
|y− z| |x− zn|

≤ 2C
|y− z|

( 1
|x− yn|

+ 1
|x− zn|

)
(2.20)

for every x ∈ Ω. Moreover, using translation operators, one can show that

1
| · −yn|

→ 1
| · −y| in L1(Ω), 1

| · −zn|
→ 1
| · −z| in L1(Ω), as n→∞,

so that there exists a subsequence (nk) and exist two functions g1, g2 ∈ L1(Ω) such that
for every k we have 1

|x−ynk |
≤ g1(x) and 1

|x−znk |
≤ g2(x) for a.e.x ∈ Ω. Hence, taking into

account (2.19) and (2.20), we deduce that

|CK1(x; ynk) : K1(x; znk)| ≤ C

δ2 + 2C
|y− z|(g1(x) + g2(x)),

which gives the desired domination. Therefore, we obtain that V1(ynk , znk)→ V1(y, z), as
k →∞, and by the Urysohn property we conclude that V1(yn, zn)→ V1(y, z), as n→∞.
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Finally, we consider the case y = z. Take an open set Ω′ ⊂⊂ Ω with y ∈ Ω′, so that
yn, zn ∈ Ω′ for n� 1. If yn = zn for n� 1, then V1(yn, zn) = +∞ for n� 1 and there is
nothing to prove. Otherwise we can construct two subsequences (ynk) and (znk) such that
ynk 6= znk for every k. By (2.8) we have that V1(ynk , znk) ≥ C ′(1 − log |ynk − znk |), at
least for k � 1, and we conclude that V1(ynk , znk) → +∞ = V1(y, z), as k → ∞. Again,
it is sufficient to apply the Urysohn property to conclude. The proof of the continuity for
V2 and V1,2 is exactly the same.

Remark 2.4. From Lemma 2.2, it follows that all the interaction potentials are bounded
from below on Ω′ × Ω′ for every Ω′ ⊂⊂ Ω. To see this, consider R′ > 0 as in (ii) and take
y, z ∈ Ω′. If |y− z| ≥ R′, then by (2.7) we have

V (y, z) ≥ −|V (y, z)| ≥ −C
(

1− log |y− z|
L

)
≥ −C + C log R

′

L
;

otherwise, if |y− z| < R′, then by (2.8) we get

V (y, z) ≥ C ′(1− log |y− z|) ≥ C ′(1− logR′)

Therefore we have V ≥ −C on Ω′ × Ω′. In particular, if Ω0 ⊂⊂ Ω′, then we easily deduce
that the functional F is bounded from below.

Under the assumptions of this chapter, we have that every minimizer of the auxiliary
functional given by Lemma 1.4 admits an extension to H1(Ω;R2) which is uniformly
bounded with respect to the pair of admissible empirical measures considered. This is the
content of the following result.

Lemma 2.5. For a given n, consider two admissible measures µ1 =
∑Nn
i=1 δyi ∈ X1

n and
µ2 =

∑Mn
i=1 δzi ∈ X2

n such that µ1 + µ2 ∈ Xn. Then uεnµ1+µ2 ∈ H1(Ωεn(µ1 + µ2);R2) admits
an extension ũεnµ1+µ2 ∈ H1(Ω;R2) such that

(2.21) ||ũεnµ1+µ2 ||H1(Ω;R2) ≤ C

with a constant C > 0 independent of n, µ1 and µ2.

Proof. For simplicity, we set u = uεnµ1+µ2 . Conditions (2.1) ensure that rn > 4εn for n� 1.
Thus, by Theorem A.1 in the Appendix, there exists an extension ũ ∈ H1(Ω;R2) satisfying

(2.22) ||Eũ||L2(Ω;R2×2) ≤ C||Eu||L2(Ωεn (µ1+µ2);R2×2)

with some constant C > 0 independend of n, µ1 and µ2. Since ũ = u on B0, we can use
the Korn inequality which, combined with (2.22), gives

(2.23) ||ũ||H1(Ω;R2) ≤ C||Eu||L2(Ωεn (µ1+µ2);R2×2).

Hence, in order to prove (2.21), it is sufficient to show that

(2.24) ||Eu||L2(Ωεn (µ1+µ2);R2×2) ≤ C

for some constant C > 0 independent of n, µ1 and µ2. Taking v = 0 as a competitor in
H1(Ω;R2) we see that Iεn(µ1 + µ2,u) ≤ Iεn(µ1 + µ2,v) = 0. From this, using (1.4), we
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obtain

C||Eu||2L2(Ωεn (µ1+µ2);R2×2)

≤ 1
n

Nn∑
i=1
||CKεn

1 (·; yi)||L2(∂Ω;R2×2)||u||L2(∂Ω;R2)

+ 1
n

Mn∑
i=1
||CKεn

2 (·; zi)||L2(∂Ω;R2×2)||u||L2(∂Ω;R2)

+ 1
n

Nn∑
i=1

∑
j 6=i
||CKεn

1 (·; yi)||L2(∂B(yj ,εn);R2×2)||u||L2(∂B(yj ,εn);R2)

+ 1
n

Nn∑
i=1

Mn∑
j=1
||CKεn

1 (·; yi)||L2(∂B(zj ,εn);R2×2)||u||L2(∂B(zj ,εn);R2)

+ 1
n

Mn∑
i=1

Nn∑
j=1
||CKεn

2 (·; zi)||L2(∂B(yj ,εn);R2×2)||u||L2(∂B(yj ,εn);R2)

+ 1
n

Mn∑
i=1

∑
j 6=i
||CKεn

2 (·; zi)||L2(∂B(zj ,εn);R2×2)||u||L2(∂B(zj ,εn);R2),

(2.25)

where we used that CKεn
1 (·; yj)n = 0 on ∂B(yj , εn) for j = 1, . . . , Nn and CKεn

2 (·; zj)n = 0
on ∂B(zj , εn) for j = 1, . . . ,Mn. Moreover, from (1.12), (1.33), and (2.1), we can deduce
the following inequalities:

sup
x∈∂Ω

|CKεn
1 (x; yi)| ≤ C sup

x∈∂Ω

(
1

|x− yi|
+ ε2

n

|x− yi|3

)

≤ C
(

1
r0

+ ε2
n

r0

)
≤ C, for i = 1, . . . , Nn,

(2.26)

sup
x∈∂B(yj ,εn)

|CKεn
1 (x; yi)| ≤ C sup

x∈∂B(yj ,εn)

(
1

|x− yi|
+ ε2

n

|x− yi|3

)

≤ C
(

1
rn

+ ε2
n

r3
n

)
≤ C

rn
, for i = 1, . . . , Nn and j 6= i,

(2.27)

sup
x∈∂B(zj ,εn)

|CKεn
1 (x; yi)| ≤ C sup

x∈∂B(zj ,εn)

(
1

|x− yi|
+ ε2

n

|x− yi|3

)

≤ C
(

1
rn

+ ε2
n

r3
n

)
≤ C

rn
, for i = 1, . . . , Nn and j = 1, . . . ,Mn

(2.28)

and analogously

(2.29) sup
x∈∂Ω

|CKεn
2 (x; zi)| ≤ C, for i = 1, . . . ,Mn,

sup
x∈∂B(yj ,εn)

|CKεn
2 (x; zi)| ≤

C

rn
, for i = 1, . . . ,Mn and j = 1, . . . , Nn,(2.30)

sup
x∈∂B(zj ,εn)

|CKεn
1 (x; zi)| ≤

C

rn
, for i = 1, . . . ,Mn and j 6= i.(2.31)
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Hence, combining (2.25) with the inequalities (2.26)-(2.31), we obtain

||Eu||2L2(Ωεn (µ1+µ2);R2×2) ≤ C||u||L2(∂Ω;R2)

+ C

√
εn
rn


Nn∑
j=1
||u||L2(B(yj ,εn);R2) +

Mn∑
j=1
||u||L2(B(zj ,εn);R2)

 .(2.32)

The norm of of u on ∂Ω is easily controlled using the trace inequality and (2.23). Indeed
we have

||u||L2(∂Ω;R2) = ||ũ||L2(∂Ω;R2) ≤ C||ũ||H1(Ω;R2) ≤ C||Eu||L2(Ωεn (µ1+µ2);R2×2).(2.33)

To control the norm of u on the boundaries ∂B(yj , εn), for j = 1, . . . , Nn, we proceed as
follows. Denote by û the vector field u as a function of the polar coordinates (%, ϑ) centered
at yj . For a.e. ϑ ∈ (0, 2π), we have that û(·, ϑ) ∈ AC([εn, rn];R2) ∩ H1((εn, rn);R2).
Hence, for εn ≤ r ≤ rn/2, we may write

û(εn, ϑ) = û(r, ϑ)−
ˆ r

εn

∂û
∂%

d%

and, using Jensen inequality, we easily deduce

|û(εn, ϑ)|2 ≤ 2|û(r, ϑ)|2 + 2(r − εn)
ˆ r

εn

∣∣∣∣∂û
∂%

∣∣∣∣2 d% ≤ 2|û(r, ϑ)|2 + 2rn
ˆ r/2

εn

∣∣∣∣∂û
∂%

∣∣∣∣2 d%.

Integrating respect to ϑ over (0, 2π) and multiplying by εn, we obtain
ˆ 2π

0
εn|û(εn, ϑ)|2 dϑ ≤ 2

ˆ 2π

0
εn|û(r, ϑ)|2 dϑ+ 2rn

ˆ 2π

0

ˆ rn/2

εn

∣∣∣∣∂û
∂%

∣∣∣∣2 d% dϑ

from which, since εn ≤ r ≤ rn/2, it follows thatˆ
∂B(yj ,εn)

|u|2 dH 1 ≤ 2
ˆ 2π

0
r|û(r, ϑ)|2 dϑ+ 2rn

ˆ
B(yj ,rn/2)\B(yj ,εn)

|Du|2 dx.

Finally, averaging with respect to r over (εn, rn/2), we haveˆ
∂B(yj ,εn)

|u|2 dH 1 ≤ C

rn

ˆ
B(yj ,rn/2)\B(yj ,εn)

|u|2 dx

+ C

ˆ
B(yj ,rn/2)\B(yj ,εn)

|Du|2 dx,
(2.34)

where we used (2.1). In a completely analogous way, it can be shown thatˆ
∂B(zj ,εn)

|u|2 dH 1 ≤ C

rn

ˆ
B(zj ,rn/2)\B(zj ,εn)

|u|2 dx

+ C

ˆ
B(zj ,rn/2)\B(zj ,εn)

|Du|2 dx
(2.35)

for j = 1, . . . ,Mn. Thus, using (2.23) and the trace inequality, from (2.34) and (2.35) we
conclude

Nn∑
j=1
||u||L2(B(yj ,εn);R2) +

Mn∑
j=1
||u||L2(B(zj ,εn);R2) ≤

C
√
rn
||u||H1(Ωεn (µ1+µ2);R2)

≤ C
√
rn
||ũ||H1(Ω;R2) ≤

C
√
rn
||Eu||L2(Ωεn (µ1+µ2);R2×2).

(2.36)
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Therefore, combining (2.32), (2.33) and (2.36) and using (2.1), we obtain

||Eu||2L2(Ωεn (µ1+µ2);R2×2) ≤ C||Eu||L2(Ωεn (µ1+µ2);R2×2) + C

√
εn
r3
n

||Eu||L2(Ωεn (µ1+µ2);R2×2)

≤ C||Eu||L2(Ωεn (µ1+µ2);R2×2),

which gives (2.24). Note that the constant C obtained is independent of n, µ1 and µ2, as
desired.

In the next lemma we study existence and uniqueness for the minimization problem (2.5).
The argument is analogous to that of Lemma 1.4. Here we look for a minimizer in the
class

(2.37) Y (Ω) =
{

v ∈ H1(Ω;R2) :
ˆ
B0

v = 0,
ˆ
B0

(Dv−Dv>) = 0
}
.

Lemma 2.6. (Minimization of the limiting auxiliary functional) For every pair
of measures µ1, µ2 ∈ X (Ω) there exists a unique minimizer uµ1, µ2 ∈ H1(Ω;R2) of the
functional I(µ1, µ2, ·) in the class Y (Ω).

Proof. The functional I(µ2, µ2, ·) is clearly weakly lower semicontinuous on H1(Ω;R2).
Moreover, it is also weakly coercive. Indeed, since |x − y| ≥ r0 for every x ∈ ∂Ω and
y ∈ Ω0, using (1.12) we have∣∣∣∣ˆ

Ω

ˆ
∂Ω

v(x) · CKi(x; y)n(x) dH 1(x) dµi(y)
∣∣∣∣ ≤

≤ C|bi|
r0
||v||L2(∂Ω;R2) µ

i(Ω) ≤ C||v||L2(∂Ω;R2)

for every v ∈ Y (Ω) and i = 1, 2. Hence, using the Korn inequality, we obtain that

(2.38) I(µ2, µ2,v) ≥ C1||v||2H1(Ω;R2) − C2||v||H1(Ω;R2)

for every v ∈ Y (Ω). Therefore, by the Direct Method, a minimizer exists. Now, if
u1,u2 ∈ Y (Ω) are two minimizers, then they solve the following Euler-Lagrange equations:

∀v ∈ Y (Ω),
ˆ

Ω
CDu1(x) : Dv(x) dx

+
2∑
i=1

ˆ
Ω

ˆ
∂Ω

v(x) · CKi(x; y)n(x) dH 1(x) dµi(y) = 0,
(2.39)

∀v ∈ Y (Ω),
ˆ

Ω
CDu2(x) : Dv(x) dx

+
2∑
i=1

ˆ
Ω

ˆ
∂Ω

v(x) · CKi(x; y)n(x) dH 1(x) dµi(y) = 0.
(2.40)

Taking the difference between (2.39) and (2.40) and then choosing v = u1 − u2, we get
that

´
Ω CD(u1 − u2) : D(u1 − u2) = 0, which entails that E(u1 − u2) = 0. This implies

that u1 −u2 is an infinitesimal rigid-body motion in Y (Ω). By the definition of Y (Ω), we
deduce that u1 − u2 = 0.
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Remark 2.7. In order to prove that G(µ1, µ2) = I(µ1, µ2,uµ1, µ2), taking into account
(2.5), we have to check that

inf
u∈H1(Ω;R2)

I(µ1, µ2,u) = inf
u∈Y (Ω)

I(µ1, µ2,u).

To do this we can argue as in Remark 1.5. We note the invariance of I(µ1, µ2, ·) with
respect to infinitesimal rigid-body motions. Therefore, for every u ∈ H1(Ω;R2) we can
choose a competitor of the form v = u + η, with η an infinitesimal rigid-body motion,
such that v ∈ Y (Ω). Thus we have I(µ1, µ2,v) = I(µ1, µ2,u) and the claim follows.

We now start approaching the proof of Theorem 2.1. In the next result we present some
asymptotic estimates. In order to simplify the notation, we set Kn

i = Kεn
i and, given

µ1
n, µ

2
n ∈ X (Ω), we write Ωn = Ωεn(µ1

n + µ2
n), In = Iεn(µ1

n + µ2
n, ·), Yn(Ω) = Y εn

µ1
n+µ2

n
(Ω),

and un = uεnµ1
n+µ2

n
.

Lemma 2.8. (Preliminary estimates) Consider two sequences (µ1
n) and (µ2

n) in X (Ω)
such that for every n we have

µ1
n = 1

n

Nn∑
i=1

δyni ∈ X
1
n, µ2

n = 1
n

Mn∑
i=1

δzni ∈ X
2
n, µ1

n + µ2
n ∈ Xn.

Then, as n→∞, the following estimates hold:

1
n2

Nn∑
i=1

∑
j 6=i

ˆ
Ωn

CKn
1 (x; yni ) : Kn

1 (x; ynj ) dx =
¨

Ω×Ω
V1(y, z) d(µ1

n � µ1
n)(y, z) + o(1),

(2.41)

1
n2

Mn∑
i=1

∑
j 6=i

ˆ
Ωn

CKn
2 (x; zni ) : Kn

2 (x; znj ) dx =
¨

Ω×Ω
V2(y, z) d(µ2

n � µ2
n)(y, z) + o(1),

(2.42)

1
n2

Nn∑
i=1

Mn∑
j=1

ˆ
Ωn

CKn
1 (x; yni ) : Kn

2 (x; znj ) dx =
¨

Ω×Ω
V1,2(y, z) d(µ1

n ⊗ µ2
n)(y, z) + o(1),

(2.43)

1
n

Nn∑
i=1

ˆ
∂Ωn

un(x) · CKn
1 (x; yni )n(x) dH 1(x) =

= 1
n

Nn∑
i=1

ˆ
∂Ω

un(x) · CK1(x; yni )n(x) dH 1(x) + o(1),

(2.44)

1
n

Mn∑
i=1

ˆ
∂Ωn

un(x) · CKn
2 (x; zni )n(x) dH 1(x) =

= 1
n

Mn∑
i=1

ˆ
∂Ω

un(x) · CK2(x; zni )n(x) dH 1(x) + o(1).

(2.45)

Moreover if µ1
n → µ1 and µ2

n → µ2 in X (Ω), as n→∞, so that µ1(Ω) = m and µ2(Ω) =
1−m, then

In(un)→ I(µ1, µ2,uµ1, µ2), as n→∞,
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that is,

(2.46) Gn(µ1
n, µ

2
n)→ G(µ1, µ2), as n→∞.

Proof. We begin with the proof of (2.41).Using (1.3) and (1.32), we computeˆ
Ωn

CKn
1 (x; yni ) : Kn

1 (x; ynj ) dx =
ˆ

Ωn
CK1(x; yni ) : K1(x; ynj ) dx

+ ε2
n

ˆ
Ωn

CK1(x; yni ) : Dw(x− ynj ) dx

+ ε2
n

ˆ
Ωn

CK1(x; ynj ) : Dw(x− yni ) dx

+ ε4
n

ˆ
Ωn

CDw(x− yni ) : Dw(x− ynj ) dx.

(2.47)

We focus on the last three integrals. Applying the Divergence Theorem and using the fact
that divCK1(·; yni ) = 0 in Ωn, we obtain

ε2
n

ˆ
Ωn

CK1(x; yni ) :Dw(x− ynj ) dx = ε2
n

{ˆ
∂Ω

w(x− ynj ) · CK1(x; yni ) dx

−
Nn∑
k=1

ˆ
∂B(yn

k
,εn)

w(x− ynj ) · CK1(x; yni )n(x) dH 1(x)

−
Mn∑
k=1

ˆ
∂B(zn

k
,εn)

w(x− ynj ) · CK1(x; yni )n(x) dH 1(x)
}
,

(2.48)

ε2
n

ˆ
Ωn

CK1(x; ynj ) :Dw(x− yni ) dx = ε2
n

{ˆ
∂Ω

w(x− yni ) · CK1(x; ynj ) dx

−
Nn∑
k=1

ˆ
∂B(yn

k
,εn)

w(x− yni ) · CK1(x; ynj )n(x) dH 1(x)

−
Mn∑
k=1

ˆ
∂B(zn

k
,εn)

w(x− yni ) · CK1(x; ynj )n(x) dH 1(x)
}
,

(2.49)

ε4
n

ˆ
Ωn

CDw(x− yni ) :Dw(x− ynj ) dx = ε4
n

{ˆ
∂Ω

w(x− ynj ) · CDw(x− yni ) dx

−
Nn∑
k=1

ˆ
∂B(yn

k
,εn)

w(x− ynj ) · CDw(x− yni )n(x) dH 1(x)

−
Mn∑
k=1

ˆ
∂B(zn

k
,εn)

w(x− ynj ) · CDw(x− yni )n(x) dH 1(x)
}
.

(2.50)

Since |x−yni | ≥ r0 for every x ∈ ∂Ω and for i = 1, . . . , n, using (1.12) and (1.33), we have
that

(2.51) ε2
n

ˆ
∂Ω
|w(x− ynj )| |CK1(x; yni )| dx ≤ C

r3
0
ε2
n → 0, as n→∞,

and similary

(2.52) ε4
n

ˆ
∂Ω
|w(x− ynj )| |CDy(x− yni )| dx ≤ C

r5
0
ε4
n → 0, as n→∞,
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both for every i, j = 1, . . . , Nn. Moreover, nothing that |x − yni | ≥ rn − εn for every
x ∈ ∂B(zk, εn), for k = 1, . . . ,Mn and i = 1, . . . , Nn, we can use (1.12), (1.33) and (2.1),
to show that

ε2
n

Mn∑
k=1

ˆ
∂B(zk,εn)

|w(x− yni )| |CK1(x; ynj )| dx ≤ C nε3
n

(rn − εn)3

≤ Cnε
3
n

r3
n

→ 0, as n→∞,
(2.53)

and

ε4
n

Mn∑
k=1

ˆ
∂B(zk,εn)

|w(x− yni )| |CDw(x− ynj )| dx ≤ C nε5
n

(rn − εn)5

≤ Cnε
5
n

r5
n

→ 0, as n→∞,
(2.54)

both for i, j = 1, . . . , Nn. Thus from (2.47)-(2.50) and (2.51)-(2.54), we deduce thatˆ
Ωn

CKn
1 (x; yni ) : Kn

1 (x; ynj ) dx =
ˆ

Ωn
CK1(x; yni ) : K1(x; ynj ) dx

− ε2
n

Nn∑
k=1

ˆ
∂B(yn

k
,εn)

w(x− ynj ) · CK1(x; yni )n(x) dH 1(x)

− ε2
n

Nn∑
k=1

ˆ
∂B(yn

k
,εn)

w(x− yni ) · CK1(x; ynj )n(x) dH 1(x)

− ε4
n

Nn∑
k=1

ˆ
∂B(yn

k
,εn)

w(x− ynj ) · CDw(x− yni )n(x) dH 1(x) + o(1),

(2.55)

as n → ∞. For k 6= i, j and i = 1, . . . , Nn, we have |x − yni | ≥ rn − εn for every
x ∈ ∂B(ynk , εn). Hence, using again (1.12), (1.33) and (2.1), we computeˆ

∂B(yn
k
,εn)
|w(x− ynj ) · CK1(x; yni )n(x)| dH 1(x)

+
ˆ
∂B(yn

k
,εn)
|w(x− yni ) · CK1(x; ynj )n(x)| dH 1(x)

+ ε2
n

ˆ
∂B(yn

k
,εn)
|w(x− ynj ) · CDw(x− yni )n(x)| dH 1(x)

≤ Cεn

(
1

(rn − εn)3 + 1
(rn − εn)3 + ε2

n

(rn − εn)5

)
≤ C

(
εn
r3
n

+ ε3
n

r5
n

)
.

(2.56)

Similarly, we haveˆ
∂B(yni ,εn)

|w(x− ynj ) · CK1(x; yni )n(x)| dH 1(x)

+
ˆ
∂B(yni ,εn)

|w(x− yni ) · CK1(x; ynj )n(x)| dH 1(x)

+ ε2
n

ˆ
∂B(yni ,εn)

|w(x− ynj ) · CDw(x− yni )n(x)| dH 1(x)

≤ Cεn

(
1

εn(rn − εn)2 + 1
ε2(rn − εn) + ε2

n

ε3
n(rn − εn)2

)
≤ C

( 1
r2
n

+ 1
εnrn

)
,

(2.57)
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and ˆ
∂B(ynj ,εn)

|w(x− ynj ) · CK1(x; yni )n(x)| dH 1(x)

+
ˆ
∂B(ynj ,εn)

|w(x− yni ) · CK1(x; ynj )n(x)| dH 1(x)

+ ε2
n

ˆ
∂B(ynj ,εn)

|w(x− ynj ) · CDw(x− yni )n(x)| dH 1(x)

≤ Cεn

(
1

ε2
n(rn − εn) + 1

εn(rn − εn)2 + ε2
n

ε2
n(rn − εn)3

)
≤ C

( 1
εnrn

+ 1
r2
n

+ εn
r3
n

)
.

(2.58)

Therefore, from (2.56), (2.57) and (2.58), we obtain

ε2
n

Nn∑
k=1

∣∣∣∣∣
ˆ
∂B(ynj ,εn)

w(x− ynj ) · CK1(x; yni )n(x) dH 1(x)
∣∣∣∣∣

+ ε2
n

Nn∑
k=1

∣∣∣∣∣
ˆ
∂B(ynj ,εn)

w(x− yni ) · CK1(x; ynj )n(x) dH 1(x)
∣∣∣∣∣

+ ε4
n

Nn∑
k=1

∣∣∣∣∣
ˆ
∂B(ynj ,εn)

w(x− ynj ) · CDw(x− yni )n(x) dH 1(x)
∣∣∣∣∣

≤ Cε2
nn

{(
εn
r3
n

+ ε3
n

r5
n

)
+
( 1
r2
n

+ 1
εnrn

)
+
( 1
εnrn

+ 1
r2
n

+ εn
r3
n

)}

≤ Cnr2
n

ε2
n

r2
n

(
εn
r3
n

+ ε3
n

r5
n

+ 1
r2
n

+ 1
εnrn

)
≤ Cnr2

n

εn
r3
n

(
ε2
n

r2
n

+ ε4
n

r4
n

+ εn
rn

+ 1
)

(2.59)

which, due to (2.1), vanishes as n→∞. Thus, looking back at (2.47), we proved that

1
n2

Nn∑
i=1

∑
j 6=i

ˆ
Ωn

CKn
1 (x; yni ) : Kn

1 (x; ynj ) dx

= 1
n2

Nn∑
i=1

∑
j 6=i

ˆ
Ωn

CK1(x; yni ) : K1(x; ynj ) dx + o(1),
(2.60)

as n→∞. If we prove that

(2.61) 1
n2

Nn∑
i=1

∑
j 6=i

ˆ
Ω\Ωn

CK1(x; yni ) : K1(x; ynj ) dx→ 0, as n→∞,

then we can change the domain of integration in the right hand side of (2.60) from Ωn to
Ω and thus obtain (2.41). Since Ω \ Ωn =

⋃Nn
k=1B(ynk , εn) ∪

⋃Mn
k=1B(znk , εn), we have

1
n2

Nn∑
i=1

∑
j 6=i

ˆ
Ω\Ωn

CK1(x; yni ) : K1(x; ynj ) dx

= 1
n2

Nn∑
i=1

∑
j 6=i

Nn∑
k=1

ˆ
B(yn

k
,εn)

CK1(x; yni ) : K1(x; ynj ) dx

+ 1
n2

Nn∑
i=1

∑
j 6=i

Mn∑
k=1

ˆ
B(zn

k
,εn)

CK1(x; yni ) : K1(x; ynj ) dx.

(2.62)
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For k 6= i, j we have∣∣∣∣∣
ˆ
B(yn

k
,εn)

CK1(x; yni ) : K1(x; ynj ) dx
∣∣∣∣∣ ≤ C

ˆ
B(yn

k
,εn)

1
|x− yni | |x− ynj |

dx ≤

≤ C ε2
n

(rn − εn)2 ≤ C
ε2
n

r2
n

,

(2.63)

and analogously for the integrals on B(znk , εn) with k = 1, . . . ,Mn. For k = i, using polar
coordinates, we compute∣∣∣∣∣

ˆ
B(yni ,εn)

CK1(x; yni ) : K1(x; ynj ) dx
∣∣∣∣∣ ≤ C

ˆ
B(yn

k
,εn)

1
|x− yni | |x− ynj |

dx ≤

≤ C

rn − εn

ˆ
B(yni ,εn)

1
|x− yni |

dx ≤ C εn
rn
,

(2.64)

and analogously for k = j. Thus, from (2.62), using (2.63) and (2.64) we deduce that

1
n2

Nn∑
i=1

∑
j 6=i

ˆ
Ω\Ωn

CK1(x; yni ) : K1(x; ynj ) dx

≤ C

n2

Nn∑
i=1

∑
j 6=i

(
ε2
n

r2
n

Nn + 2εn
rn

+ ε2
n

r2
n

Mn

)
≤ C

(
ε2
n

r2
n

n+ εn
rn

)

which vanishes, as n→∞. Hence (2.61) holds and this concludes the proof of (2.41).
The proof of (2.42) and (2.43) is completely analogous.
We now prove (2.44). Taking into account that CKn

1 (·; yni )n = 0 on ∂B(yni , εn), we have

1
n

Nn∑
i=1

ˆ
∂Ωn

un(x)·CKn
1 (x; yni )n(x) dH 1(x)

= 1
n

Nn∑
i=1

ˆ
∂Ω

un(x) · CKn
1 (x; yni )n(x) dH 1(x)

− 1
n

Nn∑
i=1

∑
k 6=i

ˆ
∂B(yn

k
,εn)

un(x) · CKn
1 (x; yni )n(x) dH 1(x)

− 1
n

Nn∑
i=1

Mn∑
k=1

ˆ
∂B(zn

k
,εn)

un(x) · CKn
1 (x; yni )n(x) dH 1(x).

(2.65)

Recalling (1.32), we have

1
n

Nn∑
i=1

ˆ
∂Ω

un(x)·CKn
1 (x; yni )n(x) dH 1(x)

= 1
n

Nn∑
i=1

ˆ
∂Ω

un(x) · CK1(x; yni )n(x) dH 1(x)

+ ε2
n

n

Nn∑
i=1

ˆ
∂Ω

un(x) · CDw(x− yni )n(x) dH 1(x).

(2.66)
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Moreover,

ε2
n

n

Nn∑
i=1

∣∣∣∣∣
ˆ
∂Ω

un(x)·CDw(x− yni )n(x) dH 1(x)
∣∣∣∣∣

≤ ε2
n

n

Nn∑
i=1

ˆ
∂Ω
|un(x)| |CDw(x− yni )| dH 1(x) ≤

≤ ε2
n

n

Nn∑
i=1
||un||L2(∂Ω;R2)||CDw(· − yni )||L2(∂Ω;R2×2) ≤ Cε2

n

Nn

n
,

which vanishes, as n → ∞. Note that here we used the hypothesis of confinement,
combined with (1.33), to deduce that |CDw(x − yni )| ≤ Cr−3

0 for every x ∈ ∂Ω and
i = 1, . . . , Nn, and the uniform boundedness of the traces of the functions un. The latter
can be obtained using the extensions ũn given by Lemma 2.5 and the continuity of the
trace operator on H1(Ω;R2). From the same lemma, looking back at (2.36), we can also
deduce the following estimate

(2.67)
Nn∑
k=1
||un||L2(∂B(yn

k
,εn);R2) +

Mn∑
k=1
||un||L2(∂B(zn

k
,εn);R2) ≤

C
√
rn
.

Hence, since the first integral in (2.66) is, up to an infinitesimal term, the right hand side
of (2.44), it is enough to show that the last two integrals at the right hand side of (2.65)
vanish. Using that |CKn

1 (x; yni )| ≤ C/rn for x ∈ ∂B(ynk , εn) and i = 1, . . . , Nn, and the
estimate (2.67), we compute

1
n

Nn∑
i=1

∑
k 6=i

∣∣∣∣∣
ˆ
∂B(yn

k
,εn)

un(x) · CKn
1 (x; yni )n(x) dH 1(x)

∣∣∣∣∣
≤ 1
n

C

rn

Nn∑
i=1

∑
k 6=i

ˆ
∂B(yn

k
,εn)
|un(x)| dH 1(x)

≤ Nn

n

C

rn

Nn∑
k=1

ˆ
∂B(yn

k
,εn)
|un(x)| dH 1(x)

≤ Nn

n

C

rn

√
εn

Nn∑
k=1
||un(x)||L2(∂B(yn

k
,εn)) ≤ C

Nn

n

√
εn
r3
n

,

which vanishes, as n→∞. With analogous computations, one can estimate also the last
integral at the right hand side of (2.65), hence (2.44) is proven.
Equation (2.45) can be proven exactly in the same way.
We move to the proof of the final statement of the lemma. By hypothesis we have that
µ1
n → µ1 and µ2

n → µ2 in X (Ω) as n → ∞, then, by narrow convergence, we deduce that
µ1(Ω) = m and µ2(Ω) = 1 − m. We know from Lemma 2.5 that we can extend each
un ∈ H1(Ωn;R2) to ũn ∈ H1(Ω;R2) in such a way as to have ||ũn||H1(Ω;R2) ≤ C for every
n and for some M > 0. Thus, by weak compactness, there exists a subsequence (ũnk) and
u ∈ H1(Ω;R2) such that ũnk ⇀ u in H1(Ω;R2), as k →∞. . We claim that

1
nk

Nnk∑
i=1

ˆ
∂Ω

unk(x)·CK1(x; ynki )n(x) dH 1(x)

→
ˆ

Ω

ˆ
∂Ω

u(x) · CK1(x; y)n(x) dH 1(x) dµ1(y)

(2.68)
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and

1
nk

Mnk∑
i=1

ˆ
∂Ω

unk(x)·CK2(x; ynki )n(x) dH 1(x)

→
ˆ

Ω

ˆ
∂Ω

u(x) · CK2(x; y)n(x) dH 1(x) dµ2(y),

(2.69)

as k →∞. For the first claim, we have

1
nk

Nnk∑
i=1

ˆ
∂Ω

unk(x)·CK1(x; ynki )n(x) dH 1(x)

=
ˆ

Ω

ˆ
∂Ω

(ũnk(x)− u(x)) · CK1(x; y)n(x) dH 1(x) dµ1
nk

(y)

+
ˆ

Ω

ˆ
∂Ω

u(x) · CK1(x; y)n(x) dH 1(x) dµ1
nk

(y).

(2.70)

For every y ∈ Ω0 we have

∣∣∣∣ˆ
∂Ω

(ũnk(x)− u(x)) · CK1(x; y)n(x) dH 1(x)
∣∣∣∣

≤ ||ũnk − u||L2(∂Ω;R2) ||CK1(·; y)||L2(∂Ω;R2×2) ≤
C

r0
||ũnk − u||L2(∂Ω;R2).

Since ||ũnk − u||L2(∂Ω;R2) → 0, as k → ∞, by the compactness of the trace operator on
H1(Ω;R2), we easily deduce that the first integral at the right hand side of (2.70) vanishes,
as k →∞. For the second term, we note that the function

y 7→
ˆ
∂Ω

u(x) · CK1(x; y)n(x) dH 1(x)

is continuous (this can be easily checked using the Dominated Convergence Theorem) and
bounded on Ω0, thus by narrow convergence we have

ˆ
Ω

ˆ
∂Ω

u(x)·CK1(x; y)n(x) dH 1(x) dµ1
nk

(y)

→
ˆ

Ω

ˆ
∂Ω

u(x) · CK1(x; y)n(x) dH 1(x) dµ1(y),

as k →∞, so that (2.68) is proven. The proof of (2.69) is completely analogous.
Owing to (2.68) and (2.69) we can characterize the weak limit u. Since ũnk ⇀ u in
H1(Ω;R2) and, by (2.1), L 2(Ω \ Ωnk)→ 0, as k →∞, we have that χΩnkDũnk ⇀ Du in
L2(Ω;R2×2), as k →∞. Thus, by the lower semicontinuity of the elastic energy, we have

ˆ
Ω
CDu : Du dx ≤ lim inf

k

ˆ
Ω
C(χΩnkDũnk) : D(χΩnkDũnk) dx

= lim inf
k

ˆ
Ω
CDunk : Dunk dx.

(2.71)
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Hence, by (2.44), (2.45), (2.68), (2.69) and (2.71), we obtain

lim inf
k

Ink(unk) ≥ lim inf
k

ˆ
Ωnk

W (Dunk(x)) dx

+ lim inf
k

1
nk

Nnk∑
i=1

ˆ
∂Ωnk

unk(x) · CKnk
1 (x; ynki )n(x) dH 1(x)

+ lim inf
k

1
nk

Mnk∑
i=1

ˆ
∂Ωnk

unk(x) · CKnk
2 (x; ynki )n(x) dH 1(x)

≥
ˆ

Ω
W (Du(x)) dx

+
ˆ

Ω

ˆ
∂Ω

u(x) · CK1(x; y)n(x) dH 1(x) dµ1(y)

+
ˆ

Ω

ˆ
∂Ω

u(x) · CK2(x; y)n(x) dH 1(x) dµ2(y) = I(µ1, µ2,u).

(2.72)

By minimality we have In(un) ≤ In(v) for every v ∈ H1(Ωn;R2). Thus, if we show that

(2.73) ∀w ∈ H1(Ω;R2), In(w)→ I(µ1, µ2,w), as n→∞,

then, using (2.72), we have

∀v ∈ H1(Ω;R2), I(µ1, µ2,u) ≤ lim inf
k

Ink(unk) ≤ lim inf
k

Ink(v) = I(µ1, µ2,v),

that is, u is a minimizer of I(µ1, µ2, ·) on H1(Ω;R2). For the proof of (2.73), the con-
vergence of the elastic energies can be easily obtained using the Monotone Convergence
Theorem. Hence it is sufficient to show that for v ∈ H1(Ω;R2) we have

1
n

Nn∑
i=1

ˆ
∂Ωn

v(x)·CKn
1 (x; yni ) dH 1(x)

→
ˆ

Ω

ˆ
∂Ω

v(x) · CK1(x; y)n(x) dH 1(x) dµ1(y),
(2.74)

as n → ∞. This can be done splitting the integral as in (2.65) and using analogous
arguments. Therefore u is a minimizer of I(µ1, µ2, ·) on H1(Ω;R2). Moreover, since
un ∈ Yn(Ω) for every n, by weak convergence u ∈ Y (Ω) and thus, by Lemma 2.6, u =
uµ1, µ2 . Then, using the Urysohn property, we conclude that ũn ⇀ uµ1, µ2 in H1(Ω;R2)
and In(un) → I(µ1, µ2,uµ1, µ2) as n → ∞. Futhermore, it follows that the convergences
in (2.68) and (2.69) are true along every subsequence, hence, using (2.44) and (2.45), we
deduce that

1
n

Nn∑
i=1

ˆ
∂Ωn

un(x) · CKn
1 (x; yni )n(x) dH 1(x)

→
ˆ

Ω

ˆ
∂Ω

u(x) · CK1(x; y)n(x) dH 1(x) dµ1(y)
(2.75)

and
1
n

Mn∑
i=1

ˆ
∂Ωn

un(x) · CKn
2 (x; zni )n(x) dH 1(x)

→
ˆ

Ω

ˆ
∂Ω

u(x) · CK2(x; y)n(x) dH 1(x) dµ2(y),
(2.76)

as n→∞.
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Remark 2.9. Looking at the proof of the previous lemma and paying attention to the
arguments used, we can easily convince ourselves that if (µ1

n) and (µ2
n) are two sequences

in X (Ω) such that along subsequences indexed by (nk) we have µ1
nk
∈ X1

nk
, µ2

nk
∈ X2

nk
and µ1

nk
+ µ2

nk
∈ Xnk for every k, then estimates analogous to (2.41)-(2.45) hold for the

corresponding subsequences. Moreover, if µ1
n → µ1 and µ2

n → µ2 in X (Ω) as n→∞, then
we can also conclude that Gnk(µ1

nk
, µ2

nk
)→ G(µ1, µ2), as k →∞.

2.3 The proof

We are now ready to present the proof of Theorem 2.1. By definition, we have to show
that the Liminf inequality and the Limsup inequality hold.

Liminf inequality. For every µ1, µ2 ∈ X (Ω) and for every sequences (µ1
n) and (µ2

n) in
X (Ω) such that µ1

n → µ1 and µ2
n → µ2 in X (Ω), as n→∞, we have

(2.77) E(µ1, µ2) ≤ lim inf
n
En(µ1

n, µ
2
n).

Proof. Note that if lim infn En(µ1
n, µ

2
n) = +∞, then the inequality is trivially true, thus we

assume that lim infn En(µ1
n, µ

2
n) < +∞. In this case, we choose a subsequence along which

the limit is equal to the liminf, that is, limk Enk(µ1
nk
, µ2

nk
) = lim infn En(µ1

n, µ
2
n). Then,

for k � 1, we have Enk(µ1
nk
, µ2

nk
) < +∞, which implies that µ1

nk
∈ X1

nk
, µ2

nk
∈ X2

nk
and

µ1
nk

+ µ2
nk
∈ Xnk . Since, by Lemma 2.8 and Remark 2.9, we have lim infn Gn(µ1

n, µ
2
n) =

limk Gnk(µ1
nk
, µ2

nk
) = G(µ1, µ2), we only need to prove that

(2.78) F(µ1, µ2) ≤ lim
k
Fnk(µ1

nk
, µ2

nk
) = lim inf

n
Fn(µ1

n, µ
2
n).

Again by Lemma 2.8 and Remark 2.9, we can use (2.41)-(2.43) to obtain that

lim
k
Fnk(µ1

nk
, µ2

nk
) ≥ lim inf

k

1
2

¨
Ω×Ω

V1 d(µ1
nk

� µ1
nk

)

+ lim inf
k

1
2

¨
Ω×Ω

V2 d(µ2
nk

� µ2
nk

)

+ lim inf
k

¨
Ω×Ω

V1,2 d(µ1
nk
⊗ µ2

nk
).

(2.79)

For the first limit at the right hand side, we takeM > 0 and we set VM
1 = V1∧M . Clearly

VM
1 is continuous on Ω × Ω. Moreover, by Remark 2.4, it is also bounded on Ω0 × Ω0.

Thus, for µ1
nk

= 1
nk

∑Nnk
i=1 δynki

, we have

lim inf
k

¨
Ω×Ω

V1 d(µ1
nk

� µ1
nk

) ≥ lim
k

¨
Ω×Ω

VM
1 d(µ1

nk
� µ1

nk
)

= lim
k

 1
n2
k

Nnk∑
i,j=1

VM
1 (ynki ,y

nk
j )− 1

n2
k

Nnk∑
i=1

VM
1 (ynki ,y

nk
i )


= lim

k

{¨
Ω×Ω

VM
1 d(µ1

nk
⊗ µ1

nk
)− M

nk

Nnk

nk

}

=
¨

Ω×Ω
VM

1 d(µ1 ⊗ µ1),

(2.80)
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where we have used that µ1
nk
⊗ µ1

nk

∗
⇀ µ1 ⊗ µ1 in (Cb(Ω× Ω))′, as k → ∞. Note that

VM
1 ↗ V1 pointwise in Ω × Ω, as M → +∞, and VM

1 ≥ −C on Ω0 × Ω0, hence we can
apply the Monotone Convergence Theorem to obtain

¨
Ω×Ω

VM
1 d(µ1 ⊗ µ1)→

¨
Ω×Ω

V1 d(µ1 ⊗ µ1), as M → +∞.

From (2.80) we conclude that

(2.81) lim inf
k

¨
Ω×Ω

V1 d(µ1
nk

� µ1
nk

) ≥
¨

Ω×Ω
V1 d(µ1 ⊗ µ1).

The other two integrals in (2.79) can be treated in an analogous way leading to

(2.82) lim
k

¨
Ω×Ω

V2 d(µ2
nk

� µ2
nk

) ≥
¨

Ω×Ω
V2 d(µ2 ⊗ µ2)

and

(2.83) lim
k

¨
Ω×Ω

V1,2 d(µ1
nk
⊗ µ2

nk
) ≥

¨
Ω×Ω

V1,2 d(µ1 ⊗ µ2).

Hence, combining (2.79)-(2.83), we obtain (2.78).

We now pass to the Limsup inequality. The proof given here is an adaptation of that
presented in [21], where the case of a system of dislocations with a single Burgers vector
was considered. Recall that, in Theorem 2.1, we assume (2.6). This hypothesis is going to
be used here.

Limsup inequality. For every µ1, µ2 ∈ X (Ω) there exists two sequences (µ1
n) and (µ2

n)
in X (Ω) such that µ1

n → µ1 and µ2
n → µ2 in X (Ω), as n→∞, and

(2.84) E(µ1, µ2) ≥ lim sup
n
En(µ1

n, µ
2
n).

Proof. First of all, we can assume that E(µ1, µ2) < +∞, since otherwise the inequality
is trivially satisfied. From F(µ1, µ2) < +∞ it easily follows that, defining the diagonal
set D = {(x, x) : x ∈ Ω}, we have (µ1 ⊗ µ1)(D) = (µ2 ⊗ µ2)(D) = (µ1 ⊗ µ2)(D) = 0.
Moreover, since E(µ1, µ2) < +∞, we know that µ1(Ω) = m and µ2(Ω) = 1−m. We follow
the common strategy of first proving the limsup inequality for measures that belong to
a particular class and then regain the general statement by an approximation procedure.
Note that, once we construct two sequences of admissible measures converging to µ1 and
µ2, respectively, then the convergence of Gn follows from Lemma 2.8. Therefore we only
need to focus on the interaction term. It can be noticed that the interaction energy is not
continuous with respect to narrow convergence. Moreover, given the singular character of
the interaction potentials, the dislocations need to be suitably allocated while constructing
the recovery sequences. The proof is divided into several steps.

Step 1(First approximation) The construction that we are going to use applies to measures
in X (Ω) whose support is compactly contained in Ω0. Since, in general, this is not the
case for µ1 and µ2, we perform a first approximation by shrinking their supports. This
will be done in such a way that the energy is controlled. Recalling (2.6), we consider the
homothety ωϑ which is given by ωϑ(x) = (1 − ϑ)x0 + ϑx, where x0 ∈ Ω0 and 0 < ϑ < 1.
Then we define the measures µ1

ϑ = ω]ϑµ
1 and µ2

ϑ = ω]ϑµ
2, whose supports are contained in
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the closure of the set Ωϑ
0 = ωϑ(Ω0). Note that, by (2.6), we have Ωϑ

0 ⊂⊂ Ω0. Moreover,
we claim that

(2.85) µ1
ϑ → µ1 in X (Ω), µ2

ϑ → µ2 in X (Ω), as ϑ→ 1−,

and

(2.86) F(µ1
ϑ, µ

2
ϑ)→ F(µ1, µ2), as ϑ→ 1−.

In order to prove (2.85), we take v ∈ Cb(Ω) and i = 1, 2. By definition of push-forward,
we have that

´
Ω v(x) dµiϑ(x) =

´
Ω v(ωϑ(ξ)) dµi(ξ). Clearly, ωϑ(ξ)→ ξ for every ξ ∈ Ω, as

ϑ→ 1−, thus, since v is bounded, we can apply the Dominated Convergence Theorem to
obtain ˆ

Ω
v(x) dµiϑ(x)→

ˆ
Ω
v(x) dµi(x), as ϑ→ 1−.

For the proof of (2.86), we start with the first term. We have

(2.87)
¨

Ω×Ω
V1(y, z) d(µ1

ϑ ⊗ µ1
ϑ)(y, z) =

¨
Ω×Ω

V1(ωϑ(ξ), ωϑ(η)) d(µ1 ⊗ µ1)(ξ,η).

In order to apply the Dominated Convergence Theorem we need to find a domination for
the integrand at the right hand side of (2.87). Using (2.7), we see that for 1/2 < ϑ < 1
and for (ξ,η) ∈ (Ω× Ω) \D, i.e., µ1 ⊗ µ1-a.e., we have

|V1(ωϑ(ξ), ωϑ(η))| ≤ C(1 + logL− log |ωϑ(ξ)− ωϑ(η)|)
≤ C(1 + logL− log ϑ− log |ξ − η|)
≤ C(1 + logL− log |ξ − η|).

Therefore it is enough to show that the function (y, z) 7→ log |y−z| is in L1(Ω×Ω, µ1⊗µ1).
Consider an open set Ω′ such that Ω0 ⊂⊂ Ω′ ⊂⊂ Ω. By (2.8), there exist R′ > 0 and C ′ > 0
such that for every y, z ∈ Ω′ with 0 < |y− z| < R′ we have V1(y, z) ≥ C ′(1− log |y− z|).
Thenˆ

Ω

ˆ
B(z,R′∧1)

| log |y− z|| dµ1(y) dµ1(z) = −
ˆ

Ω

ˆ
B(z,R′∧1)

log |y− z| dµ1(y) dµ1(z)

≤ 1
C ′

ˆ
Ω

ˆ
B(z,R′∧1)

V1(y, z) dµ1(y) dµ1(z) < +∞.

Clearly, this is sufficient to conclude that
˜

Ω×Ω | log |y− z|| d(µ1⊗µ1)(y, z) < +∞, as we
wanted. Hence we can pass to the limit in (2.87) and obtain

¨
Ω×Ω

V1(y, z) d(µ1
ϑ ⊗ µ1

ϑ)(y, z)→
¨

Ω×Ω
V1(y, z) d(µ1 ⊗ µ1)(y, z), as ϑ→ 1−.

The terms with V2 and V1,2 can be treated analogously.

Step 2 (Second approximation) We now present the geometric construction used to ap-
proximate µ1

ϑ and µ2
ϑ. Here the fact that their supports are compactly contained in Ω0

will be used. Assume that 0 < ϑ < 1 is fixed. We introduce a parameter h > 0 and
we consider the family of half-open squares of side 4h given by Q̃h =

⋃
p,q∈Z

(
4h(p, q) +

[0, 4h) × [0, 4h)
)
. We denote by {Q̃h` : ` = 1, . . . ,Λ(ϑ, h)} the set of squares in Q̃h that

intersect Ωϑ
0 (see Figure 2.2), so that, for h so small that d(Ωϑ

0 ,Ω0) > 6h > 4
√

2h, we
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Figure 2.2: Ωϑ
0 covered by the squares Q̃h` .

have Ωϑ
0 ⊂

⋃Λ(ϑ,h)
`=1 Q̃h` ⊂⊂ Ω0. Inside each Q̃h` we consider two smaller disjoint squares

of side h given by Qh` = 4h(p, q) + [0, h) × [0, h) and Q̂h` = 6h(p, q) + [0, h) × [0, h), if
Q̃h` = 4h(p, q) + [0, 4h)× [0, 4h) (see Figure 2.3). The approximating measures are defined
as measures supported in the union of the squares Qh` and Q̂h` obtained by distributing in
each of those squares the masses µ1

ϑ(Q̃h` ) and µ2
ϑ(Q̃h` ) of the larger squares respectively in

a uniform way. More precisely, we set

(2.88) µ1
ϑ,h =

Λ(ϑ,h)∑
`=1

µ1
ϑ(Q̃h` )
h2 L 2 Qh` , µ2

ϑ,h =
Λ(ϑ,h)∑
`=1

µ2
ϑ(Q̃h` )
h2 L 2 Q̂h` .

Clearly suppµ1
ϑ,h ⊂

⋃Λ(ϑ,h)
`=1 Q

h
` and suppµ2

ϑ,h ⊂
⋃Λ(ϑ,h)
`=1 Q̂h` ; moreover we easily see that

µ1
ϑ,h(Q̃hi ) = µ1

ϑ(Q̃hi ) and µ2
ϑ,h(Q̃hi ) = µ2

ϑ(Q̃hi ). We claim that

(2.89) µ1
ϑ,h → µ1

ϑ in X (Ω), µ2
ϑ,h → µ2

ϑ in X (Ω), as h→ 0+.

To see this, we take v ∈ Cb(Ω). For every η > 0, by uniform continuity on Ω0, there exists
δ > 0 such that |v(x) − v(y)| < η for any two points x,y ∈ Ω0 with |x − y| < δ. Then,
using that µ1

ϑ,h(Q̃hi ) = µ1
ϑ(Q̃hi ) and the Fubini Theorem, we compute

∣∣∣∣∣
ˆ

Ω
v(x) dµ1

ϑ,h(x)−
ˆ

Ω
v(x) dµ1

ϑ(x)
∣∣∣∣∣ ≤

Λ(ϑ,h)∑
`=1

∣∣∣∣∣
ˆ
Q̃h
`

v(x) dµ1
ϑ,h(x)−

ˆ
Q̃h
`

v(x) dµ1
ϑ(x)

∣∣∣∣∣
≤

Λ(ϑ,h)∑
`=1

∣∣∣∣∣ 1
h2

ˆ
Q̃h
`

ˆ
Qh
`

v(x) dx dµ1
ϑ(y)− 1

h2

ˆ
Qh
`

ˆ
Q̃h
`

v(y) dµ1
ϑ(y) dx

∣∣∣∣∣
≤

Λ(ϑ,h)∑
`=1

1
h2

ˆ
Q̃h
`

ˆ
Qh
`

|v(x)− v(y)| dx dµ1
ϑ(y).

Therefore, for 4
√

2h < δ, we have

∣∣∣∣ˆ
Ω
v dµ1

ϑ,h −
ˆ

Ω
v dµ1

ϑ

∣∣∣∣ ≤ η Λ(ϑ,h)∑
`=1

µ1
ϑ(Q̃h` ) ≤ η
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Figure 2.3: The square Q̃h` and the smaller squares Qh` and Q̂h` .

which proves (2.89) for µ1
ϑ,h. The same computation applies to µ2

ϑ,h. For what concerns
the energies we claim that

(2.90) F(µ1
ϑ, µ

2
ϑ) ≥ lim sup

h→0+
F(µ1

ϑ,h, µ
2
ϑ,h),

or, more precisely,

(2.91)
¨

Ω×Ω
V1 d(µ1

ϑ ⊗ µ1
ϑ) ≥ lim sup

h→0+

¨
Ω×Ω

V1 d(µ1
ϑ,h ⊗ µ1

ϑ,h),

(2.92)
¨

Ω×Ω
V2 d(µ2

ϑ ⊗ µ2
ϑ) ≥ lim sup

h→0+

¨
Ω×Ω

V2 d(µ2
ϑ,h ⊗ µ2

ϑ,h),

(2.93)
¨

Ω×Ω
V1,2 d(µ1

ϑ ⊗ µ2
ϑ) ≥ lim sup

h→0+

¨
Ω×Ω

V1,2 d(µ1
ϑ,h ⊗ µ2

ϑ,h).

We begin with (2.91). As in the proof of the liminf inequality, we set VM
1 = V1∧M , where

M > 0. We write¨
Ω×Ω

V1 d(µ1
ϑ,h ⊗ µ1

ϑ,h) =
¨

Ω×Ω
VM

1 d(µ1
ϑ,h ⊗ µ1

ϑ,h)

+
¨

Ω×Ω
(V1 − VM

1 ) d(µ1
ϑ,h ⊗ µ1

ϑ,h).
(2.94)

Since VM
1 is continuous and bounded on Ω0 × Ω0, using (2.89) we obtain that

¨
Ω×Ω

VM
1 d(µ1

ϑ,h ⊗ µ1
ϑ,h)→

¨
Ω×Ω

VM
1 d(µ1

ϑ ⊗ µ1
ϑ), as h→ 0+.

Moreover, we trivially have
¨

Ω×Ω
VM

1 d(µ1
ϑ ⊗ µ1

ϑ) ≤
¨

Ω×Ω
V1 d(µ1

ϑ ⊗ µ1
ϑ)
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Figure 2.4: The “best” and the “worst” case in (2.98) and (2.99), for p = 2.

and we note that the right hand side is the desired upper bound. Hence, to conclude,
we have to show that the second integral at the right hand side of (2.94) vanishes, as
h → 0+. We recall that, by (2.7), for every y, z ∈ Ω with y 6= z we have |V1(y, z)| ≤
C(1+logL−log |y−z|). From this bound it follows that, if V1(y, z) > M , then |y−z| < RM
where RM = exp(1 + logL −M/C). Note that RM → 0+ as M → +∞. Moreover, if
we consider an open set Ω′ such that Ω0 ⊂⊂ Ω′ ⊂⊂ Ω, by (2.8) there exist C ′ > 0 and
R′ > 0 such that V1(y, z) ≥ C ′(1 − log |y − z|) for any y, z ∈ Ω′ with 0 < |y − z| < R′.
In particular, when |y− z| < R′ ∧ e, we have V1(y, z) > 0. Thus, we choose M � 1 such
that 2RM < R′ ∧ e and V1(·, z) > 0 on B(z, 2RM ) for every z ∈ Ω′. Hence, if we split the
second integral in the right hand side of (2.94) as
¨

Ω×Ω
(V1 − VM

1 ) d(µ1
ϑ,h ⊗ µ1

ϑ,h)(y, z) =
ˆ

Ω

ˆ
B(z,RM )

(V1 − VM
1 ) d(µ1

ϑ,h ⊗ µ1
ϑ,h)(y, z)

+
ˆ

Ω

ˆ
Ω\B(z,RM )

(V1 − VM
1 ) d(µ1

ϑ,h ⊗ µ1
ϑ,h)(y, z),

then the second integral is equal to zero, since |y− z| ≥ RM implies V1(y, z) ≤ M , while
the first can be bounded by

´
Ω
´
B(z,RM ) V1(y, z) dµ1

ϑ,h(y) dµ1
ϑ,h(z), using the positivity of

VM
1 (·, z). Therefore, in order to prove (2.91), it is sufficient to show that

(2.95) lim
M→+∞

lim sup
h→0+

ˆ
Ω

ˆ
B(z,RM )

V1(y, z) dµ1
ϑ,h(y) dµ1

ϑ,h(z) = 0.

Using (2.88), we write
ˆ

Ω

ˆ
B(z,RM )

V1(y, z) dµ1
ϑ,h(y) dµ1

ϑ,h(z) =

=
Λ(ϑ,h)∑
`=1

Λ(ϑ,h)∑
i=1

µ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
h4

ˆ
Qh
`

ˆ
Qhi ∩B(z,RM )

V1(y, z) dy dz.
(2.96)
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We set Ph,M = bRM/4hc+ 1. For p = 1, . . . , Ph,M and ` = 1, . . . ,Λ(ϑ, h), we define

I(`, p) = {1 ≤ i ≤ Λ(ϑ, h) : Qhi = Qh` + 4h(q, r), q, r ∈ Z, |q| ∨ |r| = p}

which is the set of indices of the squares that can be reached, starting from Qh` , with
p vertical (or horizontal) “jumps” of length 4h and at most p horizontal (or vertical)
“jumps” of the same length. In this way, for every z ∈ Qh` , we have B(z, RM ) ⊂ Qh` ∪⋃Ph,M
p=1

⋃
i∈I(`,p)Q

h
i and the right hand side of (2.96) can be written as

Λ(ϑ,h)∑
`=1

Λ(ϑ,h)∑
i=1

µ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
h4

ˆ
Qh
`

ˆ
Qhi ∩B(z,RM )

V1(y, z) dy dz

=
Λ(ϑ,h)∑
`=1

Ph,M∑
p=1

∑
i∈I(`,p)

µ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
h4

ˆ
Qh
`

ˆ
Qhi ∩B(z,RM )

V1(y, z) dy dz

+
Λ(ϑ,h)∑
`=1

µ1
ϑ,h(Q̃h` )2

h4

ˆ
Qh
`

ˆ
Qh
`
∩B(z,RM )

V1(y, z) dy dz.

(2.97)

Note that, given ` = 1, . . . ,Λ(ϑ, h), p = 1, . . . , Ph,M , i ∈ I(`, p), and given an open set Ω′
with Ω0 ⊂⊂ Ω′, the following hold (see Figure 2.4):

(2.98)
if y ∈ Qh` and z ∈ Qhi , then |y− z| ≥ (4p− 1)h so that, by (2.7), we have

|V1(y, z)| ≤ C
(
1 + logL− log((4p− 1)h)

)
;

(2.99)
if y ∈ Q̃h` and z ∈ Q̃hi , then |y− z| ≤ 4

√
2(p+ 1)h ≤

√
2RM + 8

√
2h, so that

|y− z| < R′ for h < R′/(16
√

2) and M � 1 such that RM < R′/(2
√

2) and,
by (2.8), we have V1(y, z) ≥ C ′

(
1− log

(
4
√

2(p+ 1)h
))
.

Using these two facts, we can bound the integrals in the first term at the right hand side
of (2.97) as follows:

µ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
h4

ˆ
Qh
`

ˆ
Qhi ∩B(z,RM )

V1(y, z) dy dz

≤ Cµ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
(
1 + logL− log((4p− 1)h)

)
≤ Cµ1

ϑ(Q̃h` )µ1
ϑ(Q̃hi )

(
1− log(4

√
2(p+ 1)h)− log (4p− 1)h

4
√

2(p+ 1)h
+ logL

)

≤ Cµ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
(

log 4
√

2(p+ 1)L
4p− 1 + 1− log(4

√
2(p+ 1)h)

)

≤ Cµ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi ) + C

ˆ
Q̃h
`

ˆ
Q̃hi

V1(y, z) dµ1
ϑ(y) dµ1

ϑ(z)

(2.100)

for ` = 1, . . . ,Λ(ϑ, h), p = 1, . . . , Ph,M and i ∈ I(`, p). Note that here we used that

4
√

2(p+ 1)hL
4p− 1 ≤ 8

√
2

3

for p = 1, . . . , Ph,M , since this quantity is decreasing for p ≥ 1. For the integrals in the
second term at the right hand side of (2.97), we choose h� 1, so that 2h < RM and then
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2. The Γ-convergence of the renormalized energy 2.3 The proof

Qh` ⊂ B(z,
√

2h) ⊂ B(z, 2h) ⊂ B(z, RM ). Hence, using (2.7) and (2.99), and integrating
by parts in polar coordinates, we have

µ1
ϑ,h(Q̃h` )2

h4

ˆ
Qh
`

ˆ
Qh
`
∩B(z,RM )

V1(y, z) dy dz

=
µ1
ϑ,h(Q̃h` )2

h4

ˆ
Qh
`

ˆ
Qh
`

V1(y, z) dy dz

≤
µ1
ϑ,h(Q̃h` )2

h4

ˆ
Qh
`

ˆ
B(z,
√

2h)
V1(y, z) dy dz

≤ C
µ1
ϑ,h(Q̃h` )2

h4

ˆ
Qh
`

ˆ
B(z,
√

2h)
(1 + logL− log |y− z|) dy dz

≤ Cµ1
ϑ,h(Q̃h` )2

{
1− 1

h2

ˆ √2h

0
% log % d%

}

= Cµ1
ϑ,h(Q̃h` )2

{
1− 1

h2

[
%2

2 log %
]√2h

0
−
ˆ √2h

0

%

2 d%
}

= Cµ1
ϑ,h(Q̃h` )2 + Cµ1

ϑ,h(Q̃h` )2
(
1− log(

√
2h)

)
≤ Cµ1

ϑ,h(Q̃h` )2 + Cµ1
ϑ,h(Q̃h` )2

(
1− log(4

√
2h)

)
≤ Cµ1

ϑ,h(Q̃h` )2 + C

¨
Q̃h
`
×Q̃h

`

V1 d(µ1
ϑ ⊗ µ1

ϑ)

(2.101)

for ` = 1, . . . ,Λ(ϑ, h). Note that, in the second line from below, we have used that (2.99)
also holds for p = 0, that is, for every y, z ∈ Q̃h` we have |y− z| ≤ 4

√
2h, so that, by (2.8),

V1(y, z) ≥ C ′(1− log(4
√

2h)).
Hence, combining (2.97), (2.100) and (2.101), we deduce that

Λ(ϑ,h)∑
`=1

Λ(ϑ,h)∑
i=1

µ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
h4

ˆ
Qh
`

ˆ
Qhi ∩B(z,RM )

V1(y, z) dy dz

≤
Λ(ϑ,h)∑
`=1

Ph,M∑
p=1

∑
i∈I(`,p)

{
Cµ1

ϑ(Q̃h` )µ1
ϑ(Q̃hi ) + C

ˆ
Q̃h
`

ˆ
Q̃hi

V1(y, z) dµ1
ϑ(y) dµ1

ϑ(z)
}

+
Λ(ϑ,h)∑
`=1

{
Cµ1

ϑ(Q̃h` )2 + C

ˆ
Q̃h
`

ˆ
Q̃h
`

V1(y, z) dµ1
ϑ(y) dµ1

ϑ(z)
}
.

(2.102)

Note that, for a given z ∈ Q̃h` , we have Q̃h` ∪
⋃Ph,m
p=1

⋃
i∈I(`,p) Q̃

h
i ⊂ B(z, 2RM ) for h � 1.

Indeed, for every y ∈ Q̃hi with i ∈ I(`, p) and p = 1, . . . , Ph,M , we have

|y− z| ≤ 4
√

2(Ph,M + 1)h ≤
√

2RM + 8
√

2h < 2RM , for h < 1
4

( 1√
2
− 1

2

)
RM .

Therefore, from (2.102), using the positivity of V1(·, z) on B(z, 2RM ), we obtain

lim sup
h→0+

Λ(ϑ,h)∑
`=1

Λ(ϑ,h)∑
i=1

µ1
ϑ(Q̃h` )µ1

ϑ(Q̃hi )
h4

ˆ
Qh
`

ˆ
Qhi ∩B(z,RM )

V1(y, z) dy dz

≤ C
ˆ

Ω
µ1
ϑ(B(z, 2RM )) dµ1

ϑ(z) + C

ˆ
Ω

ˆ
B(z,2RM )

V1(y, z) dµ1
ϑ(y) dµ1

ϑ(z).
(2.103)
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Finally, using the Dominated Convergence Theorem and the fact that the integral of V1
with respect to µ1

ϑ ⊗ µ1
ϑ is bounded, it is immediate to see that the last two integrals go

to zero, as M → +∞. This proves (2.95) and, in turn, (2.91).
The proof of (2.92) is the same, while that of (2.93) is slightly simpler. By (2.7), we have
that there exists R̃M > 0 such that V1,2(y, z) > M implies |y−z| < R̃M for every y, z ∈ Ω
with y 6= z. Thus we define similarly the quantity P̃h,M = bR̃M/4hc + 1 and the set of
indices

Ĩ(`, p) = {1 ≤ i ≤ Λ(ϑ, h) : Qhi = Q̂h` + 2h(q, r), q, r ∈ Z, |q| ∨ |r| = p}

for ` = 1, . . . ,Λ(ϑ, h) and p = 1, . . . , P̃h,M . First, we split the integral at the right hand side
of (2.93) as in (2.94) and, with the same argument used there, we see that it is sufficient
to prove that

(2.104) lim
M→+∞

lim sup
h→0+

ˆ
Ω

ˆ
B(z,R̃M )

V1,2(y, z) dµ1
ϑ,h(y) dµ2

ϑ,h(z) = 0.

We have
ˆ
B(z,R̃M )

V1,2(y, z) dµ1
ϑ,h(y) dµ2

ϑ,h(z)

=
Λ(ϑ,h)∑
`=1

P̃h,M∑
p=0

∑
i∈Ĩ(`,p)

µ1
ϑ(Q̃hi ) µ2

ϑ(Q̃h` )
h4

ˆ
Q̂h
`

ˆ
Qhi ∩B(z,R̃M )

V1,2(y, z) dy dz.
(2.105)

Note that, if y ∈ Qhi and z ∈ Q̂h` , then we always have |y−z| ≥
√

2h; so, there is no need to
distinguish the two cases as in (2.97). By (2.7), we have V1,2(y, z) ≤ C(1+logL−log(

√
2h))

for y ∈ Qhi and z ∈ Q̂h` . Using this bound, we can argue as in (2.100) to conclude that

µ1
ϑ(Q̃hi ) µ2

ϑ(Q̃h` )
h4

ˆ
Q̂h
`

ˆ
Qhi ∩B(z,R̃M )

V1,2(y, z) dy dz

≤ Cµ1
ϑ(Q̃hi ) µ2

ϑ(Q̃h` ) + C

ˆ
Q̃h
`

ˆ
Q̃hi

V1,2(y, z) dµ1
ϑ(y) dµ2

ϑ(z).
(2.106)

Hence, if we sum up all the terms in (2.105) and we argue as in (2.102), we obtain

lim sup
h→0+

Λ(ϑ,h)∑
`=1

P̃h,M∑
p=0

∑
i∈Ĩ(`,p)

µ1
ϑ(Q̃hi ) µ2

ϑ(Q̃h` )
h4

ˆ
Q̂h
`

ˆ
Qhi ∩B(z,R̃M )

V1,2(y, z) dy dz

≤ C
ˆ

Ω
µ1
ϑ(B(z, 2R̃M )) dµ2

ϑ(z) + C

ˆ
Ω

ˆ
B(z,2R̃M )

V1,2(y, z) dµ1
ϑ(y) dµ2

ϑ(z),

which tends to zero, as M → +∞. This proves (2.104) and, in turn, (2.90).

Step 3 (Construction of the approximating measures) We are now able to provide an
approximation for the original measures µ1 and µ2 by means of a diagonal argument.
Consider a sequence (ϑk) with 0 < ϑk < 1 such that ϑk → 1−, as k → ∞. By Step 1 we
know that µ1

ϑk
→ µ1 and µ2

ϑk
→ µ2 in X (Ω), as k →∞, and that F(µ1

ϑk
, µ2

ϑk
)→ F(µ1, µ2),

as k →∞. Moreover, by Step 2, for every k we have that

(2.107) µ1
ϑk,h
→ µ1

ϑk
in X (Ω), µ2

ϑk,h
→ µ2

ϑk
in X (Ω), as h→ 0+,
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and

(2.108) lim sup
h→0+

F(µ1
ϑk,h

, µ2
ϑk,h

) ≤ F(µ1
ϑk
, µ2

ϑk
).

We denote by d a distance that induces the topology of X (Ω). By (2.107) for every k we
can find h1

k, h
2
k > 0 such that for every h ≤ h1

k we have d(µ1
ϑk,h

, µ1
ϑk

) < 1/k and for every
h ≤ h2

k we have d(µ2
ϑk,h

, µ2
ϑk

) < 1/k. Moreover, by (2.108), there exists h0
k > 0 such that,

for any h ≤ h0
k, we have F(µ1

ϑk,h
, µ2

ϑk,h
) ≤ F(µ1

ϑk
, µ2

ϑk
) + 1/k. Hence, for every k, we set

hk = min{h1
k, h

2
k, h

0
k, 1/k}, so that hk → 0+, as k → ∞. Then we define µ1

k = µ1
ϑk,hk

and
µ2
k = µ2

ϑk,hk
, more explicitly

(2.109) µ1
k =

Λk∑
`=1

µ1
ϑk

(Q̃hk` )
h2
k

L 2 Qhk` , µ2
k =

Λk∑
`=1

µ2
ϑk

(Q̃hk` )
h2
k

L 2 Q̂hk` ,

where we set Λk = Λ(ϑk, hk). We claim that

(2.110) µ1
k → µ1 in X (Ω), µ2

k → µ2 in X (Ω), as k →∞,

and

(2.111) lim sup
k
F(µ1

k, µ
2
k) ≤ F(µ1, µ2).

To see (2.110), it is sufficient to use the triangle inequality. Indeed, for every k, we
have d(µik, µi) ≤ d(µiϑk,hk , µ

i
ϑk

) + d(µiϑk , µ
i) < 1/k + d(µiϑk , µ

i) and the right hand side
goes to zero, as k → ∞. Equation (2.111) is also immediate since, for every k, we have
F(µ1

k, µ
2
k) = F(µ1

ϑk,hk
, µ2

ϑk,hk
) ≤ F(µ1

ϑk
, µ2

ϑk
) + 1/k and thus,

lim sup
k
F(µ1

k, µ
2
k) ≤ lim

k
F(µ1

ϑk
, µ2

ϑk
) = F(µ1, µ2).

Step 4 (Construction of the recovery sequence) We now construct the recovery sequences
for the approximating measures µ1

k and µ2
k. These sequences have to be admissible in the

sense that they have to contain the right number of dislocations that, in turn, need to
satisfy the well-separation hypothesis. We fix k and for each positive integer n, repre-
senting the total number of defects, we look for two measures of the form 1

n

∑Nn
i=1 δyin and

1
n

∑Mn
i=1 δzin . The idea is to allocate almost µ1

k(Q̃
hk
` )Nn dislocations in each square Qhk` , so

that the measure 1
n

∑Nn
i=1 δyin assigns to Qhk` almost the same mass as µ1

k. More precisely,
we recall that µ1

k(Q̃
hk
` ) = µ1

ϑk
(Q̃hk` ) and µ2

k(Q̃
hk
` ) = µ2

ϑk
(Q̃hk` ) and we set

(2.112) αnk,` =

√Nn

m µ1
ϑk

(Q̃hk` )

 , βnk,` =

√ Mn

1−m µ2
ϑk

(Q̃hk` )

 .
These are clearly two non negative integers, and satisfy

αnk,` →∞, as n→∞, if µ1
k(Q̃

hk
` ) > 0,

βnk,` →∞, as n→∞, if µ2
k(Q̃

hk
` ) > 0,

(αnk,`)2

n
→ µ1

ϑk
(Q̃hk` ),

(βnk,`)2

n
→ µ2

ϑk
(Q̃hk` ), as n→∞.

(2.113)
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Figure 2.5: The smaller squares qnk,i and q̂nk,j (here αnk,` = 3 and βnk,` = 4).

The first two claims in (2.113) are trivial. For the third, we recall that t− 1 < btc ≤ t for
any real number t. Hence

√
Nn
m µ1

ϑk
(Q̃hk` )− 1 < αnk,` ≤

√
Nn
m µ1

ϑk
(Q̃hk` ), so that

Nn

n

µ1
ϑk

(Q̃hk` )
m − 2

n

√
Nn

m µ1
ϑk

(Q̃hk` ) + 1
n
<

(αnk,`)2

n
≤ Nn

n

µ1
ϑk

(Q̃hk` )
m

and passing to the limit, as n → ∞, we get the claim. The fourth claim can be proved
analogously. For every ` = 1, . . . ,Λk such that µ1

k(Q̃
hk
` ) > 0 we set ank,` = hk/α

n
k,` and, for

every ` = 1, . . . ,Λk such that µ2
k(Q̃

hk
` ) > 0, we set bnk,` = hk/β

n
k,`. We allocate the defects as

follows. In every square Qhk` with µ1
k(Q̃

hk
` ) > 0 we consider a square grid of side ank,`. More

precisely, if Qhk` = 4hk(p, q)+[0, hk)×[0, hk) with p, q ∈ Z, we consider the family of points
{4h(p, q) + ank,`(r, s) : r, s = 0, . . . , αnk,` − 1}, that we denote by {ynk,i : i ∈ Ink,`}, and the
squares qnk,i = ynk,i + [0, ank,`)× [0, ank,`) for i ∈ Ink,`. Thus ynk,i ∈ qnk,i and Q

hk
` =

⋃
i∈In

k,`
qnk,i.

Note that, for every i, j ∈ Ink,` with i 6= j, by (2.1) we have that

(2.114) |ynk,i − ynk,j | ≥ ank,` = hk
αnk,`

≥ hk√
Nn
m µ1

ϑk
(Q̃hk` )

≥ hk
√

m√
n

> rn

for n� 1. Analogously, in every square Q̂hk` such that µ2
k(Q̃

hk
` ) > 0, we consider a square

grid of side bnk,` and the corresponding nodes znk,j and squares q̂nk,j , where j ∈ Jnk,` and Jnk,`
is a set of (βnk,`)2 indices, so that znk,j ∈ q̂nk,j and Q̂

hk
` =

⋃
j∈Jn

k,`
qnk,j (see Figure 2.5). As in

(2.114), by (2.1) we obtain that, for any i, j ∈ Jnk,` with i 6= j, we have

(2.115) |znk,i − znk,j | > rn

for n� 1. Moreover, if i ∈ Ink,` and j ∈ Jnk,m, for n� 1 we also have

(2.116) |ynk,i − znk,j | ≥
√

2hk > rn.
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Figure 2.6: The segments S1 and S2 in Q̃hk1 (here Ñn,k = 4 and M̃n,k = 3).

The number of defects that we have placed in the first family of squares is equal to

Nn,k =
Λk∑
`=1

(αnk,`)2 ≥
Λk∑
`=1

√Nn

m µ1
ϑk

(Q̃hk` )− 1

2

=

= Nn − 2

√
Nn

m

Λk∑
`=1

√
µ1
ϑk

(Q̃hk` ) + Λk ≥ Nn − 2
√
n

mΛk.

(2.117)

Thus, in order to construct an admissible measure corresponding to the Burgers vector
b1, we still have to place a number of defects equal to

(2.118) Ñn,k = Nn − Nn,k ≤ 2
√
n

mΛk.

To do this, we consider the cube Q̃hk1 = 4hk(p1, q1) + [0, 4hk) × [0, 4hk) where p1, q1 ∈ Z.
On the segment S1 = {4hkp1 + hk} × (4hkq1 + 2hk + [0, hk)) we place the points ỹnk,i
with i = 1, . . . , Ñn,k in an equispaced way, that is at distance ãnk = hk/Ñn,k, starting from
ỹnk,1 = (4hkp1 + hk, 4hkq1 + 2hk) (see Figure 2.6). Taking into account (2.118) and using
(2.1), for any i, j ∈ {1, . . . , Ñn,k} with i 6= j, we have

(2.119) |ỹnk,i − ỹnk,j | ≥ ãnk = hk

Ñn,k

≥ hk
√

m
2
√
nΛk

> rn

for n� 1. Clearly, if i ∈ Ink,` and j = 1, . . . , Ñn,k, then, for n� 1, we have

(2.120) |ynk,i − ỹnk,j | ≥ hk > rn.

Analogously, the number of points placed in the second family of squares is

Mn,k =
Λk∑
`=1

(βnk,`)2 ≥Mn − 2
√

n

1−mΛk,

46
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hence we still have to place a number of defects equal to

(2.121) M̃n,k = Mn −Mn,k ≤ 2
√
n

mΛk.

Thus we place, along the segment S2 = (4hkp1 + 2hk + [0, hk)) × {4hkq1 + hk} in Q̃hk1 ,
the points z̃nk,j with j = 1, . . . , M̃n,k at a distance b̃nk = hk/M̃n,k, starting from z̃nk,1 =
(4hkp1 + 2hk, 4hkq1 + hk) (see Figure 2.6). As in (2.119), for any i, j ∈ {1, . . . , M̃n,k} with
i 6= j, we have

(2.122) |z̃nk,i − z̃nk,j | > rn

and, as in (2.120), if i ∈ Jnk,` and j = 1, . . . , M̃n,k, then we have

(2.123) |znk,i − z̃nk,j | > rn

both for n � 1. Moreover, we trivially see that the distance between any point ynk,i and
any point z̃nk,j and also between any point znk,i and any point ỹnk,j is greater than or equal
to rn, for n� 1.
We define the empirical measures

(2.124) µ1
k,n = 1

n

Λk∑
`=1

∑
i∈In

k,`

δyn
k,i

+ 1
n

Ñn,k∑
i=1

δỹn
k,i

and

(2.125) µ2
k,n = 1

n

Λk∑
`=1

∑
i∈Jn

k,`

δzn
k,i

+ 1
n

M̃n,k∑
i=1

δz̃n
k,i

where we set Ink,` = ∅ for ` such that µ1
k(Q̃

hk
` ) = 0, and Jnk,` = ∅ for ` such that µ2

k(Q̃
hk
` ) = 0.

It is clear that µ1
k,n ∈ X1

n and µ2
k,n ∈ X2

n. Moreover, due to (2.114)-(2.116), (2.119),
(2.120), (2.122) and (2.123), we have that µ1

k,n + µ2
k,n ∈ Xn. Therefore (µ1

k,n)n ⊂ X (Ω)
and (µ2

k,n)n ⊂ X (Ω) are two sequences of admissible measures. Moreover the following
hold:

(2.126) µ1
k,n → µ1

k in X (Ω), µ2
k,n → µ2

k in X (Ω), as n→∞,

and

(2.127) lim sup
n
Fn(µ1

k,n, µ
2
k,n) ≤ F(µ1

k, µ
2
k),

that is ((µ1
k,n, µ

2
k,n))n ⊂ X (Ω)×X (Ω) is a recovery sequence for (µ1

k, µ
2
k) ∈ X (Ω)×X (Ω).

We begin with the proof of (2.126). Denote ν1
k,n = 1

n

∑Λk
`=1

∑
i∈In

k,`
δyn

k,i
. Take v ∈ Cb(Ω).

Let η > 0 and let δ > 0 be the modulus of uniform continuity of v in Ω0 corresponding to
η. We have

(2.128)
∣∣∣∣ˆ

Ω
v dµ1

k,n −
ˆ

Ω
v dµ1

k

∣∣∣∣ ≤ ∣∣∣∣ˆ
Ω
v dν1

k,n −
ˆ

Ω
v dµ1

k

∣∣∣∣+ 1
n

Ñn,k∑
i=1
|v(ỹnk,i)|.

47



2. The Γ-convergence of the renormalized energy 2.3 The proof

For the second term at the right hand side, we have

1
n

Ñn,k∑
i=1
|v(ỹnk,i)| ≤

Ñn,k

n
||v||L∞(Ω)

that goes to zero, as n → ∞, by (2.118). As for the first term at the right hand side of
(2.128) we have∣∣∣∣∣

ˆ
Q
hk
`

v dν1
k,n −

ˆ
Q
hk
`

v dµ1
k

∣∣∣∣∣ ≤ ∑
i∈In

k,`

∣∣∣∣∣∣
ˆ
qn
k,i

v dν1
k,n −

ˆ
qn
k,i

v dµ1
k

∣∣∣∣∣∣
≤
∑
i∈In

k,`

∣∣∣∣∣∣ 1n v(ynk,i)−
µ1
ϑk

(Q̃hk` )
h2
k

ˆ
qn
k,i

v(x) dx

∣∣∣∣∣∣
=
∑
i∈In

k,`

∣∣∣∣∣∣ 1
n(ank,`)2

ˆ
qn
k,i

v(ynk,i) dx−
µ1
ϑk

(Q̃hk` )
n(ank,`)2

n(ank,`)2

h2
k

ˆ
qn
k,i

v(x) dx

∣∣∣∣∣∣
≤
∑
i∈In

k,`

µ1
ϑk

(Q̃hk` )
h2
k

ˆ
qn
k,i

|v(ynk,i)− v(x)| dx

+
∑
i∈In

k,`

1
n(ank,`)2

∣∣∣∣∣1− µ1
ϑk

(Q̃hk` )
n(ank,`)2

h2
k

∣∣∣∣∣
ˆ
qn
k,i

|v(ynk,i)| dx.

(2.129)

For n � 1, so that
√

2ank,` < δ, recalling that ]Ink,` = (αnk,`)2 and that ank,` = hk/α
n
k,`, for

the first term at the right hand side of (2.129) we have

(2.130)
∑
i∈In

k,`

µ1
ϑk

(Q̃hk` )
h2
k

ˆ
qn
k,i

|v(ynk,i)− v(x)| dx < η µ1
ϑk

(Q̃hk` )

while, for the last term in (2.129), we have

∑
i∈In

k,`

1
n(ank,`)2

∣∣∣∣∣1− µ1
ϑk

(Q̃hk` )
n(ank,`)2

h2
k

∣∣∣∣∣
ˆ
qn
k,i

|v(ynk,i)| dx

≤
(αnk,`)2

n

∣∣∣∣∣1− µ1
ϑk

(Q̃hk` )
n(ank,`)2

h2
k

∣∣∣∣∣ ||v||L∞(Ω).

(2.131)

Summing over ` = 1, . . . ,Λk in (2.130) and (2.131) and then passing to the limit, as
n → ∞, we easily see, using (2.113), that the first term of the right hand side of (2.129)
goes to zero. This concludes the proof of (2.126) for µ1

k,n. Analogous arguments apply to
µ2
k,n. Note that, in proving (2.126), we also have shown that

µ1
k,n − ν1

k,n → 0 inMb(Ω), as n→∞

and

(2.132) ν1
k,n → µ1

k in X (Ω), as n→∞.

Moreover, if we set ν2
k,n = 1

n

∑Λk
`=1

∑
i∈Jn

k,`
δzn
k,i
, then we can prove in the same way that

µ2
k,n − ν2

k,n → 0 inMb(Ω), as n→∞
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and

(2.133) ν2
k,n → µ2

k in X (Ω), as n→∞.

We now move to the proof of (2.127). We are going to prove the following:

(2.134) lim sup
n

¨
Ω×Ω

V1 d(µ1
k,n � µ1

k,n) ≤
¨

Ω×Ω
V1 d(µ1

k ⊗ µ1
k),

(2.135) lim sup
n

¨
Ω×Ω

V2 d(µ2
k,n � µ2

k,n) ≤
¨

Ω×Ω
V2 d(µ2

k ⊗ µ2
k),

(2.136) lim sup
n

¨
Ω×Ω

V1,2 d(µ1
k,n ⊗ µ2

k,n) ≤
¨

Ω×Ω
V1,2 d(µ1

k ⊗ µ2
k).

Equation (2.127) will follow immediately by summing up (2.134)-(2.136). We start with
the proof of (2.134). Using the symmetry of the interaction potential, we can write

¨
Ω×Ω

V1 d(µ1
k,n � µ1

k,n) = 1
n2

Λk∑
`=1

∑
i∈In

k,`

∑
j 6=i

V1(ynk,i,ynk,j)

+ 1
n2

Λk∑
`=1

∑
m 6=`

∑
i∈In

k,`

∑
j∈In

k,m

V1(ynk,i,ynk,j)

+ 2
n2

Λk∑
`=1

∑
i∈In

k,`

Ñn,k∑
j=1

V1(ynk,i, ỹnk,j)

+ 1
n2

Ñn,k∑
i=1

∑
j 6=i

V1(ỹnk,i, ỹnk,j).

(2.137)

The last three terms are easy to estimate. Indeed for the second term, we have that

(2.138) 1
n2

Λk∑
`=1

∑
m6=`

∑
i∈In

k,`

∑
j∈In

k,m

V1(ynk,i,ynk,j) =
Λk∑
`=1

∑
m6=`

¨
Q
hk
`
×Qhkm

V1 d(ν1
k,n ⊗ ν1

k,n).

For ` 6= m, using (2.7) we see that the potential V1 is bounded on Qhk` × Qhkm . Thus, by
(2.132), we have that, as n→∞,

(2.139)
Λk∑
`=1

∑
m 6=`

¨
Q
hk
`
×Qhkm

V1 d(ν1
k,n ⊗ ν1

k,n)→
Λk∑
`=1

∑
m 6=`

¨
Q
hk
`
×Qhkm

V1 d(µ1
k ⊗ µ1

k).

For the third term in (2.137), using (2.7), (2.120), and that ](Ink,`) ≤ Nn,k, we obtain

2
n2

Λk∑
`=1

∑
i∈In

k,`

Ñn,k∑
j=1

V1(ynk,i, ỹnk,j) ≤ C
Λk
n2 Nn,k Ñn,k

(
1 + logL− log

ank,1
2

)
.

Thus, using (2.118) and the two estimates Nn,k ≤ n and ank,1 ≥ C/
√
n, we can bound the

right hand side in the previous line from above by C(1/
√
n+ 1/

√
n log

√
n), which goes to
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zero, as n→∞. Similarly, for the fourth term in (2.137), using (2.119) and the fact that
ãnk ≥ C/

√
n, we can see that

1
n2

Ñn,k∑
i=1

∑
j 6=i

V1(ỹnk,i, ỹnk,j) ≤
C

n2 (Ñn,k)2 (1 + logL− log ãnk) ≤ C

n
+ C

n
log
√
n

and the right hand side goes to zero, as n→∞.
In order to prove (2.134), it remains to show that

(2.140) lim sup
n

1
n2

∑
i∈In

k,`

∑
j 6=i

V1(ynk,i,ynk,j) ≤
¨
Q
hk
`
×Qhk

`

V1 d(µ1
k ⊗ µ1

k)

for ` = 1, . . . ,Λk. To do this, we argue as in Step 2. We set VM
1 = V1 ∧M where M > 0.

Then we write
1
n2

∑
i∈In

k,`

∑
j 6=i

V1(ynk,i,ynk,j) = 1
n2

∑
i∈In

k,`

∑
j 6=i

VM
1 (ynk,i,ynk,j)

+ 1
n2

∑
i∈In

k,`

∑
j 6=i

(
V1(ynk,i,ynk,j)− VM

1 (ynk,i,ynk,j)
)
.

(2.141)

Since VM
1 is continuous and bounded on Qhk` ×Q

hk
` and by (2.132), we have

1
n2

∑
i∈In

k,`

∑
j 6=i

VM
1 (ynk,i,ynk,j) =

¨
Q
hk
`
×Qhk

`

VM
1 d(ν1

k,n � ν1
k,n)

→
¨
Q
hk
`
×Qhk

`

VM
1 d(µ1

k ⊗ µ1
k) ≤

¨
Q
hk
`
×Qhk

`

V1 d(µ1
k ⊗ µ1

k),
(2.142)

as n→∞. Hence, by (2.141) and (2.142), we only need to prove that

(2.143) lim
M→+∞

lim sup
n

1
n2

∑
i∈In

k,`

∑
j 6=i

(
V1(ynk,i,ynk,j)− VM

1 (ynk,i,ynk,j)
)

= 0.

This is going to require some work. Recall that, as we have seen in Step 2, for any y, z ∈ Ω,
the inequality V1(y, z) > M implies |y − z| < RM . Moreover, we can choose M � 1 to
ensure that V1(·, z) > 0 on B(z, RM ) for every z ∈ Ω0. Hence, we compute

1
n2

∑
i∈In

k,`

∑
j 6=i

(
V1(ynk,i,ynk,j)− VM

1 (ynk,i,ynk,j)
)

= 1
n2

∑
i∈In

k,`

∑
j 6=i:

|ynk,i−ynk,j |<RM

(
V1(ynk,i,ynk,j)− VM

1 (ynk,i,ynk,j)
)

≤ 1
n2

∑
i∈In

k,`

∑
j 6=i:

|ynk,i−ynk,j |<RM

V1(ynk,i,ynk,j).

(2.144)

For every ` = . . . ,Λk with µ1
k(Q̃

hk
` ) > 0, we set Pnk,`,M =

⌊
RM/a

n
k,`

⌋
+ 1. Note that, since

ank,` → 0 as n → ∞, we have Pnk,`,M ≥ 2 for n � 1. For p = 2, . . . , Pnk,`,M , we define the
set of indices

J nk,`(i, p) = {j ∈ Ink,` : (p− 1)ank,` ≤ |ynk,i − ynk,j | < pank,`}.
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These are the indices of the points ynk,j that lie in the annulus centered at ynk,i with internal
and external radius given by (p−1)ank,` and p ank,`, respectively. These points are contained
in the set given by the difference between the square centered at ynk,i with side 2pank,` and
the square centered at the same point with radius (2p−4)ank,`. Thus we can easily estimate
that ](J nk,`(i, p)) ≤ 8(2p − 1). Looking back at the last line of (2.144), using again (2.7)
and the fact that ](Ink,`) = (αnk,`)2, we compute

1
n2

∑
i∈In

k,`

∑
j 6=i:

|ynk,i−ynk,j |<RM

V1(ynk,i,ynk,j) = 1
n2

∑
i∈In

k,`

Pnk,`,M∑
p=2

∑
j∈J n

k,`
(i,p)

V1(ynk,i,ynk,j)

≤ C
(
αnk,`
n

)2 Pnk,`,M∑
p=2

(2p− 1)
(
1 + logL− log((p− 1)ank,`)

)

≤ C
(
αnk,`
n

)2 Pnk,`,M∑
p=2

(
2p− 1− 2(p− 1) log

(p− 1)ank,`
L

− log
(p− 1)ank,`

L

)
.

Note that, since −t log t ≤ C for any t > 0, we have −(p− 1) log((p− 1)ank,`/L) ≤ CL/ank,`
for every p = 2, . . . , Pnk,`,M . Using this property, the previous expression can be bounded
by

C

(
αnk,`
n

)2 Pnk,`,M∑
p=2

(
2p− 1 + C

ank,`

)
≤ C

(
αnk,`
n

)2

Pnk,`,M

(
2Pnk,M − 1 + C

ank,`

)

≤ C
(
αnk,`
n

)2(
RM
ank,`

+ 1
)(

2RM
ank,`

+ 1 + C

ank,`

)

≤ C
(
αnk,`
n

)2

(
RM
ank,`

)2

+ RM
ank,`

+ RM
(ank,`)2 + C

ank,`
+ 1


= C


(
RM
hk

)2 (αnk,`)4

n2 + RM
hk

(αnk,`)3

n2 + RM
h2
k

(αnk,`)4

n2 + C

hk

(αnk,`)3

n2 +
(
αnk,`
n

)2


where, in the last line, we applied the substitution ank,` = hk/α
n
k,`. Thus, using (2.113), we

obtain

lim sup
n

C

(
αnk,`
n

)2 Pnk,`,M∑
p=2

(
2p− 1 + C

ank,`

)
≤ C

{
(RM/hk)2 +RM/h

2
k

}
µ1
ϑk

(Q̃hk` )2

and the expression at the right hand side goes to zero, as M → +∞, since RM → 0+, as
M → +∞. Therefore we showed that

lim
M→+∞

lim sup
n

1
n2

∑
i∈In

k,`

∑
j 6=i:

|ynk,i−ynk,j |<RM

V1(ynk,i,ynk,j) = 0

and this, by (2.144), proves (2.143) and, in turn, (2.134).
The claim (2.135) can be proved in the same way.
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The proof of (2.136) is simpler. Indeed, we have
¨

Ω×Ω
V1,2 d(µ1

k,n � µ1
k,n) = 1

n2

Λk∑
`,m=1

∑
i∈In

k,`

∑
j∈Jn

k,m

V1,2(ynk,i, znk,j)

+ 1
n2

Λk∑
`=1

∑
i∈In

k,`

M̃n,k∑
j=1

V1,2(ynk,i, z̃nk,j)

+ 1
n2

Λk∑
`=1

∑
j∈Jn

k,`

Ñn,k∑
i=1

V1,2(ỹnk,i, znk,j)

+ 1
n2

Ñn,k∑
i=1

M̃n,k∑
j=1

V1,2(ỹnk,i, z̃nk,j).

(2.145)

For the first term at the right hand side, we have

(2.146) 1
n2

Λk∑
`,m=1

∑
i∈In

k,`

∑
j∈Jn

k,m

V1,2(ynk,i, znk,j) =
Λk∑

`,m=1

¨
Q
hk
`
×Q̂hkm

V1,2 d(ν1
k,n ⊗ ν2

k,n).

By (2.132) and (2.133), we have that ν1
k,n ⊗ ν2

k,n
∗
⇀ µ1

k ⊗ µ2
k in

(
Cb(Ω × Ω)

)′
, as n → ∞.

Since V1,2 is bounded on Qhk` × Q̂hkm , we deduce that

Λk∑
`,m=1

¨
Q
hk
`
×Q̂hkm

V1,2 d(ν1
k,n ⊗ ν2

k,n)

→
Λk∑

`,m=1

¨
Q
hk
`
×Q̂hkm

V1,2 d(µ1
k ⊗ µ2

k), as n→∞.

(2.147)

Hence, to prove (2.136), it is sufficient to prove that the last three terms in the right hand
side of (2.145) vanish, as n→∞. Note that, if y ∈ Qhk` and z ∈ Q̂hkm , then |y− z| ≥

√
2hk

so that, by (2.7), we have |V1,2(y, z)| ≤ C(1 + logL − log(
√

2hk)). Hence, using that
Nn,k ≤ n and Mn,k ≤ n, and recalling (2.118) and (2.121), we compute

1
n2

Λk∑
`=1

∑
i∈In

k,`

M̃n,k∑
j=1

V1,2(ynk,i, z̃nk,j) ≤
C

n2 Nn,k M̃n,k

(
1 + logL− log(

√
2hk)

)
≤ C√

n
,(2.148)

(2.149) 1
n2

Λk∑
`=1

∑
j∈Jn

k,`

Ñn,k∑
i=1

V1,2(ỹnk,i, znk,j) ≤
C

n2 Mn,k Ñn,k

(
1 + logL− log(

√
2hk)

)
≤ C√

n
,

(2.150) 1
n2

Ñn,k∑
i=1

M̃n,k∑
j=1

V1,2(ỹnk,i, z̃nk,j) ≤
C

n2 Ñn,k M̃n,k

(
1 + logL− log(

√
2hk)

)
≤ C

n
.

Since the right hand sides of (2.148), (2.149) and (2.150) clearly go to zero, as n→∞, we
have that the last three terms in (2.145) also go to zero, as desired. This concludes the
proof of (2.136) and of (2.127).
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Step 5 (Conclusion) Now that we have constructed a recovery sequence for each pair of
approximating measures (µ1

k, µ
2
k), we need to regain the limsup inequality for the original

measures (µ1, µ2). To do this, we recall that, since the space X (Ω) is metrizable, the
Γ-limsup functional is defined as
(2.151)

Γ- lim sup
n
Fn(µ1, µ2) = inf

{
lim sup

n
Fn(ν1

n, ν
2
n) : (ν1

n, ν
2
n)→ (µ1, µ2) in X (Ω)×X (Ω)

}
,

where the infimum is taken over over all sequences
((
ν1
n, ν

2
n

))
n ⊂ X (Ω)×X (Ω) converging

to (µ1mµ2). Moreover (see Remark 1.26 in [3] or Proposition 8.1 in [8]), there exists a
sequence

((
µ1
n, µ

2
n

))
n ⊂ X (Ω)×X (Ω) such that

(2.152) µ1
n → µ1 in X (Ω), µ2

n → µ2 in X (Ω), as n→∞,

and

(2.153) Γ- lim sup
n
Fn(µ1, µ2) = lim sup

n
Fn(µ1

n, µ
2
n).

The functional Γ- lim supnFn is lower semicontinuous on X (Ω) × X (Ω) (see Proposition
1.28 in [3] or Proposition 6.8 in [8]). Hence, we have

lim sup
n
Fn(µ1

n, µ
2
n) = Γ- lim sup

n
Fn(µ1, µ2)

≤ lim inf
k

(
Γ- lim sup

n
Fn(µ1

k, µ
2
k)
)

≤ lim inf
k

(
lim sup

n
Fn(µ1

k,n, µ
2
k,n)

)
≤ lim inf

k
F(µ1

k, µ
2
k)

≤ lim sup
k
F(µ1

k, µ
2
k) ≤ F(µ1, µ2),

where we have used (2.110), (2.126) and (2.151), (2.127) and, finally, (2.111) in the last
line. Thus, we proved that

(2.154) lim sup
n
Fn(µ1

n, µ
2
n) ≤ F(µ1, µ2).

Since F(µ1, µ2) < +∞, from (2.154) it follows that Fn(µ1
n, µ

2
n) < +∞ for n � 1. There-

fore, µ1
n ∈ X1

n, µ2
n ∈ X2

n and µ1
n + µ2

n ∈ Xn, for n � 1, and we can use Lemma 2.8 to
conclude that

(2.155) Gn(µ1
n, µ

2
n)→ G(µ1, µ2), as n→∞.

Hence, combining (2.154) and (2.155), we obtain

lim sup
n
En(µ1

n, µ
2
n) = lim sup

n
Fn(µ1

n, µ
2
n) + lim sup

n
Gn(µ1

n, µ
2
n)

≤ F(µ1, µ2) + G(µ1, µ2) = E(µ1, µ2),

which concludes the proof of the Limsup inequality.

Remark 2.10. Since the space X (Ω) × X (Ω) is compact, by the Fundamental Theorem
of Γ-convergence (see Theorem 1.21 in [3] or Theorem 7.8 in [8]) and by Theorem 2.1, we
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deduce the existence of a minimizer of the functional E . That is, there exists two measures
µ̃1, µ̃2 ∈ X (Ω) such that

E(µ̃1, µ̃2) = min
{
E(µ1, µ2) : (µ1, µ2) ∈ X (Ω)×X (Ω)

}
.

Moreover, for every sequence ((µ̃1
n, µ̃

2
n))n ⊂ X (Ω)×X (Ω) such that (µ̃1

n, µ̃
2
n) is a minimizer

of En for every n, there exists a subsequence converging to a minimum point of E and we
have

lim
n
En(µ̃1

n, µ̃
2
n) = min E .

We conclude this chapter with a characterization of the class of measures where the Γ-limit
E is finite.

Theorem 2.11. (Characterization of measures with finite energy) Consider two
measures µ1, µ2 ∈ X (Ω). Then E(µ1, µ2) < +∞ if and only if µ1(Ω) = m, µ2(Ω) = 1−m
and µ1, µ2 ∈ H−1(Ω).

Proof. For every µ1, µ2 ∈ X (Ω), we set

(2.156) βµ1, µ2(x) = Duµ1, µ2(x) +
ˆ

Ω
K1(x; y) dµ1(y) +

ˆ
Ω

K2(x; y) dµ2(y), x ∈ Ω,

where uµ1, µ2 is the function given by Lemma 2.6. We have βµ1, µ2 ∈ L1(Ω;R2×2). Indeed,
by Fubini Theorem and (1.12), for i = 1, 2, we compute

ˆ
Ω

ˆ
Ω
|Ki(x; y)| dx dµi(y) ≤ C|bi|

ˆ
Ω

ˆ
B(y,R)

1
|x− y| dx dµi(y) ≤ C|bi|R,

where 0 < diam Ω < R. We claim that βµ1, µ2 satisfies

(2.157) curlβµ1, µ2 = b1µ
1 + b2µ

2

in the sense of distributions and that it is a weak solution of the following Neumann
problem

(2.158)
{

divCβ = 0 in Ω,
Cβn = 0 on ∂Ω.

We begin with the proof of (2.157). Recall from (1.15) that, for i = 1, 2, the field Ki(·; y)
is a distributional solution of the system

(2.159)
{

divCKi(·; y) = 0,
curl Kb(·; y) = bi δy

in R2.

Therefore, for every ϕ ∈ C∞c (Ω), by Fubini Theorem and the second equation in (2.159),
we have ˆ

Ω

( ˆ
Ω

Ki(x; y) dµi(y)
)

Dϕ(x)⊥ dx =
ˆ

Ω

ˆ
Ω

Ki(x; y)Dϕ(x)⊥ dx dµi(y)

=
ˆ

Ω
biϕ(y) dµi(y)

that is,

curl
(ˆ

Ω
Ki(·; y) dµi

)
= biµi
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in the sense of distributions. Hence, (2.157) easily follows.
In order to prove that βµ1, µ2 is a weak solution of (2.158), we have to show that for every
ϕ ∈ C1(Ω;R2), we have

(2.160)
ˆ

Ω
Cβµ1, µ2 : Dϕ dx = 0.

Consider an extension ϕ̃ ∈ C1(R2;R2) of ϕ with supp ϕ̃ ⊂ Ω′ for some open set Ω′ with
Ω ⊂⊂ Ω′. For i = 1, 2, we compute

ˆ
Ω
C
( ˆ

Ω
Ki(x; y) dµi(y)

)
: Dϕ(x) dx =

ˆ
Ω

ˆ
Ω
CKi(x; y) : Dϕ(x) dx dµi(y)

=
ˆ

Ω

ˆ
Ω′

CKi(x; y) : Dϕ̃(x) dx dµi(y)

−
ˆ

Ω

ˆ
Ω′\Ω

CKi(x; y) : Dϕ̃(x) dx dµi(y).

By the first equation in (2.159), the first integral at the right hand side is equal to zero.
For the second one, integrating by parts and recalling that divCKi(x; y) = 0 for every
x 6= y, we obtain
ˆ

Ω

ˆ
Ω′\Ω

CKi(x; y) : Dϕ̃(x) dx dµi(y) = −
ˆ

Ω

ˆ
∂Ω
ϕ(x) · CKi(x; y)n(x) dH 1(x) dµi(y).

Hence, we deduce
ˆ

Ω
C
( ˆ

Ω
Ki(x; y) dµi(y)

)
: Dϕ(x) dx

=
ˆ

Ω

ˆ
∂Ω
ϕ(x) · CKi(x; y)n(x) dH 1(x) dµi(y).

(2.161)

On the other hand, by the Euler-Lagrange equations satisfied by uµ1, µ2 , we have
ˆ

Ω
CDuµ1, µ2 : Dϕ dx = −

ˆ
Ω

ˆ
∂Ω
ϕ(x) · CK1(x; y)n(x) dH 1(x) dµ1(y)

−
ˆ

Ω

ˆ
∂Ω
ϕ(x) · CK2(x; y)n(x) dH 1(x) dµ2(y).

(2.162)

Therefore, combining (2.161) and (2.162), we obtain (2.160).
Suppose now that β ∈ L1(Ω;R2×2) is another weak solution of (2.158) with

curlβ = b1µ
1 + b2µ

2

in the sense of distributions. Then, by the weak Poincaré Lemma, βµ1, µ2 − β = Dv for
some v ∈W 1,1(Ω;R2) that satisfies

(2.163) ∀ϕ ∈ C1(Ω;R2),
ˆ

Ω
CDv : Dϕ dx = 0.

We consider a sequence of standard mollifiers (ρk) and we define the regularized functions
vk = v ∗ ρk ∈ C∞(Ω;R2). These functions satisfy the same equation, namely

(2.164) ∀ϕ ∈ C1(Ω;R2),
ˆ

Ω
CDvk : Dϕ dx = 0
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for every k. Indeed, for every k and for every ϕ ∈ C1(Ω;R2), we have
ˆ

Ω
CDvk : Dϕ dx =

ˆ
Ω
C(Dv ∗ ρk) : Dϕ dx =

ˆ
Ω
CDv : (Dϕ ∗ ρk) dx = 0,

where we used (2.163), the symmetry of ρk and that ϕ∗ρk ∈ C∞(Ω;R2). Hence, choosing
ϕ = vk in (2.164), we deduce by (1.4) that Evk = 0. Then Dvk = Ak for some constant
matrix Ak ∈ Skew(2), and, since Dvk → Dv in L1(Ω;R2×2), as k →∞, we conclude that
Dv = A for some constant matrix A ∈ Skew(2). Therefore, βµ1, µ2 and β differ for a
constant skew-symmetric matrix.
Now suppose that µ1(Ω) = m, µ2(Ω) = 1 − m, and µ1, µ2 ∈ H−1(Ω). We consider the
minimization problem

(2.165) min
β∈A(µ1,µ2;b1,b2)

E(β),

where
E(β) =

ˆ
Ω
W (β) dx

and
A(µ1, µ2; b1,b2) =

{
β ∈ L2(Ω;R2×2) : curlβ = b1µ

1 + b2µ
2
}
,

where the condition curlβ = b1µ
1 +b2µ

2 should be intended in the sense of distributions.
Note that the class A(µ1, µ2; b1,b2) is not empty. Indeed the field β = Du⊥ where
u ∈ H1

0 (Ω;R2) is the unique weak solution of the Dirichlet problem{
∆u = b1µ

1 + b2µ
2 in Ω,

u = 0 on ∂Ω

is an element of that class. The functional E and the class A(µ1, µ2; b1,b2) are both
convex, hence we have weak lower semicontinuity. Moreover, E is weakly coercive. Hence,
by the Direct Method, we deduce the existence of a solution β̃ ∈ L2(Ω;R2×2) of the
minimization problem (2.165). Computing the Euler-Lagrange equations of the functional
E, we obtain that β̃ is a solution of (2.158). Therefore we deduce that βµ1, µ2 and β̃
differ for a constant skew-symmetric matrix and, in turn, that βµ1, µ2 ∈ L2(Ω;R2×2).
Thus βµ1, µ2 ∈ A(µ1, µ2; b1,b2) and, using Fubini Theorem and integration by parts, we
compute

E(βµ1, µ2) =
ˆ

Ω
W (βµ1,µ2) dx =

ˆ
Ω
W (Duµ1, µ2) dx

+
ˆ

Ω

ˆ
Ω
CK1(x,y) : Duµ1, µ2(x) dx dµ1(y)

+
ˆ

Ω

ˆ
Ω
CK2(x,y) : Duµ1, µ2(x) dx dµ2(y)

+ 1
2

¨
Ω×Ω

V1 d(µ1 ⊗ µ1) + 1
2

¨
Ω×Ω

V2 d(µ2 ⊗ µ2)

+
¨

Ω×Ω
V1,2 d(µ1 ⊗ µ2) = E(µ1, µ2).

Therefore, we conclude that E(µ1, µ2) < +∞.
Conversely, suppose that E(µ1, µ2) < +∞. Thus we have µ1(Ω) = m and µ2(Ω) = 1−m.
By Step 3 in the proof of the Limsup inequality, there exist two sequences (µ1

k), (µ2
k) ⊂
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X (Ω) such that µ1
k → µ1 and µ2

k → µ2 in X (Ω), as k → ∞, and lim supk F(µ1
k, µ

2
k) ≤

F(µ1, µ2). Then, by the continuity of the functional G, we easily deduce lim supk E(µ1
k, µ

2
k) ≤

E(µ1, µ2). In analogy with (2.156), we define βk ∈ L1(Ω;R2×2) as

(2.166) βk(x) = Duk(x) +
ˆ

Ω
K1(x; y) dµ1

k(y) +
ˆ

Ω
K2(x; y) dµ2

k(y), x ∈ Ω

where, for simplicity, we set uk = uµ1
k
, µ2
k
. Recalling (2.109), we see that µ1

k, µ
2
k ∈ H−1(Ω).

Hence, using the previous argument, we can conclude that βk ∈ L2(Ω;R2×2) and, by
Fubini Theorem, we can check that E(βk) = E(µ1

k, µ
2
k) for every k. Therefore, by (1.4),

C||symβ||2L2(Ω;R2×2) ≤ E(βk) = E(µ1
k, µ

2
k) ≤ E(µ1, µ2)

for k � 1, so that there exist a subsequence (symβk`) and a field ξ ∈ L2(Ω;R2×2) such
that

(2.167) symβk` ⇀ ξ in L2(Ω;R2×2), as `→∞.

Consider the sequence (uk`) ⊂ H1(Ω;R2). For every `, taking u = 0 as a competitor and
using (2.38), we have

0 ≥ I(µ1
k`
, µ2

k`
,uk`) ≥ C1||uk` ||

2
H1(Ω;R2) − C2||uk` ||H1(Ω;R2),

from which we deduce that ||uk` ||H1(Ω;R2) ≤ C2/C1 for every `. Hence, there exist a
subsequence (uk`m ) and a function u ∈ H1(Ω;R2) such that uk`m ⇀ u in H1(Ω;R2), as
m → ∞. We claim that u = uµ1, µ2 . Indeed, by the lower semicontinuity of the elastic
energy we have

(2.168)
ˆ

Ω
W (Du) dx ≤ lim inf

m

ˆ
Ω
W (Duk`m ) dx.

Moreover, for i = 1, 2 we have
ˆ

Ω

ˆ
∂Ω

uk`m (x) ·CKi(x; y)n(x) dH 1(x) dµik`m (y)

=
ˆ

Ω

ˆ
∂Ω

u(x) · CKi(x; y)n(x) dH 1(x) dµik`m (y)

+
ˆ

Ω

ˆ
∂Ω

(
uk`m (x)− u(x)

)
· CKi(x; y)n(x) dH 1(x) dµik`m (y).

(2.169)

For the first integral at the right hand side of (2.169), since the function

y 7→
ˆ
∂Ω

u(x) · CKi(x; y)n(x) dH 1(x)

is continuous and bounded, by narrow convergence we have
ˆ

Ω

ˆ
∂Ω

u(x) · CKi(x; y)n(x) dH 1(x) dµik`m (y)

→
ˆ

Ω

ˆ
∂Ω

u(x) · CKi(x; y)n(x) dH 1(x) dµi(y), as m→∞.
(2.170)
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For the second integral at the right hand side of (2.169), using (1.12), we compute∣∣∣∣∣
ˆ

Ω

ˆ
∂Ω

(
uk`m (x)− u(x)

)
·CKi(x; y)n(x) dH 1(x) dµik`m (y)

∣∣∣∣∣
≤ C

r0
||u− uk`m ||L2(∂Ω)

(2.171)

where the right hand side goes to zero, as m → ∞, by the compactness of the trace
operator. Thus, combining (2.170) and (2.171), we obtain that

(2.172) I(µ1, µ2,u) ≤ lim inf
m

I
(
µ1
k`m

, µ2
k`m

,uk`m
)
.

Note that, by (2.170), we have that

I
(
µ1
k`m

, µ2
k`m

,v
)
→ I(µ1, µ2,v), as m→∞

for every v ∈ H1(Ω;R2). Therefore, using (2.172), we can conclude

I(µ1, µ2,u) ≤ lim inf
m

I
(
µ1
k`m

, µ2
k`m

,uk`m
)

≤ I
(
µ1
k`m

, µ2
k`m

,uµ1, µ2
)

= I(µ1, µ2,uµ1, µ2)

which entails u = uµ1, µ2 , as claimed. Therefore Duk`m ⇀ Duµ1, µ2 in L2(Ω;R2×2), as
m→∞. Moreover, for i = 1, 2, we have that

ˆ
Ω

Ki(·; y) dµik`m (y) ∗⇀
ˆ

Ω
Ki(·; y) dµi(y)

in the sense of distributions, as m→∞. Indeed, for every ϕ ∈ C∞c (Ω), the function

y 7→
ˆ

Ω
Ki(x; y)ϕ(x) dx

is continuous and bounded. Thus, by Fubini Theorem and narrow convergence, we obtain
ˆ

Ω

(ˆ
Ω
Ki(x; y) dµik`m (y)

)
ϕ(x) dx =

ˆ
Ω

ˆ
Ω

Ki(x; y)ϕ(x) dx dµik`m (y)

→
ˆ

Ω

ˆ
Ω

Ki(x; y)ϕ(x) dx dµi(y) =
ˆ

Ω

( ˆ
Ω

Ki(x; y) dµi(y)
)
ϕ(x) dx,

as m → ∞. Therefore, βk
∗
⇀ βµ1, µ2 in the sense of distributions and, by (2.167), we

deduce symβµ1, µ2 = ξ, so that symβµ1, µ2 ∈ L2(Ω;R2×2). Finally, by the generalized
Korn inequality (see Theorem A.2 and Remark A.3 in the Appendix), we obtain that
βµ1, µ2 ∈ L2(Ω;R2×2) and, in turn, µ1, µ2 ∈ H−1(Ω).
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In this appendix we present two results. The first is an extension theorem for Sobolev
functions defined on perforated domains and is taken from [21]. The proof is based on
Lemma 4.1 in [23], which asserts the following: for every v ∈ H1(B(0, 2) \ B(0, 1);R2)
there exists an extension ṽ ∈ H1(B(0, 2);R2) of v satisfying

(A.1) ||Eṽ||L2(B(0,2);R2×2) ≤ C0||Ev||L2(B(0,2)\B(0,1);R2×2)

with some constant C0 > 0 independent of v.

Theorem A.1. Let Ω ⊂ R2 be a bounded Lipschitz domain. Given x1, . . . ,xn ∈ Ω and
given δ > 0 such that d(xi, ∂Ω) > 2δ and |xi − xj | > 4δ for every i 6= j, define Ωδ =
Ω\(

⋃n
i=1B(xi, δ)). Then for every u ∈ H1(Ωδ;R2) there exist an extension ũ ∈ H1(Ω;R2)

of u satisfying
||Eũ||L2(Ω;R2×2) ≤ C||Eu||L2(Ωδ;R2×2)

with some constant C > 0 independent of u, of n, of the points xi, and of δ.

Proof. Take any u ∈ H1(Ωδ;R2) and denote by ui its restriction to B(xi, 2δ) \ B(xi, δ).
For every i = 1, . . . , n, we consider the affine map gi on R2 given by gi(x) = (x − xi)/δ.
We define vi = ui ◦ g, so that vi ∈ H1(B(0, 2) \B(0, 1);R2). Thus, by the result recalled
previously, there exists an extension ṽi ∈ H1(B(0, 2);R2) of vi satisfying (A.1). Then,
the function ũi = ṽi ◦ g−1

i is in H1(B(xi, 2δ);R2) and gives an extension of ui. Moreover,
an easy scaling argument shows that

||Eũi||L2(B(xi,2δ);R2×2) ≤ C0||Eui||L2(B(xi,2δ)\B(xi,δ);R2×2).

Hence, if we define

ũ =
{

ũi in B(xi, δ), for i = 1, . . . , n,
u in Ωδ,

then we obtain a function in H1(Ω;R2) that is an extension of u and satisfies

||Eũ||2L2(Ω;R2×2) = ||Eu||2L2(Ωδ;R2×2) +
n∑
i=1
||Eũi||2L2(B(xi,δ);R2×2)

≤ (1 + C2
0 )||Eu||2L2(Ωδ;R2×2),

where we remark that C0 is the same constant as in (A.1).

The second result is a generalized version of the Korn inequality which is taken from [12].
Consider a field β ∈ L2(Ω;R2×2) with curlβ = 0 in the sense of distributions. By the
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Weak Poincaré Lemma, there exists u ∈ H1(Ω;R2) such that β = Du. Hence, if skewβ
has zero mean on some ball B ⊂ Ω, then by the classical Korn inequality we obtain

(A.2)
ˆ

Ω
|β|2 dx =

ˆ
Ω
|Du|2 dx ≤ C

ˆ
Ω
|Eu|2 dx = C

ˆ
Ω
|symβ|2 dx

for some constant C > 0 depending only on Ω. The next result shows that, in the plane,
a similar estimate can be obtained also for fields whose curl is a measure of bounded
variation, up to an error depending on the total variation of the measure.
The proof is based on the following result (see Theorem 3.1 and Remark 3.3 in [4]): if
f ∈ L1(Ω;R2) is a field with div f ∈ H−2(Ω), then f ∈ H−1(Ω;R2) and there exists a
constant C > 0, independent of f , such that

(A.3) ||f ||H−1(Ω;R2) ≤ C
(
||div f ||H−2(Ω) + ||f ||L1(Ω;R2)

)
.

Note that here and henceforth, the divergence and the curl operators are always intended in
the distributional sense. By density, this result can be extended to measures of bounded
variation. That is, for every µ ∈ Mb(Ω;R2) such that divµ ∈ H−2(Ω), we have that
µ ∈ H−1(Ω;R2) and

(A.4) ||µ||H−1(Ω;R2) ≤ C
(
||divµ||H−2(Ω) + |µ|(Ω)

)
.

Theorem A.2. (Generalized Korn inequality) Let Ω ⊂ R2 be a bounded Lipschitz
domain and consider a ball B ⊂⊂ Ω. There exists a constant C > 0 depending only on Ω
such that, for every β ∈ L2(Ω;R2×2) with

curlβ = µ ∈Mb(Ω;R2),
ˆ
B

(β − β>) dx = 0,

we have ˆ
Ω
|β|2 dx ≤ C

(ˆ
Ω
|symβ|2 dx +

(
|µ|(Ω)

)2)
.

Proof. Set µ = (µ1, µ2) and β = (βij)i,j=1,2. Consider q = (β12−β21)/2, that is, the entry
of position (1, 2) in the matrix skewβ. Since curlβ = µ, we can write{

∂1q = µ1 + g1,

∂2q = µ2 + g2,

where g1 = ∂2β11−∂1((β12+β21)/2) and g2 = −∂1β22+∂2((β12+β21)/2). Note that g1, g2 ∈
H−1(Ω) and that they are linear combinations of distributional derivatives of the entries of
symβ. Set g = (g1, g2). Trivially curl Dq = 0. From this we deduce that curlµ = − curl g,
or, equivalently, divµ⊥ = −div g⊥. Note that div g⊥ ∈ H−2(Ω). Therefore, by the result
recalled in A.4, we obtain that µ⊥ ∈ H−1(Ω;R2), hence µ ∈ H−1(Ω;R2). Moreover, we
have

||µ||H−1(Ω;R2) = ||µ⊥||H−1(Ω;R2)

≤ C
(
||divµ⊥||H−2(Ω) + |µ⊥|(Ω)

)
= C

(
||div g⊥||H−2(Ω) + |µ|(Ω)

)
≤ C

(
||symβ||L2(Ω;R2×2) + |µ|(Ω)

)
.

(A.5)
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Consider now the unique weak solution u ∈ H1
0 (Ω;R2) of the following Dirichlet problem:{

−∆u = µ⊥ in Ω,
u = 0 on ∂Ω.

Thus we have

(A.6) ||Du||L2(Ω;R2×2) ≤ ||u||H1(Ω;R2) ≤ C||µ⊥||H−1(Ω;R2) = C||µ||H−1(Ω;R2)

where the constant C > 0 depends only on Ω. Set ξ = Du⊥. This field satisfies curl ξ = µ.
Moreover, by (A.5) and (A.6), we obtain

ˆ
Ω
|ξ|2 dx =

ˆ
Ω
|Du|2 dx ≤ C||µ||2H−1(Ω;R2)

≤ C
(
||symβ||2L2(Ω;R2×2) + (|µ|(Ω))2

)
.

(A.7)

Define ξ̃ = ξ − A, where we set A = 1/2
ffl
B(ξ − ξ>) dx. Thus curl (β − ξ̃) = 0 andffl

B

(
(β − ξ̃)− (β − ξ̃)>

)
= 0. Therefore, we can apply the classical Korn inequality (A.2)

and use (A.7) to conclude
ˆ

Ω
|β|2 dx ≤ 2

(ˆ
Ω
|β − ξ̃|2 dx +

ˆ
Ω
|ξ̃|2 dx

)
≤ C

(ˆ
Ω
|symβ − symξ|2 dx +

ˆ
Ω
|ξ|2 dx

)
≤ C

(ˆ
Ω
|symβ|2 dx +

ˆ
Ω
|ξ|2 dx

)
≤ C

(ˆ
Ω
|symβ|2 dx +

(
|µ|(Ω)

)2)
.

Remark A.3. Let β ∈ L2(Ω;R2×2) with curlβ = µ be such that skewβ has not zero mean
on B. We can consider the field β −A where A = 1

2
ffl
B(β − β>) dx. Its skew-symmetric

part clearly satisfies the zero mean condition on B. Moreover curl (β−A) = µ. Therefore,
applying the generalized Korn inequality, we obtain

ˆ
Ω
|β −A|2 dx ≤ C

(ˆ
Ω
|symβ|2 dx +

(
|µ|(Ω)

)2)
.
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