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The main character in this course is the Helmholtz equation (also known as “reduced wave equa-
tion”), which is the following partial differential equation (PDE):

∆u+ k2u = 0. (1)

Here ∆ =
∑n
j=1 ∂

2
xj

is the Laplace operator in n variables for n ∈ {1, 2, 3}, k > 0 is a real parameter
called wavenumber, and u is the unknown of the equation, a scalar field defined on a subset of Rn. We
will mostly consider the two-dimensional case n = 2.

In the following, we first derive the Helmholtz equation from several physical phenomena, showing
that it can be used to model different kinds of linear wave problems. Then we show some simple special
solutions of the equation. We describe some boundary value problems (BVPs) and focus on one of them,
the exterior Dirichlet problem (EDP). We show how to reformulate this as a boundary integral equation
(BIE), introduce a numerical method (the boundary element method, BEM) to approximate its solution,
and explain how to implement it. We also use Fredholm theory to study some properties of the BIE and
the BEM, in particular their well-posedness, sketch some alternative BIEs for the same BVP, and study
some related problems.

At the end of the course you should be able to reproduce all the figures present in these notes with
Matlab or a similar language.

In the first few sections the approach will be more “physical” than “mathematical”, so we will not make
precise assumptions and will gloss over some issues such as the regularity of the objects involved or the
admissibility of some operations.

All the results presented here are well-known, but scattered over several books and papers. At the end
of this document (Appendix G) a few useful references are listed; they are the main sources used in the
preparation of these notes (see also those mentioned in Remark 5.29). A few other references, which are
relevant for specific results or because they are the original sources, are mentioned (with clickable links)
in footnotes.

https://euler.unipv.it/moiola/T/MNAPDE2025/MNAPDE2025.html
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1 Why is the Helmholtz equation relevant?

1.1 Acoustics
Sound waves are mechanical vibrations propagating in a fluid, which could be either a gas or a liquid.
In this section we introduce the basic equations that model them. A more complete introduction can
be found in [CJ77, §6] and [BK00, §3]. Being able to model, and thus to control, sound propagation
is important for numerous industrial and medical applications: not only for the design of concert halls,
musical instruments, microphones and loudspeakers, but also for noise and vibration mitigation (e.g. in cars
and aircraft), medical ultrasound imaging, non-invasive therapy such as high-intensity focused ultrasound
surgery (HIFU), offshore oil exploration, underwater communication (sonar), bioacoustics, nondestructive
testing, sensors. . .

We denote by ρ(x, t) the density, by p(x, t) the pressure and by v(x, t) the velocity of the fluid in
a point x ∈ Rn at time t ∈ R. We denote by ∇, div (or ∇·) and ∆ the gradient, the divergence and the
Laplacian in the space coordinate x only (i.e. without derivatives in t). Conservation of mass gives the
continuity equation

∂ρ

∂t
+ div(ρv) = 0, (2)

and conservation of momentum gives Euler’s equation

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0 (3)

where [(v ·∇)v]j =
∑n
m=1 vm∂xm

vj . See Remark 1.8 for a derivation of (2)–(3). Both PDEs are non-linear
as they contain quadratic terms (products of ρ and v or v and its derivatives). We assume that all three
quantities considered are small perturbations of the constant1 static values:

ρ(x, t) = ρ0 + ρ≈(x, t), p(x, t) = p0 + p≈(x, t), v(x, t) = v0 + v≈(x, t) and that v0 = 0.

p≈ is called acoustic pressure or excess pressure. Linearising both equations around the static values
(using 1

ρ = 1
ρ0(1+

ρ≈
ρ0

)
≈ 1

ρ0
(1− ρ≈

ρ0
)) we obtain

∂ρ≈
∂t

+ ρ0 div(v≈) = 0 and
∂v≈

∂t
+

1

ρ0
∇p≈ = 0. (4)

The pressure is an increasing function of the density p = f(ρ) with p0 = f(ρ0). Linearising this relation
and denoting c2 := ∂f

∂ρ (ρ0) we have p0 + p≈ = f(ρ0 + ρ≈) ≈ f(ρ0) + c2ρ≈, thus p≈ = c2ρ≈. (We can call
the equations (4) together with p≈ = c2ρ≈ the “first-order acoustic wave equation system”.) Using this
relation in the two linearised PDEs (4) we obtain that the pressure satisfies the wave equation:

1

c2
∂2p≈
∂t2

−∆p≈ = 0.

(Here we use that the divergence of the gradient is the Laplacian, ∆u = div∇u.) Since ρ≈ = 1
c2 p≈, also

ρ≈ satisfies the same equation.
The wave equation has been obtained from the linearisation of two “conservation laws” (for mass and

momentum) and a “constitutive relation” (relating p and ρ).
In this derivation we have neglected the effect of the non-linear advection term (v ·∇)v and, implicitly,

those of fluid viscosity and gravity. A brief discussion of the validity of these assumptions is in [BK00,
p. 41]. Moreover, |p≈| ≪ p0 is true for typical sounds in air: e.g. acoustic pain threshold is between 63
and 200 Pa, while ambient pressure is p0 ≈ 101 325 Pa, so |p≈|/p0 ≈ 6× 10−4—2× 10−3.

Exercise 1.1: (Acoustic velocity).

• Show that the velocity v≈ satisfies the vector wave equation 1
c2
∂2v≈
∂t2 −∇ divv≈ = 0.

• Fix n = 3. Prove that for all vector fields F ∈ C2(R3)3 the following vector calculus identity holds

∇ divF = ∆F+ curl curlF. (5)

Here ∆ is the vector Laplacian (defined componentwise) and curlF = ∇ × F = (∂F3

∂x2
− ∂F2

∂x3
, ∂F1

∂x3
−

∂F3

∂x1
, ∂F2

∂x1
− ∂F1

∂x2
) is the usual curl operator.

1In some applications, the static (time-independent) background quantities ρ0, p0 and v0 are not constant in space. E.g.
in ocean acoustics the background density and pressure typically depend on salinity and depth; in the modelling of airplane
noise the velocity of the fluid is non-zero and variable. This leads to the presence of extra terms in the linearised differential
equations; see also Remark 1.15.
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• Deduce that if v≈ is irrotational, i.e. curl-free (curlv≈ = 0), then each Cartesian component v≈,1, v≈,2, v≈,3
is solution of the scalar wave equation: 1

c2
∂2v≈,j
∂t2 −∆v≈,j = 0, j = 1, 2, 3.

• Show that if v≈ is irrotational at some given time t0, then it remains irrotational for all t > t0.

Exercise 1.2: (Velocity potential). Assume that, at some initial time t = t0, the velocity v≈(x, t0) is gradient
of a (time-independent) scalar field 1

ρ0
ϕ0(x). Show that the scalar field ϕ(x, t) := ϕ0(x) −

∫ t
t0
p≈(x, s) ds,

called velocity potential, satisfies −∂ϕ
∂t = p≈ and 1

ρ0
∇ϕ = v≈. Show that the velocity potential satisfies the

wave equation 1
c2
∂2ϕ
∂t2 −∆ϕ = 0.

We have seen that several quantities (the acoustic pressure p≈, the density ρ≈, and, under suitable
assumptions, the velocity potential ϕ and the components of the velocity v≈,j) satisfy the same wave
equation, so we write it for a general scalar field U :

1

c2
∂2U

∂t2
−∆U = 0. (6)

This is the prototype of second-order, linear, hyperbolic PDEs.

Exercise 1.3: (Time-domain plane waves). Show that for any smooth function F : R → R and any unit
vector d ∈ Rn, |d| = 1, the field U(x, t) = F (x · d− ct) is a solution of the wave equation (6).

Exercise 1.4: (Time-domain spherical waves). Show that for any smooth function F : R → R, the field
U(x, t) = F (|x|−ct)

|x| is a solution of the wave equation for x ∈ R3 \ {0}, t ∈ R.
Recall the expression of the Laplace operator in spherical coordinates [DLMF, eq. 1.5.17].

Exercise 1.3 shows that any wave profile (imagine F as a pulse, e.g. ) move across space–time
with speed c, which is thus called wave speed.2 Indeed, c =

√
p≈
ρ≈

and the square root of the ratio between

a pressure and a mass density has the dimension of a velocity (i.e.
√

kgm−1s−2

kgm−3 = m
s ). Exercise 1.4 shows

that in 3D any wave profile can move radially away from the origin; in this case the profile decreases
proportionally to the distance |x| from the origin as it spreads over a wider spherical surface.

Exercise 1.5: (Damped wave equation). The damped wave equation (or equation of telegraphy, see
[CJ77, §9]) with damping parameter γ > 0 is

1

c2
∂2U

∂t2
+
γ

c2
∂U

∂t
−∆U = 0. (7)

Assume that γ is small so that γ2 can be neglected. Show that wave profiles are damped in time with rate
γ
2 while they propagate: for any smooth function F : R → R and any unit vector d ∈ Rn, |d| = 1 the field
U(x, t) = F (x · d− ct)e−

γ
2 t is a solution of the damped wave equation (7) up to a factor − γ2

4c2U ≈ 0.
Conversely, show that if U is solution of the damped wave equation (7), then W (x, t) := e

γ
2 tU(x, t) is

solution of the wave equation (6) up to a factor γ2

4c2W ≈ 0.
You can find an interactive animation of the damped wave equation on a rectangle (your browser) with

sound-soft boundary conditions (§1.1.1) on https://apps.amandaghassaei.com/MassSpringShader/

Remark 1.6: (Measuring sound). The acoustic intensity I := p≈v≈ is the flux of energy per unit area
carried by a sound wave; see [BK00, eq. (3.25)] for a derivation. The sound power through a surface S with
unit normal n is

∫
S
I · n dS and is measured in watt. Integrating also in time we obtain the energy carried by

the acoustic wave. The intensity I is proportional to p2≈, see Exercise 1.7.
Since the human ear has a logarithmic sensitivity, the strength of sound waves is usually measured by the

sound pressure level SPL := 20 log10(p≈/pref). The SPL unit of measure is the decibel (dB, or dBSPL). Here
pref is a reference pressure level: for sound in air this is conventionally taken as pref = 2 · 10−5 Pa, roughly the
human hearing threshold (at appropriate frequencies). With this definition, if the intensity magnitude |I| ∼ p2≈

2Thermodynamics states that sound waves are adiabatic, i.e. there is no heat loss, and that p = aργ , where a is a
proportionality constant and γ = 1.4 for air (or for a diatomic ideal gas), see [BK00, p. 39 and §7.2, (7.33)]. Indeed, taking

air pressure p0 = 1atm≈ 101 325N/m2 and air density ρ0 ≈ 1.225kg/m3 we have c =
√

∂p
∂ρ

(ρ0) =
√
γaργ−1

0 =
√
γp0/ρ0 ≈

340m/s, which is the speed of sound in air.

https://dlmf.nist.gov/1.5.E17
https://apps.amandaghassaei.com/MassSpringShader/
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(the power output) of a signal is 10 times higher than that of another signal, then the SPL of the first one is
10 dB higher than the SPL of the second:

p21 ∼ |I1| = 10|I2| ∼ p22, SPL1 = 20 log
p1
pref

= 20 log

√
10 p2
pref

= SPL2 + 20 log10
√
10 = SPL2 + 10.

A sound below 0 dB is inaudible, while 130 − 140 dB is the pain threshold and sounds at this SPL can lead
to permanent hearing damage: these two thresholds roughly correspond to the pressures 2 · 10−5 Pa and
63–200 Pa, and to the power output 10−12 W and 10–100 W.

Exercise 1.7: (Plane wave intensity). Let the acoustic pressure field be a plane wave p≈(x, ·) = F (x ·n−ct)
as in Exercise 1.3. Using the linearised equations (4), compute the acoustic velocity v≈ and show that the
acoustic intensity is I =

p2≈d
ρ0c

.

Remark 1.8: (Derivation of the continuity and the Euler equations). Let ψ(x, t) be the density of some
quantity and q(x, t) its source rate. This means that

∫
D
ψ(x, t) dx is the total quantity in a smooth open

region D ⊂ Rn at a given time t, and
∫
D
q(x, t) dx is its net production per unit of time. If the quantity is

transported by a fluid with velocity v, its net flow through the boundary of D is
∮
∂D

ψ(x, t)v(x, t) ·n(x) dS(x),
n being the outward unit normal on ∂D. The variation of the total quantity in D is equal to the sum of the
amount generated by the source q and the amount flowing through the boundary:

∂

∂t

∫
D

ψ(x, t) dx =

∫
D

q(x, t) dx−
∮
∂D

ψ(x, t)v(x, t) · n(x) dS(x) =
∫
D

(
q(x, t)− div

(
ψ(x, t)v(x, t)

))
dx,

thanks to the divergence theorem. Moving the time derivative under the integral sign, since the region D is
arbitrary, we obtain that the quantity satisfies the conservation law

∂ψ

∂t
+ div(ψv) = q. (8)

The conservation of mass is modelled choosing ψ = ρ and q = 0 in (8) (since mass is not created nor destroyed),
which gives immediately the continuity equation (2). The momentum density is ρv: the conservation of its
jth component ψ = ρvj gives

∂(ρvj)

∂t
+ div(ρvjv) = Fj , j = 1, . . . , n,

where Fj is the jth component of the external force density acting on the fluid. This is a version of Newton’s
second law for continua: a force causes a variation of momentum. Using the product rule for the divergence
we obtain

Fj =
∂(ρvj)

∂t
+ div(ρvjv) = vj

( ∂ρ
∂t

+ div(ρv)︸ ︷︷ ︸
=0, (2)

)
+ ρ
(∂vj
∂t

+ v · ∇vj
)
, j = 1, . . . , n.

In the case of our interest, the force density is due to the fluid pressure: F = −∇p. Using this in the formula
above and dividing by the density ρ we obtain Euler’s equation (3).

1.1.1 Boundary conditions and source term

When the acoustic waves hits an obstacle D ⊂ Rn through which it cannot propagate, on the interface
between the obstacle and the fluid some boundary conditions have to be imposed. Depending on the
nature of the obstacle and of the fluid, different conditions can be imposed.
• If the obstacle is “sound-soft” then the acoustic pressure on its boundary vanishes, i.e. p≈ = 0.
• If the obstacle is “sound-hard” then the normal velocity on the boundary vanishes, i.e. v≈ · n = 0,

where n is the unit normal vector on the boundary of D.
Both sound-soft and sound-hard boundary conditions reflect all the energy carried by the wave (§4.1,
Exercise 4.18).

• A simple way to model a more realistic boundary condition is to impose that the normal velocity is
proportional to the pressure: v≈ · n = ϑ

cρ0
p≈ for some ϑ > 0 that represents how easily the obstacle

yields to the acoustic pressure. Here we have assumed that n points outwards of the domain where the
wave propagates and into the obstacle D. We have divided by cρ0 to ensure that ϑ is dimensionless
(check this fact). Deriving this relations and using the linearised Euler’s equation (4), we obtain a
relation involving p≈ only: n · ∇p≈ + ϑ

c
∂p≈
∂t = 0. This is called “impedance” boundary condition.
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• If the obstacle is made of a different fluid, then instead of imposing boundary conditions we consider
two copies of the wave equations in the two fluids, with different values of c. The two equations are
coupled by suitable transmission conditions, i.e. by imposing the continuity of the pressure and the
normal displacement across the interface (see [Martin06, §1.3.3] and §7.1.1 below).
If the obstacle is an elastic solid, acoustic waves in the fluid generates elastic waves in the solid and vice
versa. This is modelled by coupling the acoustic wave equation (6) with the (more complicated) elasto-
dynamic wave equation, whose unknown is the point displacement, through appropriate transmission
conditions, [Ihlenburg98, §1.3]. We briefly describe the equations of elastodynamics in §1.4.

In “aeroacoustics”, sound is generated by fluid turbulence, thus the source of acoustic disturbance is
distributed in the bulk of the fluid. This is modelled by the inhomogeneous wave equation:

1

c2
∂2U

∂t2
−∆U = F, (9)

where F (x, t) is the source term. Vice versa, in “vibroacoustics” the sound is generated by vibrating
structures immersed in the acoustic fluid. In this case the source of disturbance is imposed as a bound-
ary condition, justifying the interest in the homogeneous wave equation (6). For an extensive physical
description of sound generation see [Heller13]; in particular, see Ch. 7 for sound produced by vibrations
of solid objects and Ch. 14 for sound produced by turbulence.

1.2 Time-harmonic waves

A time-harmonic function is a scalar field with sinusoidal time dependence, in the form3

U(x, t) = ℜ{u(x)e−iωt} = ℜ{u(x)} cosωt+ ℑ{u(x)} sinωt (10)

for an angular frequency ω > 0 and a complex-valued field u which depends on the position in space
x but not on the time variable t. (Here ℜ{·} and ℑ{·} denote real and imaginary parts, and i is the
imaginary unit.) A sound wave in the form (10) is a “pure tone” or a “monocromatic wave”.

By taking the Laplacian and the second time-derivative of (10) we obtain that

1

c2
∂2U

∂t2
(x, t)−∆U(x, t) = ℜ

{(
− ω2

c2
u−∆u

)
e−iωt

}
and the following crucial fact.

If U(x, t) is a time-harmonic (10) solution of the wave equation (6),
then u(x) is solution of the Helmholtz equation ∆u+ k2u = 0 with wavenumber k := ω/c > 0.

This is the main reason for the interest in the Helmholtz equation: it describes all time-
harmonic solutions of the wave equation. Any solution of the Helmholtz equation has to be inter-
preted via (10): multiplying by e−iωt and taking the real part we obtain a “physical” field depending on
space and time.

The angular frequency ω is measured in radians per second and is proportional to the time frequency f ,
which is measured in Hertz (1Hz = 1s−1), with the relation ω = 2πf . For brevity, in the following we
simply use the word “frequency” for ω. The higher the frequency ω and the wavenumber k, the more
oscillatory are the solutions of the Helmholtz equation. Sounds that are audible by humans correspond
to values of f ranging approximately between 20Hz and 20 000Hz.

Another important acoustic quantity is the wavelength λ := 2π
k . From k = ω

c and ω = 2πf , we
have λ = c

f , thus the wavelengths of audible sounds in the atmosphere range between 17mm and 17m.
The wavelength is a characteristic length associated to the Helmholtz operator ∆+ k2: as we will see in
§2.2, λ is the spatial period of some important periodic Helmholtz solutions.

Sound-soft conditions translate to Dirichlet boundary conditions u = 0, sound-hard to Neumann
n · ∇u = 0, and impedance to Robin n · ∇u − ikϑu = 0. Note that the coefficient in the impedance
condition is imaginary and that kϑ > 0. A time-harmonic wave propagating in two adjacent regions
filled with different fluids (e.g. the atmosphere above the sea) is modelled by two copies of the Helmholtz
equation with different values of k coupled by “transmission conditions”, see §7.1.1. 4

3Unfortunately, several references use the opposite convention U(x, t) = ℜ{u(x)eiωt}, with a different sign at the exponent.
This causes changes in the signs and conjugation in all formulas in the following.

4If a region Ωabs contains a strongly absorbing medium (see Exercise 1.14), one can approximate the waves propagating
in its complement by imposing impedance conditions on ∂Ωabs. For a justification of this fact and the derivation of more
accurate generalised impedance boundary conditions, see [Haddar, Joly, Nguyen, Generalized impedance boundary conditions
for scattering by strongly absorbing obstacles: the scalar case, M3AS 2005].

https://doi.org/10.1142/S021820250500073X
https://doi.org/10.1142/S021820250500073X
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At low frequencies, i.e. for small values of k, the Helmholtz equation is a regular perturbation of the
Laplace equation ∆u = 0. Indeed, the two PDEs share many properties, and the same analytical and
numerical techniques apply to both. However, at medium and high frequencies, i.e. for larger values of k,
time-harmonic problems become much more challenging and interesting: the standard “elliptic” techniques
do not apply and we have to resort to more advanced analytical tools and numerical methods. Whether
a given k > 0 is to be considered a large or a small wavenumber usually depends on the ratio between a
characteristic length L of the domain of interest and the wavelength λ: if L

λ ≫ 1 the domain “contains”
many wavelengths and we have a high-frequency problem.

Exercise 1.9: (Amplitude and phase). Show that a time-harmonic function U(x, t) as in (10) (not necessarily
solution of any PDE) can be written in terms of an amplitude function A(x) ≥ 0 and a (real) phase function
ϕ(x) as

U(x, t) = A(x) cos
(
ω(t− ϕ(x))

)
.

Express A and ϕ in terms of u and vice versa.
At the point x, the wave U oscillates between the values −A(x) and A(x). Different points x1 and x2

reach the maximum periodically at different times dictated by ϕ: show that they are synchronised if and only
of ϕ(x1)− ϕ(x2) is an integer multiple of 2π

ω .

Exercise 1.10: (Inhomogeneous wave and Helmholtz equations). Let U be time-harmonic as in (10) and
be a solution of the inhomogeneous wave equation (9) with F (x, t) = ℜ{f(x)e−iωt}. Show that u satisfies
the inhomogeneous Helmholtz equation −∆u− k2u = f .

Exercise 1.11: (Time reversal). Show that complex conjugation of Helmholtz solutions “reverses time”: if
U is the space–time wave solution associated to the Helmholtz solution u, then the space–time wave solution
W associated to u = ℜu− iℑu satisfies W (x, t) = U(x,−t).

Exercise 1.12: (Helmholtz solutions oscillate around 0). Show that if u is a Helmholtz solution defined
on an open set and x∗ is an interior local maximum (minimum, respectively) of its real part, then ℜu(x∗) ≥ 0

(ℜu(x∗) ≤ 0, respectively). This means that ℜu can look like but not like .

Exercise 1.13: (Time-harmonic loop). Verify that for every time-harmonic U as in (10)

U(x, 0) = ℜ{u(x)}, U
(
x,

π

2ω

)
= ℑ{u(x)}, U

(
x,
π

ω

)
= −ℜ{u(x)}, U

(
x,

3π

2ω

)
= −ℑ{u(x)}.

This means that when the wave U has value equal to the real part of u, it will shift towards a value equal to
the imaginary part of u. We will use this to determine direction a time-harmonic wave u is moving, from the
comparison of his real and imaginary part.

Exercise 1.14: (Helmholtz equation with complex wavenumber). Show that if U is a time-harmonic solu-
tion of the damped wave equation (7) then it is solution of the Helmholtz equation with complex wavenumber
k, such that k2 = ω(ω + iγ)/c2. (We always choose the root k with ℜk > 0 and ℑk ≥ 0).

This shows that the solutions of the Helmholtz equation with complex wavenumber k can be understood
as waves that are attenuated while they propagate, i.e. they are absorbed by the medium through which they
propagate. The larger the imaginary part of the wavenumber, the stronger the damping. A negative imaginary
part of k corresponds to γ < 0 in (7) and to waves increasing in time, which is an unphysical situation.

Remark 1.15: (Waves in heterogeneous media). We have assumed that the medium through which the
wave propagates is uniform. In the more general case of an acoustic wave propagating through heterogeneous
materials, both the sound speed c and the static density ρ0 depend on the position x. In this case, one
obtains the wave equation 1

ρ0(x)c2(x)
∂2p≈
∂t2 − div( 1

ρ0(x)
∇p≈) = 0. Assuming time-harmonic behaviour (10) for

U = p≈ we have the Helmholtz equation with variable coefficients (also called Bergmann equation, [Martin06,
eq. (1.27)]):

div

(
1

ρ0(x)
∇u(x)

)
+

ω2

ρ0(x)c2(x)
u(x) = 0. (11)

When a wave passes through materials with variable acoustic properties ρ0 and c, it deviates from a straight
propagation path: this phenomenon is called refraction.

In the following sections we do not consider this more general problem and we stick to the constant-
coefficients case. Then in §7 we return to (11), assuming constant ρ0 and variable c. See also [CK2, §8] and
[Martin06, §1.3.4] for more details on time-harmonic wave problems in heterogeneous media.
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Remark 1.16: (Is the Helmholtz equation elliptic?). According to the standard classification of second-
order linear PDEs, Helmholtz equation is clearly elliptic: its principal part (the second order term) is simply
the Laplacian (see [Brezis11, Ch. 9, eq. (36)], [McLean00, eq. (4.7)]). Indeed it shares many properties with
Laplace equation, e.g. “elliptic regularity” (all solutions are C∞ in their domain). But often the word “elliptic”
is used to denote problems that satisfy the assumptions of Lax–Milgram theorem. We will see that the typical
variational forms of Helmholtz BVPs do not satisfy this requirement, so under this respect the equation is
not elliptic. Indeed, it does not satisfy some other typical properties of elliptic PDEs, such as the maximum
principle; moreover it is closely related to the wave equation, which is the prototypical hyperbolic equation.

Remark 1.17: (Helmholtz equation = wave equation + Fourier transform). Fourier analysis tells us
that any “reasonable” (e.g. square-integrable) time-dependent field U can be written as a continuous linear
combination of time-harmonic fields eiωtÛ(x, ω) with different frequencies ω ∈ R, where Û is its Fourier
transform (in time):

U(x, t) =
1√
2π

∫
R
eiωtÛ(x, ω) dω with Û(x, ω) =

1√
2π

∫
R
e−iωtU(x, t) dt.

Reasoning as above, we can verify that, if U is solution of the wave equation with wave speed c, then its Fourier
transform Û evaluated at a given frequency ω, i.e. u(x) = Û(x, ω), is solution of the Helmholtz equation with
wavenumber k = ω/c. Thus any solution of the wave equation is a linear combination of infinitely many
solutions of the Helmholtz equation at different wavenumbers. (Roughly speaking, this is how human ears
process sound: different parts of the ear receive and transmit to the brain different frequencies.) Numerically,
often one approximates a wave equation solution by solving several Helmholtz problems. This is an important
reason for studying the Helmholtz equation, even if we were not interested in problems at a fixed frequency.

When we study U and the wave equation we say that we work “in time domain”; when we study Û or u
and the Helmholtz equation we say that we work “in frequency domain”.

1.3 Electromagnetism
Although the Helmholtz equation is usually associated to acoustic waves, it is important also in the
modelling of other kinds of linear waves, e.g. electromagnetic ones. In this section and in the next one we
fix n = 3, i.e. we consider 3D problems. Electromagnetic waves in a homogeneous material, in the absence
of charges, are described by the Maxwell’s equations:

curl E(x, t) + µ
∂H
∂t

(x, t) = 0, curlH(x, t)− ϵ
∂E
∂t

(x, t)− σE(x, t) = 0, (12)

where E is the electric field, H the magnetic field, ϵ the electric permittivity, µ the magnetic permeability,
and σ the conductivity. The parameters ϵ, µ and σ represent the properties of the material through which
the wave propagates. As we consider a homogeneous, isotropic medium, ϵ and µ are positive constants, σ
is a non-negative constant (0 in a dielectric, i.e. a perfect insulator, and positive in a conducting medium).
The first equation is called Faraday law, the second one Ampère law.

If both the electric and the magnetic field are time-harmonic, i.e. E(x, t) = ℜ{E(x)e−iωt} and H(x, t) =
ℜ{H(x)e−iωt} for some ω > 0, then the time-independent fields E and H satisfy the time-harmonic
Maxwell’s equations:

curlE(x)− iωµH(x) = 0, curlH(x) + iωϵE(x)− σE(x) = 0. (13)

These are two vector-valued PDEs with two vector fields as unknowns. Eliminating H, we obtain the
second-order time-harmonic Maxwell’s equations for the electric field:

curl curlE− k2E = 0 with k2 = ω2ϵµ+ iωσµ. (14)

Since div curlv = 0 for any vector field v, any solution of (14) is divergence-free (solenoidal). Then
the expansion (5) (curl curl = ∇div−∆) implies that each component of the solution of the second-
order Maxwell’s equations (14) is solution of the Helmholtz equation with (possibly complex, if σ > 0)
wavenumber k:

∆Ej + k2Ej = 0 for j = 1, 2, 3. (15)

The speed of propagation of electromagnetic waves (e.g. of light) is c = 1√
ϵµ > 0 and the damping factor

(as in Exercise 1.14) is γ = ℑ{k2} c
2

ω = σ
ϵ ≥ 0.
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As any other PDE, time-harmonic Maxwell’s equations are complemented by boundary conditions.
When the domain under consideration is surrounded by a metal, through which the electric field does not
penetrate, then typically one imposes the “perfect electric conductor” (PEC) boundary conditions,
which impose that the tangential component of the electric field vanishes. In formulas this is E× n = 0,
where × denote the vector product and n is the unit normal vector on the boundary. In terms of
the magnetic field, the PEC boundary conditions correspond to the vanishing of the normal component:
H·n = 0. This is easy to verify for a plane boundary, e.g. Π = {x1 = 0}: in this case E×n = E×(1, 0, 0) =
(0, E3,−E2) so E2 = E3 = 0 on the whole plane Π, and H ·n = 1

iωµ curlE · (1, 0, 0) = 1
iωµ (

∂E3

∂x2
− ∂E2

∂x3
) = 0.

We also often encounter impedance (or Leontovich) boundary conditions: H×n−ϑ(n×E)×n =
1
ikg, or equivalently µ−1 curlE×n− ikϑ(n×E)×n = g, for a parameter ϑ with ℜϑ > 0 and a boundary
source term g. Here (n×E)×n = E− (E ·n)n is the tangential component of E. Impedance conditions
can be used to model an “imperfect conductor”: if the complement of the domain of interest is a metal with
large (but finite) conductivity σ, then the electromagnetic field decays exponentially in it (skin effect);
impedance conditions approximate the relation between E and H on the surface without the need of
knowing the evanescent fields in the conductor. In this case the parameter ϑ is complex and can be
computed5 from the material parameters ϵc, µc, σc of the conductor as ϑ =

√
ϵc+iσc/ω

µc
; ζ = 1/ϑ is called

“surface impedance”.

Exercise 1.18: (Maxwell-vs-Helmholtz). Complete the proof of the following statement. For k ∈ C, k ̸= 0,
a vector field v is solution of curl curlv − k2v = 0 if and only if it is divergence-free and each of its three
components is solution of the Helmholtz equation ∆vj + k2vj = 0, j = 1, 2, 3.

Exercise 1.19: (Alternative derivation). We have shown that the components of the time-harmonic solutions
of the Maxwell’s equations (12) are Helmholtz solutions. Show again the same fact performing the same
operations in different order. First eliminate H from (12) obtaining second-order Maxwell’s equations in time-
domain. Then verify that each component of E satisfies the wave equation (6). Finally assume that E is
time-harmonic.

Remark 1.20: (Current density). Often the conductivity term σE(x, t) in the time-domain Maxwell’s equation
is modelled as a given current density J (x, t) and treated as a datum. If this is assumed to be time-harmonic
J (x, t) = ℜ{J(x)e−iωt} we obtain the inhomogeneous time-harmonic Ampère law curlH+iωϵE = J and the
second-order equation curl 1

µ curlE−ω2ϵE = iωJ. In absence of charges, the current density is divergence free:
div J = 0 (more generally we would have the continuity equation div J = −∂ρ

∂t , where ρ is the charge density),
so the component of the electric field satisfy the inhomogeneous Helmholtz equation ∆Ej + k2Ej = −iωµJj .

Remark 1.21: (1 Maxwell PDE ⇒ 3 Helmholtz PDEs, 1 Maxwell BVP ̸⇒ 3 Helmholtz BVPs). We have
seen that time-harmonic Maxwell solutions are componentwise Helmholtz solutions. However, in general one
cannot reduce the solution of a boundary value problem for the Maxwell’s equations (14) to three independent
Helmholtz problems for E1, E2, E3, because the boundary conditions required are different.

For instance, when we impose PEC boundary conditions, only the tangential component of the electric
field vanishes. This is equivalent to the imposition of two scalar boundary conditions (e.g. on two Cartesian
components if the domain is a cube) for three unknown scalar fields and three scalar PDEs (Helmholtz); the
boundary value problem is closed by the condition divE = 0 which intertwines the three components. Being
able to solve/approximate Helmholtz BVPs is not enough to solve/approximate Maxwell BVPs.

We see in the next remark that the decoupling of the scalar components and the reduction of Maxwell’s
problems to Helmholtz ones can be performed when symmetries are present.

Remark 1.22: (TE and TM modes). ([Nédélec01, p. 5], [CJ77, §86], [BK00, §6.8].) The Helmholtz
equation is important in dimensional reductions of the Maxwell’s equations. Maxwell’s equations simplify when
we assume that the dependence on one of the Cartesian variables of all components of the fields is a given
complex exponential, i.e.

E(x1, x2, x3) = Ẽ(x1, x2)e
iηx3 , H(x1, x2, x3) = H̃(x1, x2)e

iηx3 , η > 0. (16)

If the pair (E,H) satisfies the Maxwell equations (13), from (15) we see that each component of Ẽ and H̃

satisfies ∆Ẽj + (k2 − η2)Ẽj = 0 and ∆H̃j + (k2 − η2)H̃j = 0. Note that this is a two-dimensional Laplacian.
This is relevant when we consider the propagation of waves through very long objects such as optical fibres.

For a field in the form (16), the curl becomes

curlH = eiηx3

(∂H̃3

∂x2
− iηH̃2, iηH̃1 −

∂H̃3

∂x1
,
∂H̃2

∂x1
− ∂H̃1

∂x2

)
.

5See [Senior, Impedance boundary conditions for imperfectly conducting surfaces, 1960, eq. (25)–(26)] for a flat interface.

https://doi.org/10.1007/BF02920074
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Maxwell’s equations (13) (with σ = 0) become

∂Ẽ3

∂x2
− iηẼ2 − iωµH̃1 = 0,

iηẼ1 −
∂Ẽ3

∂x1
− iωµH̃2 = 0,

∂Ẽ2

∂x1
− ∂Ẽ1

∂x2
− iωµH̃3 = 0,

∂H̃3

∂x2
− iηH̃2 + iωϵẼ1 = 0,

iηH̃1 −
∂H̃3

∂x1
+ iωϵẼ2 = 0,

∂H̃2

∂x1
− ∂H̃1

∂x2
+ iωϵẼ3 = 0.

If Ẽ3 = 0, assuming η ̸= k (recall that k = ω
√
ϵµ from (14)), with some manipulation one can see that all

other field components can be computed from H̃3:

Ẽ1 = −
(
iωϵ− iη2

ωµ

)−1 ∂H̃3

∂x2
, Ẽ2 =

(
iωϵ− iη2

ωµ

)−1 ∂H̃3

∂x1
, H̃1 = − η

ωµ
Ẽ2, H̃2 =

η

ωµ
Ẽ1. (17)

In particular, (H̃1, H̃2) = iη
k2−η2∇H̃3. These solutions are called “transverse-electric (TE) modes”, since

E3 = Ẽ3 = 0 means that the electric field is perpendicular to the x3 axis, along which the wave propagates.
Similarly, the “transverse-magnetic (TM) modes” are solutions with H̃3 = 0 and all their components can
be computed from Ẽ3. All Maxwell solutions in the form (16) with η ̸= k are sum of a TE and a TM mode,
so they can computed by solving two Helmholtz problems with wavenumber

√
k2 − η2 for H̃3 and Ẽ3.

Now assume that we want to compute the solutions of Maxwell’s equation in an infinite cylinder Ω× R =
{x = (x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω, x3 ∈ R}, where Ω ⊂ R2 is bounded, and PEC boundary conditions
are imposed on ∂Ω × R. A TE mode satisfies the PEC conditions H̃ · n = 0 if the Neumann condition
n · ∇H̃3 = 0 holds (recall (17)), while a TM mode has to satisfy the Dirichlet one Ẽ3 = 0. Thus there
exists an electromagnetic wave propagating through the (closed) waveguide Ω×R with wavenumber η in the
x3 direction only if the 2D Helmholtz problem admits a non-trivial solution. This is the same as saying that
ω2ϵµ− η2 = k2 − η2 is either a Dirichlet (TM) or a Neumann (TE) eigenvalue for the 2D Laplacian in Ω (we
will describe Laplace eigenvalues in §4.2).

Thanks to symmetry, 3D Maxwell’s problems have been reduced to 2D Helmholtz ones. We will encounter
a similar situation in Remark 4.33.

Exercise 1.23: (TEM modes). Assume that the (non-trivial) pair (E,H) is a “TEM mode”, which means
that it is simultaneously a TE and a TM mode: it is in the form (16) with Ẽ3 = H̃3 = 0. Show the following
facts.
• η2 = ω2ϵµ, i.e. η = k: the wavenumber in the x3 direction coincide with the free-space wavenumber (recall

that (17) holds in the opposite case η ̸= k as it follows from a division by k2 − η2).

• H =
√
ϵ/µ e3×E, where e3 = (0, 0, 1). This means that E and H are orthogonal vectors in the x1x2-plane.

• If ϕ is a 2D harmonic function (∆ϕ = 0), then E = ∇ϕ(x1, x2)eikx3 and H =
√
ϵ/µ e3 × E constitute a

TEM mode.

• Linear polynomials are the simplest harmonic functions: write the corresponding TEM modes.

• If the domain Ω ⊂ R2 is simply connected then there is no non-trivial TEM mode with PEC conditions
propagating through Ω× R. (This is a main motivation for the use of coaxial cables.)

The Helmholtz equation is used in place of the Maxwell’s equations when the effects of the wave
polarisation (the direction in which the field points) are neglected. This is often done, for example, in the
Fresnel, Fraunhofer and Kirchhoff descriptions of light diffraction by apertures.

Remark 1.24: (Reality is more complicated than this!). The setting considered in this section is a special
case of much more general ones, which are needed in many applications. If different materials are present in the
region considered, or the properties of the material vary in space, then ϵ, µ, σ are function of position. In this
case, for instance, to obtain (14) we cannot simply move µ to the second term and find componentwise solution
of the Helmholtz equation, but we obtain some more general elliptic equations. If the material is anisotropic,
then the coefficients are modelled by symmetric positive definite matrices (semi-definite in case of σ). Since the
polarisation of a material given an impinging electromagnetic field is not immediate, the multiplications ϵE and
µH in (12) are more precisely modelled as convolutions in time between E/H and suitable kernels; however in
frequency-domain these give rise to standard products ϵ(ω)E and µ(ω)H where now the coefficients depends
on the frequency ω. In some materials and regimes (e.g. in lasers) the coefficients ϵ and µ need to be modelled
as non-linear operators acting on E and H: this is the field of non-linear optics.
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1.4 Elastodynamics
Mechanical vibrations propagating in solids have more complicated behaviour than those in fluids, as two
different types of waves can be present. The relevant PDEs are similar to the wave and the Helmholtz
equations, with some complications due to the fact that the unknown is a vector field and the differential
operator (in the space variable x) is not as simple as the Laplacian. The Navier’s equations are the
system of PDEs that describes small-amplitude vibrations in (homogeneous, isotropic) solid objects:

ρ
∂2U

∂t2
= (λ+ 2µ)∇ divU− µ curl curlU+ F.

Here U(x, t) is the displacement vector field, describing the position of a material point of the object
with respect to the rest position; F are the forces per unit of volume (e.g. gravity forces); the positive
parameters λ and µ are the Lamé constants6, describing the elastic properties of the material; and
ρ > 0 is the mass density of the medium at rest. These are the main equation of “linear elastodynamics”,
while “elastostatics” studies the equilibrium case where U is independent of time (e.g. it studies small
deformations of an object under a static load). In absence of external forces acting in the volume of the
body (F = 0), and if the waves are time-harmonic with angular frequency ω (i.e. (10) holds for each
component of U), the Navier’s equations become

(λ+ 2µ)∇divu− µ curl curlu+ ω2ρu = 0. (18)

We define the wavenumber of pressure (longitudinal) and shear (transverse) waves, respectively, as:

kP := ω

√
ρ

λ+ 2µ
, kS := ω

√
ρ

µ
.

We define the scalar and vector potential, respectively, as

χ := −λ+ 2µ

ω2ρ
divu = −divu

k2P
, ψ :=

µ

ω2ρ
curlu =

curlu

k2S
. (19)

The fields χ,ψ are called “Lamé potentials”. From (18), we can use these potentials to represent u:

u = −λ+ 2µ

ω2ρ
∇divu+

µ

ω2ρ
curl curlu = ∇χ+ curlψ, (20)

which is a “Helmholtz decomposition” of the displacement field. With some manipulation we obtain

∆χ+ k2Pχ
(19),∆=div∇

= −div∇divu

k2P
− divu

(18)
= − 1

k2P
div
( µ

λ+ 2µ
curl curlu− k2Pu

)
− divu

div curl=0
= 0,

curl curlψ − k2Sψ
(19)
= curl curl

curlu

k2S
− curlu

(18)
=

1

k2S
curl

(λ+ 2µ

µ
∇ divu+ k2Su

)
− curlu

curl∇=0
= 0.

This means that the scalar and vector potentials satisfy Helmholtz and Maxwell’s equations, respectively.
The decomposition (20) shows that any solution u of Navier’s equations (18) is sum of two terms. The

first one is a curl-free, longitudinal, time-harmonic wave propagating at speed cP = ω
kP

=
√

λ+2µ
ρ ; this

is called pressure wave (P-wave). The second one is a divergence-free, transverse, time-harmonic wave
propagating at (lower) speed cS = ω

kS
=
√

µ
ρ ; this is called shear wave (S-wave). In seismology, P-waves

and S-waves are called primary and secondary waves, respectively, because after an earthquake they reach
a give point the surface in this order, due to their different speeds.

In particular, all time-harmonic elastic waves can be ‘assembled’ from solutions of two copies of the
Helmholtz equation with different wavenumbers. In some applications, such as seismic imaging for oil
retrieval, Navier’s equations are sometimes approximated by the scalar Helmholtz equation, neglecting
shear waves.

The limit µ → 0 corresponds to a fluid material, elasticity reduces to acoustics and shear waves
disappear: Navier’s equations tend to ∇ divu+ k2Pu = 0, which is the equation satisfied by the acoustic
displacement and the acoustic velocity.

6Sometimes these equations are written in terms of the Poisson ratio ν and Young’s modulus E, which are other relevant
material parameters related to the Lamé constants by the relations λ = Eν

(1+ν)(1−2ν)
and µ = E

2(1+ν)
. Vice versa, ν = λ

2(λ+µ)

and E =
µ(3λ+2µ)

λ+µ
. The “shear modulus” µ is also denoted G.
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The Dirichlet boundary condition for the Navier’s equations consists in imposing a given displacement
on the boundary: u = g. The Neumann boundary condition requires the traction operator T(u) :=
2µ∂u∂n + λndivu + µn × curlu, with n the outward-pointing unit normal; setting T(u) = g on the
boundary corresponds to imposing the action of a force on the surface of the body.

When an elastic solid is in contact with a fluid, elastic vibrations in the solid generate acoustic waves
in the fluid, and vice versa. The simulation of this interaction is important for noise mitigation in vehicles
and aircraft. On the boundary between the fluid and the solid domain, one has to impose “transmission
conditions”, to ensure the continuity of pressure and particle displacement (in formulas: pn = −T(u) and
n · ∇p = ω2ρu · n, where p is the fluid pressure), see [Ihlenburg98, §1.3]. This is sometimes called “strong
coupling”. If the pressure forces of the fluid on the solid are negligible, then one can impose a “weak
coupling”: first compute the elastic vibrations of the solid and use them as input for the computation of
the acoustic field.

Elastic and acoustic waves interact with one another also in porous materials (e.g. soil, rocks, biological
tissues, foam sound absorbers, . . . ), i.e. solid materials containing pores, which are spaces filled by a fluid
(water, oil, air, . . . ). The theory of “poroelasticity”, first developed by Biot, describes the mechanical
vibrations of porous media and arises from the interaction between elastic waves in the solid structure
and acoustic waves in the fluid component.

All properties mentioned here have an analogue in time-domain, as opposed to frequency-domain.
More information can be found e.g. in [BK00, §5] and [Ihlenburg98, §1.2].

Remark 1.25: (Navier’s equations with strain and stress tensors). We give some more notation and write
Navier’s equations in different equivalent forms to help relate other references to this section. Using identity
(5), equation (18) can also be written as

(λ+ µ)∇ divu+ µ∆u+ ω2ρu = 0.

We denote by Dv the Jacobian of the vector field v, by DSv := 1
2 (Dv +D⊤v) the symmetric gradient, by

div the (row-wise) vector divergence of matrix fields, and by Id the 3 × 3 identity matrix. The symmetric
gradient of the displacement DS(u) is called “Cauchy strain tensor” and often denoted ε: it is a matrix field
measuring the deformation of the solid body. Using the identity 2divDS = ∇ div+∆ = 2∇div− curl curl,
equation (18) can be written in the form

divσ + ω2ρu = 0, where σ := 2µDSu+ λ (divu)Id = 2µ ε+ λTr(ε)Id

is called “Cauchy stress tensor”. Then the traction operator on the boundary can be written as T(u) = σn
(the matrix–vector product between the stress tensor and the unit normal to the boundary). The elastic wave
equations for more general anisotropic linear materials are still written in the form divσ + ω2ρu = 0 but the
strain and stress tensors are related by the more general relation σ = Cε, where C is the fourth-order “stiffness
tensor”.

Exercise 1.26: (Somigliana potential). Show that, if the smooth vector field g satisfies the iterated Helm-
holtz equation (∆ + k2S)(∆ + k2P )g = 0, then u := (2 − λ

λ+µ )(∆ + k2P )g − ∇div g is a solution of Navier’s
equation (18).

Hint: the expression of Navier’s equations using the vector Laplacian as in Remark 1.25 and the vector
calculus identities in Appendix A might help.

✓ Waves

✓ Linear

Non-linear

✓ Scalar (acoustic)

Vector

✓ Time-harmonic

Time-domain

Transverse

Longitudinal

Electromagnetic

Elastic

Figure 1: Simple classification of the waves considered in these notes. From the next section we will
focus on linear, scalar, time-harmonic waves in two dimensions.



Other time-harmonic waves |12| A. Moiola — February 24, 2025

1.5 Other time-harmonic waves
We mention a few other examples of oscillatory phenomena where the Helmholtz equation plays a role.

Remark 1.27: (Membrane vibrations [CJ77, Ch. 7]). The small-amplitude vibrations of a membrane are
described by the scalar wave equation (6) in two variables and, in the time-harmonic case, by the Helmholtz
equation. This model is accurate under the assumptions that the rest position is flat, the displacement is small
and vertical (so the vertical component of the displacement is the unknown, the horizontal components are
zero), the membrane is perfectly flexible and elastic, in particular it does not resist to bending, and tension
forces act only tangentially to the membrane. Typical examples are drums, loudspeakers, microphones and our
own eardrums.

Remark 1.28: (Helmholtz equation for water waves). The most obvious kind of waves we encounter in
nature are water waves, such as those we find at the sea. Their prediction is relevant to design harbours,
breakwaters, oil rigs, and ships. The disturbances to the free surface of a fluid are called gravity waves, as
gravity is the main restoring force (with also surface tension playing a role) that balances the fluid inertia and
generates the waves. Usually, water waves are modelled by non-linear equations, [BK00, §8]. However, in some
situations linear approximations are applicable, [BK00, §4], [Martin06, §1.6].

Let v = v(x, t) be the velocity field of a fluid, which we assume to be homogeneous, incompressible
(divv = 0), and in irrotational (curlv = 0), time-harmonic motion. Then, there is a velocity potential Φ
such that v(x, t) = ∇Φ(x, t) and Φ(x, t) = ℜ{ϕ(x)e−iωt}, with ∆ϕ = 0. Let x3 = 0 be the undisturbed free
surface, and x3 = −h(x1, x2) < 0 be the sea bottom topography.

Let k = k(h(x1, x2)) be the positive root of the dispersion relation gk tanh(kh) = ω2 (with g the gravity
acceleration). Assume the “mild-slope approximation” |∇h| ≪ kh. Prescribing the x3 dependence of the
potential as ϕ(x) ≈ g

iω
cosh(k(x3+h))

cosh(kh) ψ(x1, x2), we obtain the mild-slope, or Berkhoff, equation7:

div(w∇ψ) + k2wψ = 0 with w =
tanh(kh)

2k

(
1 +

2kh

sinh(2kh)

)
.

Here the divergence and the gradient are in the horizontal (x1, x2) variable only. This is a variable-coefficient
Helmholtz equation in the unknown ψ.

If, instead of the mild-slope assumption, the horizontal wavelength is much longer than the fluid depth,
we obtain an important system on non-linear hyperbolic PDEs called shallow water equations, [BK00, §4.7,
§8.1]. These equations are used to model waves in harbours and beaches, tsunamis, floodings,. . . If we further
assume that the wave speed is small and the wave height η is much smaller than the water depth h, we obtain
the linear shallow water equations, which in time-harmonic regime are again a variable-coefficient Helmholtz
equation: g div(h∇η) + ω2η = 0, [BK00, eq. (4.84)].

Typically, Neumann boundary conditions are imposed on rigid obstacles, while more complicated ones have
to be imposed on floating objects, [Martin06, §1.6].

Exercise 1.29: (Helmholtz equation and Kirchhoff–Love plates). In mechanical engineering, flat, thin,
elastic structures are called “plates” and often modelled by Kirchhoff–Love theory. The flat three-dimensional
object is represented by a domain in R2. In the “pure bending” time-harmonic case, the plate displacement in
the direction perpendicular to the plate satisfies the fourth-order equation −∆2u+ k4u = 0, where ∆2 = ∆∆
is the bi-Laplacian operator.8

• Show that solutions of the Helmholtz equation ∆u + k2u = 0 and of the reaction–diffusion equation
∆u− k2u = 0 solve also the fourth-order equation.

• Let u be a smooth solution of −∆2u+k4u = 0. Define two fields w± := ∆u±k2u. Show that they satisfy
∆w± ∓ k2w± = 0 and that u = 1

2k2 (w+ − w−).

This means that all time-harmonic Kirchhoff–Love solutions can be written as sums of oscillatory and
boundary-layer components, that are solution of Helmholtz and reaction–diffusion equations, respectively.

7[Chamberlain, Wave scattering over uneven depth using the mild-slope equation, Wave Motion, 1993]
8See [Bourgeois, Hazard, On well-posedness of scattering problems in a Kirchhoff–Love infinite plate, SIAP 2020] for a

description of scattering problems for the plate model analogous to the acoustic scattering problem in §4.

https://doi.org/10.1016/0165-2125(93)90006-2
https://doi.org/10.1137/19M1295660
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2 Particular solutions of the Helmholtz equation

We now focus on the construction of some simple analytical solutions of the Helmholtz equation ∆u+k2u =
0 in 2D and we study some of their qualitative properties. This is useful to understand some typical features
of all Helmholtz solutions. Moreover, in the next sections we will use some of these functions to study
some boundary value problems and to construct integral operators.

Plots and time-harmonic animations are available on the course webpage9; see also the links provided
there to the pages of R. Hogan and D.A. Russell.

2.1 The one-dimensional case
We begin with the simpler case of one space dimension (n = 1). In this case, the Helmholtz equation
reduces to the ordinary differential equation: u′′ + k2u = 0. All solutions are in the form

u(x) = c1 cos(kx) + c2 sin(kx) for some c1, c2 ∈ C.

Equivalently
u(x) = C1e

ikx + C2e
−ikx for some C1, C2 ∈ C.

All 1D Helmholtz solutions are periodic with period λ = 2π
k .

Let us fix c = 1, so ω = kc = k. When we expand the time-dependence of the corresponding solutions
(10) of the wave equation, we see that u(x) = eikx corresponds to U(x, t) = ℜ{eikx−ikt} = cos(k(x − t)),
which is a wave propagating to the right. On the other hand, u(x) = cos(kx) corresponds to U(x, t) =
ℜ{cos(kx)e−ikt} = cos(kx) cos(kt), which oscillates in time but maintains the same space profile and does
not propagate. See Figure 2 and the animations9.
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Figure 2: Panel 1: the real and the imaginary part of the one-dimensional propagative wave u(x) = eikx

over the interval (−1, 1), with k = 10.
Panel 2: the real part of the corresponding solution of the wave equation U(x, t) = ℜ{eikxe−iωt}, plotted
as function of x (horizontal axis) and t (vertical axis). Here we are taking ω = k and c = 1. The wave
propagates towards the right endpoint of the space interval.
Panels 3 and 4: the same plots for the stationary wave u(x) = cos(kx) = 1

2 (e
ikx + e−ikx). The waves

oscillates in time but does not propagate: the peaks (yellow parts) appear at the same locations in
space.

2.2 Plane waves
We have seen in Exercise 1.3 that the space–time field U(x, t) = F (x ·d− ct), propagating in the direction
of d at speed c, is solution of the wave equation (here d ∈ R2 is a unit vector and F a smooth real function).
To have a Helmholtz solution, we want U to be time-harmonic, i.e. U(x, t) = ℜ{u(x)e−iωt}. A simple
way to reconcile these two expressions is to choose F (z) = ℜ{eikz} so that U(x, t) = ℜ{ei(kx·d−ωt)} =
cos(kx · d− ωt) (recalling that ω = kc) and

u(x) = eikx·d = cos(kx · d) + i sin(kx · d).

This is a time-harmonic propagative plane wave, which propagates in the direction d. Plane waves are
the simplest solutions of the Helmholtz equation.

9https://mate.unipv.it/moiola/T/MNAPDEanim/MNAPDEanim.html

https://mate.unipv.it/moiola/T/MNAPDEanim/MNAPDEanim.html
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Another way to obtain plane waves is to look for Helmholtz solutions that are independent of one of
the Cartesian variables. If u(x1, x2) = ũ(x1), then ũ has to satisfy ũ′′ + k2ũ = 0, so ũ(x1) = c1 cos(kx1) +
c2 sin(kx2) for some c1, c2 ∈ C. Propagative plane waves correspond to the choice c1 = 1, c2 = i.

Plane waves have constant amplitude |u(x)| and are constant on the lines perpendicular to d. Their
complex argument arg(u(x)) = kx · d in a point x is called phase. Plane waves are periodic in the
direction d with period equal to the wavelength λ = 2π

k : the wavelength is precisely the distance between
two consecutive peaks of a plane wave. A translation along a vector v corresponds to a multiplication by
a complex factor of absolute value 1, i.e. it is a phase shift: u(x+ v) = eik(x+v)·d = eikv·du(x).

The sum and the difference of two plane waves with opposite directions are called stationary, or
standing, plane waves:

eikx·d + e−ikx·d = 2 cos(kx · d), eikx·d − e−ikx·d = 2i sin(kx · d).

As in the one-dimensional case of §2.1, the reason why these are called stationary while eikx·d is called
propagative is clear if one looks at the evolution in time of the corresponding time-domain wave U(x, t) =
ℜ{u(x)e−iωt}; see Figure 3 and the animations9, 10.

Figure 3: Plane waves of propagative, stationary and evanescent type.

10In one of the animations available online you can observe a sketch of the motion of the fluid particles subject to a
time-harmonic propagative plane wave: each particle oscillates back and forth harmonically around a fixed position, and
never moves far, even if the wave propagates over the whole space. This happens for all solutions of the Helmholtz and the
wave equations: pressure, energy and momentum are transported while matter oscillates but does not move away. The basic
principle of sound as propagation of pressure variations was already understood by Aristotle, see [Heller13, p. 3].
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Exercise 2.1: (Conjugate of a plane wave). Show that the complex-conjugate of a plane wave is a plane
wave propagating in the opposite direction, in accordance with Exercise 1.11.

Exercise 2.2: (Periodicity of sum of plane wave). Show that a linear combination of two propagative plane
waves with directions the unit vectors d and p, with d ̸= ±p, is periodic both in the direction of the bisectrix
b = d+ p and in the direction of its orthogonal b⊥ = d− p. Show that the period of the linear combination
in these two directions is λ

cos(α/2) and λ
sin(α/2) , respectively, where α is the angle between d and p.

Exercise 2.3: (Vector plane waves). Show that the vector plane wave E(x) = Aeikx·d is solution of
Maxwell’s equations curl curlE −k2E = 0 in R3 if and only if d · d = 1 and d · A = 0. This means that
the amplitude vector is orthogonal to the propagation direction, i.e. electromagnetic plane waves are transverse
waves. The formula u × (v ×w) = v(u ·w) −w(u · v) might help. Show that the corresponding magnetic
field H is perpendicular to both E and A and that

√
µ|H| =

√
ϵ|E|.

Show that Navier’s equations (18) support both transverse plane waves AeikSx·d, with d · A = 0, and
longitudinal ones deikPx·d. Longitudinal elastic waves are faster and have longer wavelengths than transverse
ones.

Here A ∈ C3. If ℜA and ℑA are parallel to one another, then the plane wave u(x) = Aeikx·d is said
to have linear polarisation. If ℜA and ℑA are perpendicular to one another and |ℜA| = |ℑA| (so that
ℑA = ±ℜA × d), then the polarisation is circular. In all other cases the polarisation is called elliptical.
To understand the meaning of these names, draw the graph of t 7→ U(x, t) = ℜ{u(x)e−iωt} in the plane
perpendicular to d, for a given x. See also [BK00, §6.5].

Figure 4: The deformation of an elastic medium perturbed by plane waves. Left: the unperturbed
medium. Centre: a longitudinal plane wave deikx·d. Right: a transverse plane wave Aeikx·d with
A · d = 0. In this example the wave propagates horizontally (d = (1, 0, 0)) and A = (0, 0, 1). See §1.4
and Exercise 2.3. Acoustic waves are longitudinal waves, since fluids cannot support transverse waves.

2.2.1 Evanescent plane waves

Propagative and stationary waves are not the only solutions of the Helmholtz equation that are “separable”
in Cartesian coordinates (i.e. that can be written as u(x) = u1(x1)u2(x2)). If we look for functions in the
form u(x) = eik·x = ei(k1x1+k2x2) satisfying ∆u + k2u = 0, we see that we need a “wavevector” k ∈ C2

with k · k = k21 + k22 = k2. If both k1 and k2 are real then we obtain again the plane waves. If at least
one of the two is not real then we have a new kind of waves, called evanescent (plane) waves. Expanding
k = kR + ikI with kR,kI ∈ R2, we have u(x) = eik·x = eikR·xe−kI ·x : this field oscillates in the direction
kR with wavenumber |kR| ≥ k and decays exponentially in the orthogonal direction kI (|u(x)| = e−kI ·x).
The orthogonality of kR and kI is a consequence of k · k ∈ R. See Figure 3 for a representation.

Evanescent (non-plane) waves typically appear at the interface between different materials or near
boundaries; important examples in elasticity are Rayleigh waves, which include the surface waves generated
by earthquakes.

Exercise 2.4: (Evanescent plane wave computations). Verify the statements made in the paragraph.

Exercise 2.5: (Complex parametrisation of plane waves). Show that all 2D plane waves, either propagative
or evanescent, can be written in the form eik(x1 cos θ+x2 sin θ) = e

k
2 (i(ν+

1
ν )x1+(ν− 1

ν )x2), parametrised by 0 ̸= ν ∈
C or θ ∈ C, with ν = eiθ.

2.3 Circular waves and Bessel functions
We have seen Helmholtz solutions that are separable in Cartesian coordinates, we now look for those that
are separable in the polar coordinates (r, θ), where (x1, x2) = (r cos θ, r sin θ). The 2D Laplacian in polar
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coordinates reads

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
. (21)

If we have a separable Helmholtz solution u(x) = f(r)g(θ), the functions f, g have to satisfy

f ′′(r)g(θ) +
1

r
f ′(r)g(θ) +

1

r2
f(r)g′′(θ) + k2f(r)g(θ) = ∆u+ k2u = 0.

The angular component g has to be periodic of period 2π, so we take the circular harmonic g(θ) = eiℓθ, for
ℓ ∈ Z. Then g′′(θ) = −ℓ2g(θ), so we can cancel g from the expression above, multiply by r2, and obtain
that f satisfies

r2f ′′(r) + rf ′(r) + (r2k2 − ℓ2)f(r) = 0. (22)
For k = 1, this is called Bessel differential equation: it is a linear, second-order ODE with variable
coefficients, it depends on the index ℓ and degenerates at r = 0. Two linearly independent real-valued
solutions are the Bessel functions of the first kind and order ℓ, denoted Jℓ(r) , and the Bessel

function of the second kind (or Neumann functions) and order ℓ, denoted Yℓ(r) . Explicit expressions
(e.g. as power series or integral representations), plenty of useful formulas and graphs can be found online
on the “NIST Digital Library of Mathematical Functions” [DLMF]. See also Appendix B.
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Figure 5: The Bessel functions of first and second kind, and the Hankel functions, for ℓ = 0, . . . , 4.

The Bessel functions of the first and second kind for ℓ = 0, . . . , 4 are plotted in Figure 5. We see
that both families of functions oscillate around 0 and decay slowly for r → ∞. The distance between two
successive zeros of either Jℓ or Yℓ is slightly shorter than π for ℓ = 0 and slightly longer than π for ℓ ̸= 0.
The main difference is that the Jℓ(r)s are smooth over R, while the Yℓ(r)s have a singularity at r = 0; the
higher ℓ the stronger the singularity. Useful formulas are J−ℓ(r) = (−1)ℓJℓ(r) and Y−ℓ(r) = (−1)ℓYℓ(r).

The Hankel functions (sometimes called Bessel functions of the third kind) are the complex-valued
linear combinations

H
(1)
ℓ (r) := Jℓ(r) + iYℓ(r), H

(2)
ℓ (r) := Jℓ(r)− iYℓ(r) = H

(1)
ℓ (r). (23)

The right panel of Figure 5 shows the first few Hankel functions: the argument r is one of the axis, the
real and the imaginary parts of H(1)

ℓ (r) are on the other two axes. An important property of the Hankel
functions is that the magnitude r 7→ |H(1)

ℓ (r)| is a monotonically decreasing function (|H(1)
ℓ (r)| ≈

√
2/(πr)

for large r). For increasing r the complex number H(1)
ℓ (r) spirals clockwise towards the origin.

Bessel and Hankel functions can be used in Matlab with the commands besselj, bessely and besselh.

Exercise 2.6: (Bessel equation). Verify that if f1 is solution of (22) for k = 1, then, for any k > 0,
fk(r) := f1(kr) solves (22).

Exercise 2.7: (Bessel function asymptotics). Compare numerically the plots of the Bessel functions against
the asymptotics for small and large (positive) arguments (from [DLMF, §10.7]):

Jℓ(z) ∼
zℓ

ℓ! 2ℓ
ℓ ∈ N0, Y0(z) ∼

2

π
log z, Yℓ(z) ∼ − (ℓ− 1)! 2ℓ

πzℓ
ℓ ∈ N, z → 0,

Jℓ(z) ∼
√

2

πz
cos
(
z − ℓπ

2
− π

4

)
, Yℓ(z) ∼

√
2

πz
sin
(
z − ℓπ

2
− π

4

)
ℓ ∈ N0, z → ∞.

(24)

https://dlmf.nist.gov/10.7
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Figure 6: The Fourier–Bessel function J3(kr)ei3θ, the Fourier–Hankel function H(1)
5 (kr)ei5θ, and the sum

of two Fourier–Hankel functions with opposite indices H(1)
5 (kr)ei5θ +H

(1)
−5 (kr)e

−i5θ. Since the Hankel
functions are unbounded at the origin, the field has been truncated in the region where its absolute
value is larger than 2.

From what we have said, we deduce that for any ℓ ∈ Z the two fields

Jℓ(kr)e
iℓθ, Yℓ(kr)e

iℓθ

and their linear combinations are the solutions of the Helmholtz equations that are separable in polar
coordinates. They are called circular waves or Fourier–Bessel functions. Of all the elements of the
2-dimensional space span{Jℓ(kr)eiℓθ, Yℓ(kr)eiℓθ}, only Jℓ(kr)eiℓθ is defined in the whole of R2, while all the
others are defined in the punctured plane R2 \ {0}. They are all of class C∞ in their domain of definition.
From the angular dependence, we see that all these function are invariant under rotations of an angle
multiple of 2π/|ℓ|; a rotation by an angle α corresponds to a multiplication by a complex factor eiℓα.

Special circular waves are the Fourier–Hankel functions, namely

H
(1)
ℓ (kr)eiℓθ = Jℓ(kr)e

iℓθ + iYℓ(kr)e
iℓθ, H

(2)
ℓ (kr)eiℓθ = Jℓ(kr)e

iℓθ − iYℓ(kr)e
iℓθ, ℓ ∈ Z.

We will see soon why the the Fourier–Hankel functions H(1)
ℓ (kr)eiℓθ are important for problems posed

in unbounded domains. The Fourier–Bessel Jℓ(kr)eiℓθ and the Fourier–Hankel H(1)
ℓ (kr)eiℓθ functions are

called “regular cylindrical wavefunctions” and “outgoing cylindrical wavefunctions” in [Martin06, Def. 2.13].
Plotting the time evolution (10) of these fields, one notes that the Fourier–Bessel functions Jℓ(kr)eiℓθ

and Yℓ(kr)e
iℓθ rotate around the origin (anticlockwise if ℓ > 0, clockwise if ℓ < 0) and do not propagate

in the radial direction. The Fourier–Hankel functions H(1)
ℓ (kr)eiℓθ rotate and move towards infinity, while
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the H(2)
ℓ (kr)eiℓθ towards the origin. This can be seen in the animations on the course webpage9. Figure 6

shows some circular waves.

Exercise 2.8: (Singular circular waves are not in H1). Show that the Fourier–Bessel functions Yℓ(kr)eiℓθ

and all the Fourier–Hankel functions do not belong to H1(Ω), for any domain Ω containing the origin 0,
because of the singularity at that point.

Use the small-argument asymptotics (24), the derivative formula Y ′
ℓ = 1

2 (Yℓ−1−Yℓ+1) [DLMF, eq. 10.6.1],
and recall how to compute gradients and integrals in polar coordinates.

Remark 2.9: (Plane waves as Fourier–Hankel functions “at infinity”). A Fourier–Hankel function centred
at a point x0 with |x0| ≫ 1, restricted to a region close to the origin, looks like a plane wave. In the limit
|x0| → ∞, scaling the Fourier–Hankel function appropriately, we see that it converges to a plane wave with
propagation direction d = − x0

|x0| . So we can think at a plane wave as a Fourier–Hankel function “centred at
infinity”. See Figure 7.

We use the large-argument asymptotics (24) from [DLMF, eq. 10.7.8], which gives H(1)
0 (z) ∼

√
2
πz e

i(z−π
4 )

for 0 < z → ∞. So cH(1)
0 (k|x−x0|) ∼ eik|x−x0| for, say, |x| < 1 ≪ x0 and a scaling factor c = ei

π
4

√
π
2 k|x0|,

which takes into account the Hankel function’s radial decay. Take for simplicity x0 = Rx̂0 = (R, 0) with
R≫ 1 and x̂0 = (1, 0), then

cH
(1)
0 (k|x− x0|) ∼ eik|x−x0| = eik

√
(x1−R)2+x2

2 = eikR
√

1− 2
Rx1+

|x|2
R2 = eikR(1− 1

Rx1+O(R−2)) ∼ eikRe−ikx·x̂0 .

Figure 7: The real part of the Hankel functions H(1)
0 (k|x − x0|) on the unit disc B1 for k = 20 and

increasing values of |x0|. Last plot: the plane wave with direction d = (0,−1). See Remark 2.9.

Remark 2.10: (Special Helmholtz solutions in 3D). Plane waves in R3 are defined exactly as in 2D.
The 3D analogous of circular waves are called spherical waves. In their expression, Bessel and Hankel

functions are substituted by the similar spherical Bessel functions and spherical Hankel functions, denoted
jℓ, yℓ, h

(1)
ℓ , h

(2)
ℓ . The angular component eiℓθ is substituted by the spherical harmonics Y mℓ , which are smooth

functions defined on the unit sphere and indexed by two indices ℓ and m. All these functions are described in
details in e.g. [Nédélec01, §2.4, 2.6], [CK2, §2.3, 2.4] and [DLMF, §10.47–60, §14.30].

In 3D, there are also cylindrical waves in the form Jℓ(k1ρ)e
iℓθeik2z, where (ρ, θ, z) is a system of cylindrical

coordinates and k21 + k22 = k2 (Jℓ can be replaced by Yℓ, H
(1)
ℓ or H(2)

ℓ ). More in general, for any solution w

of the Helmholtz equation with wavenumber k1 in R2, w(x1, x2)ei
√
k2−k21x3 is a Helmholtz solution in R3.

2.4 Other remarks on the Helmholtz equation

Exercise 2.11: (Jacobi–Anger formula). From the expansion e
1
2 z(t+t

−1) =
∑
ℓ∈Z t

ℓJℓ(z), valid for z ∈ C,
0 ̸= t ∈ C (see [DLMF, eq. 10.12.1]), derive the following forms of the “Jacobi–Anger formula”:

eiz cosα =
∑
ℓ∈Z

iℓJℓ(z)e
iℓα z, α ∈ C,

eikx·d =
∑
ℓ∈Z

iℓe−iℓφ Jℓ(kr)e
iℓθ x = (r cos θ, r sin θ) ∈ R2, d = (cosφ, sinφ) ∈ R2, |d| = 1.

(25)

This means that the plane wave with propagation direction d is a linear combination of smooth circular waves.11

11See the animation https://www.acs.psu.edu/drussell/Demos/PartialWaveExpansion/PlaneWaveExpansion.html

https://dlmf.nist.gov/10.6.E1
https://dlmf.nist.gov/10.7.E8
https://dlmf.nist.gov/10
https://dlmf.nist.gov/14.30
https://dlmf.nist.gov/10.12.E1
https://www.acs.psu.edu/drussell/Demos/PartialWaveExpansion/PlaneWaveExpansion.html
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Remark 2.12: (Herglotz functions). For g ∈ L2(0, 2π), the field

u(x) =

∫ 2π

0

g(φ)eik(x1 cosφ+x2 sinφ) dφ ∈ C∞(R2)

is called Herglotz function with kernel g. It can be thought as a continuous linear combination of plane waves
with different directions (cosφ, sinφ) weighted by g(φ). Some interesting cases are the following.
• When g approximates a Dirac δ function centred at φ⋆ then u approximates the plane wave with direction
d = (cosφ⋆, sinφ⋆).

• When g is constant in a small interval of (0, 2π) and 0 otherwise, then u approximates a plane wave in a
strip of the plane and decays away from it. In some applications this is more realistic than a plane wave,
which has an infinite propagating front. You can see the plot of such a Herglotz function in Figure 8.

• When g is a circular harmonic g(φ) = eiℓφ we obtain a Fourier–Bessel function u(x) = (2πiℓ)Jℓ(kr)e
iℓθ.

(Prove this fact using the Jacobi–Anger formula (25) and the L2(0, 2π)-orthogonality of circular harmonics.)

This is a sort of vice versa of (25): a smooth circular wave is a (continuous) superposition of plane waves.
If u is a Herglotz function with kernel g, its translate ũ(x) = u(x+ c) is also a Herglotz function with kernel
g̃(φ) = eik(c1 cosφ+c2 sinφ)g(φ).

Plot with Matlab some Herglotz functions with different kernels.

Figure 8: The Herglotz function with kernel g(φ) = 1 if 0 < φ < π
6 and 0 otherwise. See Remark 2.12.

Exercise 2.13: (PDEs for phase and amplitude). Let c, ω be positive constants. Assume that the real-valued
phase function ϕ satisfies the non-linear eikonal equation |∇ϕ| = c−1 and that the complex-valued amplitude
A satisfies the complex, ϕ-dependent, diffusion–advection–reaction equation ∆A+iω(2∇ϕ·∇A+A∆ϕ) = 0.
Differently from Exercise 1.9 here we allow A to take complex values.

This can be interpreted as saying that ϕ varies at constant given rate, in a direction that is not known a
priori, and that A is transported in the direction of variation of ϕ and it spreads. For large frequencies ω ≫ 1, we
can approximate A with the solution Ã of the (first-order) advection–reaction equation 2∇ϕ ·∇Ã+Ã∆ϕ = 0,
which is a singular perturbation of the previous one; the absence of the diffusion term prevents the “spreading”
of Ã.
• Prove that u(x) = A(x)eiωϕ(x) solves the Helmholtz equation (with k = ω

c ).

• Show that some affine ϕ and any constant A satisfy these equations and lead to plane waves.

• Show that ϕ(x) = |x| and A(x) = H
(1)
0 (k|x|)e−ik|x| satisfy the eikonal equation and the diffusion–

advection–reaction equation in R2 \ {0}, respectively (with c = 1 and k = ω). (Use the Bessel differential
equation (22).) Verify numerically that A does not oscillate.

Often one chooses a given curve Γ as a “wavefront” and imposes the boundary condition ϕ = 0 for the phase
on Γ. Solving first the eikonal equation and then the advection–reaction PDEs corresponds to “advancing” the
wavefront according to Huygens principle, and is independent of ω: whatever method is used, the cost of this
procedure is frequency-independent, thus convenient for high-frequency problems. As in the examples above,
A and ϕ are non-oscillatory. The solutions of the eikonal equation have to be understood in a special weak
sense (called “viscosity solution”). Not all Helmholtz solutions can be written in this form; often u is a sum of
waves u =

∑
j Aje

iωϕj , each of them with well-defined phase and amplitude. 12

12More details and numerical methods to approximate ϕ (such as ray tracing, fast-marching, and a pseudo-time stepping
scheme) are described in [Runborg12, §4]. For a wider survey of formulations and numerical methods related to the eikonal
equation, see [Runborg, Mathematical models and numerical methods for high frequency waves, CICP 2007].

http://global-sci.org/intro/article_detail/cicp/7930.html
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Exercise 2.14: (Helmholtz and Schrödinger equations). Let u be a Helmholtz solution defined on a domain
in the xy-plane. Fix a number k0 > 0.
• Assume that u(x, y) = eik0yψ(x, y), where the “envelope” ψ is a field that varies slowly in the variable y,

more precisely that |∂
2ψ
∂y2 | ≪ |k ∂ψ∂y |. Show that ψ approximately satisfies the Schrödinger equation

2ik0
∂ψ

∂y
+
∂2ψ

∂x2
+ (k2 − k20)ψ = 0.

• Now assume that u can be written in polar coordinates as u(r, θ) = H
(1)
0 (k0r)Ψ(r, θ) where Ψ varies

slowly in the radial variable: |∂
2Ψ
∂r2 | ≪ |k ∂Ψ∂r |. Using the approximation (24) for k0r ≫ 1, show that Ψ

approximately satisfies the Schrödinger equation with (r, θ) in place of (x, y).
This equation is used to model waves propagating in directions close to a leading one (either the y direction

or the radial one). This regime is called “paraxial approximation”. We factored out the leading term (either a
plane or a circular wave), and showed that the if the remainder behaves smoothly in the dominant direction,
then we can approximate it with a PDE that is first-order in this variable (y or r).

This PDE is also called “parabolic wave equation” and has the same mathematical form of the linear
Schrödinger equation used in quantum mechanics, where the variable y is the time variable.

A completely different relation between Helmholtz and Schrödinger equations is explained in [Runborg12,
§1.2]: the Helmholtz equation can be used to model stationary states of particles in quantum mechanics. This
is the motivation for a considerable part of the research done on the Helmholtz equation.

Exercise 2.15: (The Helmholtz Poynting vector). The Poynting vector S := ℜ{E × H} (often defined
with a multiplicative constant) denotes the direction in which the energy of a time-harmonic electromagnetic
field (E,H) flows. Note the conjugation on H.
• Compute the Poynting vector of the plane wave in Exercise 2.3 (you first need to compute H).

• Show that the Poynting vector of a TE and a TM mode ((16) with Ẽ3 = 0 and H̃3 = 0, respectively) are

STE =ℜ
{ iωµ

η2 − ω2ϵµ
H̃3∇H̃3 +

η

ωµ
(|Ẽ1|2 − |Ẽ2|2)ê3

}
,

STM =ℜ
{ iωϵ

ω2ϵµ− η2
Ẽ3∇Ẽ3 +

ωϵη

(η2 − ωϵµ)2
|∇Ẽ3|2ê3

}
.

Show that if η = 0 then STE = ℑ{ 1
ωϵH̃3∇H̃3} and STM = ℑ{ 1

ωµ Ẽ3∇Ẽ3} lie in the x1x2-plane.

Recalling that H̃3 and Ẽ3 are Helmholtz solutions in two dimensions, this suggests to define the Poynting
vector for a 2D Helmholtz solution u as

S = S(u) := ℑ
{1
k
u∇u

}
= ℑ

{
− 1

k
u∇u

}
= ℜ

{ 1

ik
u∇u

}
. (26)

Verify the following facts.
• The Poynting vector is reversed by conjugation: S(u) = −S(u) (recall Exercise 1.11).

• If u is Helmholtz solution, its Poynting vector is solenoidal: divS = 0.

• If u is a complex multiple of a real field, i.e. a standing wave, then S = 0.

• The Poynting vector of a propagating or evanescent plane wave identifies the propagation direction:
S(eikx·d) = d and S(eikR·xe−kI ·x) = e−2kI ·x

k kR.

• For a field written in polar coordinates as u(x) = f(r)g(θ), we have ∇u = f ′gr̂ + 1
rfg

′θ̂, so that S =
1
kℑ{f

′f |g|2r̂+ 1
r |f |

2g′gθ̂}.

• S
(
eiℓθJℓ(kr)

)
=

ℓ

kr
|Jℓ(kr)|2θ̂, S

(
eiℓθH

(1)
ℓ (kr)

)
=

ℓ

kr
|H(1)

ℓ (kr)|2θ̂ +
2

πkr
r̂.

This is consistent with the fact that smooth Fourier–Bessel functions rotate around the origin (anticlockwise
for ℓ > 0 and clockwise for ℓ < 0) and do not propagates radially, while Fourier–Hankel functions rotate
and simultaneously propagate outwards.

Hint: use the Wronskian identity Jℓ(z)Y ′
ℓ (z)− Yℓ(z)J

′
ℓ(z) =

2
πz ([DLMF, eq. 10.5.2]).

Compare the results with the animations on the webpage9.

https://dlmf.nist.gov/10.5.E2
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3 Analytical tools

We introduce a few mathematical tools that will be useful in the following. Much more detail on the
content of this section can be found e.g. in the first part of [SBH19] and in [McLean00].

3.1 Lipschitz domains

We say that an open set Ω ⊂ R2 with bounded boundary is Lipschitz if (1) there is a finite family of
open sets {Wj}j=1,...,J that cover ∂Ω (i.e. ∂Ω ⊂

⋃
j=1,...,JWj), (2) there is a family of rotated Lipschitz

hypographs {Ωj}j=1,...,J (i.e. Ωj = {(x′1, x′2) : x′2 < fj(x
′
1)}, where (x′1, x′2) is a system of rotated Cartesian

coordinates in R2 and fj is a Lipschitz function), and (3) Wj ∩ Ω =Wj ∩ Ωj .
Intuitively, for each x ∈ ∂Ω, there is a neighbourhood where the boundary can be represented as the

graph of a Lipschitz function, and Ω lies only on one side of ∂Ω. Smooth domains, convex domains,
and polygons are Lipschitz. Domains with cusps (such as {0 <

√
x2 < x1 < 1}) or cracks (such as

{|x| < 1, x2 ̸= 0}) are not allowed.
We also say that Ω is of class Cm, m = 0, 1, . . . ,∞, if the functions fj are of class Cm.
An important property of Lipschitz domains is that the unit normal vector field n is defined almost

everywhere on their boundary (a.e. with respect to the 1-dimensional measure). E.g. on a polygon the
unit normal is defined everywhere except that at corners.

3.2 Function spaces on Lipschitz domains

To study boundary value problems we need some function spaces. Let Ω ⊂ R2 be an open, Lipschitz set.
We denote by D(Ω) the space of the “test functions”: complex-valued C∞ functions defined on Ω whose
support is compactly contained in Ω.

We denote by L2(Ω) the usual Lebesgue space of complex-valued, square-integrable functions. This

is a Hilbert space with inner product (v, w)L2(Ω) =
∫
Ω
vw dx and norm ∥v∥2L2(Ω) =

∫
Ω
|v|2 dx. Since

we are dealing with complex-valued functions, the inner product is a sesquilinear form (with a complex
conjugation on the second entry) and the norm requires the use of the absolute value of the argument.

Definition 3.1: (H1(Ω) and H1
0 (Ω)). The Sobolev space H1(Ω) is space of complex-valued L2(Ω)

functions, whose first (distributional) partial derivatives are in L2(Ω). It is provided with the following
seminorm, norm, and inner product:

|v|2H1(Ω) := ∥∇v∥2L2(Ω)2 =

∥∥∥∥ ∂v∂x1
∥∥∥∥2
L2(Ω)

+

∥∥∥∥ ∂v∂x2
∥∥∥∥2
L2(Ω)

, ∥v∥2H1(Ω) := |v|2H1(Ω) + ∥v∥2L2(Ω) ,

(v, w)H1(Ω) :=
( ∂v
∂x1

,
∂w

∂x1

)
L2(Ω)

+
( ∂v
∂x2

,
∂w

∂x2

)
L2(Ω)

+ (v, w)L2(Ω) =

∫
Ω

(∇v · ∇w + vw) dx.

The space H1
0 (Ω) is the subspace of H1(Ω) of the elements that can be approximated in H1(Ω) norm by

a sequence of elements of D(Ω).

Remark 3.2: (Distributional derivatives). When we say that a partial derivative “in the sense of distributions”
∂v
∂x1

of an L2(Ω) function is in L2(Ω), we mean that there is a function w ∈ L2(Ω) such that
∫
Ω
v ∂φ∂x1

= −
∫
Ω
wφ

for all φ ∈ D(Ω).

We define also the subspace ofH1(Ω) of the functions with square-integrable (distributional) Laplacian:
H1(Ω;∆) = {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}.

Finally, we say that u ∈ H1
loc(Ω) if the restriction of u to any bounded open subset D of Ω belongs

to H1(D), [Sayas06, p. 12]. If Ω is bounded, then H1
loc(Ω) = H1(Ω), while if Ω is unbounded then the

“local space” H1
loc(Ω) includes functions that do not decay at infinity. For instance, all plane and circular

waves belong to H1
loc(Ω) \H1(Ω) if Ω is the complement of a bounded set (which must contain the origin,

if the circular waves are the singular ones). We haven’t defined a norm on H1
loc(Ω), so this is not a Hilbert

space; on the other hand the H1(D) norms are seminorms on H1
loc(Ω). Similarly, u ∈ H1

loc(Ω;∆) if the
restriction of u to any bounded open subset D of Ω belongs to H1(D; ∆).



Spaces on boundaries |22| A. Moiola — February 24, 2025

The elements of H1(Ω) are in general not continuous, so their point evaluation is not well-defined.
However we will see that their values on the boundary of Ω, or any other Lipschitz curve, are well-defined.

Exercise 3.3: (Circular wave orthogonality). For Ω = BR a disc centred at the origin, show that the smooth
Fourier–Bessel functions Jℓ(kr)eiℓθ, ℓ ∈ Z, are orthogonal both in L2(BR) and in H1(BR).

It is also possible to show that they constitute a basis for the Helmholtz solution space {u ∈ H1(BR) :
∆u+ k2u = 0}.

Remark 3.4: (Wavenumber-weighted H1 norms). The two terms in the definition of the H1(Ω) norm and
inner product are not dimensionally homogeneous, because ∇u has the dimension of u divided by a length (if
x is a point in physical space). So, when dealing with Helmholtz problems, we often weigh the norm with the
wavenumber k > 0 either as ∥v∥2H1

k(Ω) = |v|2H1(Ω) + k2 ∥v∥2L2(Ω), or ∥v∥2H1
k(Ω) = k−2 |v|2H1(Ω) + ∥v∥2L2(Ω). The

latter choice is convenient because for a plane wave v, and for many other Helmholtz solutions, ∥v∥H1
k(Ω) and

∥v∥L2(Ω) (and similar higher-order norms) scale in the same way with respect to k.

3.3 Spaces on boundaries

3.3.1 The circle

We will need spaces of functions defined on boundary of Lipschitz sets with regularity weaker than H1

and stronger than L2. How to define functions with “half derivative”?
Let S1 := {x ∈ R2 : ∥x∥ = 1} be the unit circle.For a function v defined on S1 we write v(θ), with

θ ∈ [0, 2π], for its value in polar coordinates. We say that v ∈ L2(S1) if ∥v∥2L2(S1) :=
∫ 2π

0
|v|2 dθ <∞ and

v ∈ H1(S1) if ∥v∥2H1(S1) :=
∫ 2π

0
(|v|2 + |v′|2) dθ <∞, where v′ is the derivative in the angular coordinate.

The expansion of v in circular harmonics is v(θ) =
∑
ℓ∈Z v̂ℓe

iℓθ for a sequence of coefficients v̂ℓ ∈ C,
which can be computed as v̂ℓ = 1

2π

∫ 2π

0
v(θ)e−iℓθ dθ. We can compute the L2(S1) scalar product and the

L2(S1)/H1(S1) norms using this expansion, exploiting the orthogonality
∫ 2π

0
eiℓθe−iℓ′θ dθ = 2πδℓ,ℓ′ and

the derivation formula ∂
∂θ e

iℓθ = iℓeiℓθ:

(v, w)L2(S1) =

∫ 2π

0

v(θ)w(θ) dθ =

∫ 2π

0

∑
ℓ∈Z

v̂ℓe
iℓθ
∑
ℓ′∈Z

ŵℓ′eiℓ
′θ dθ = 2π

∑
ℓ∈Z

v̂ℓŵℓ, (27)

∥v∥2L2(S1) =

∫ 2π

0

|v|2 dθ = 2π
∑
ℓ∈Z

|v̂ℓ|2, ∥v∥2H1(S1) =

∫ 2π

0

(|v|2 + |v′|2) dθ = 2π
∑
ℓ∈Z

|v̂ℓ|2(1 + ℓ2).

(Write down the intermediate computations.) Thus, a function defined on the circle is in L2(S1) if the
sequence of its Fourier coefficients is an element of the sequence space l2(Z) = {(aℓ), ℓ ∈ Z, ∥(aℓ)∥2l2 :=∑
ℓ∈Z |aℓ|2 < ∞}, and in H1(S1) if its Fourier coefficients weighted with (1 + ℓ2)1/2 are in l2(Z). This

means that the Fourier coefficients of functions in H1(S1) must decay faster for ℓ→ ∞ (faster than |ℓ|−3/2)
than those of the general function of L2(S1) (for which a decay slightly faster than |ℓ|−1/2 is enough).

This suggests a way to define Sobolev spaces with other regularities:

∥v∥2Hs(S1) := 2π
∑
ℓ∈Z

|v̂ℓ|2(1 + ℓ2)s, Hs(S1) :=
{
v(θ) =

∑
ℓ∈Z

v̂ℓe
iℓθ : ∥v∥Hs(S1) <∞

}
∀s ∈ R. (28)

For s = 0 and s = 1 we recover H0(S1) = L2(S1) and H1(S1) as defined above. High-order Fourier
coefficients correspond to rapidly oscillating components: imposing that they decay faster in ℓ is the same
as imposing some regularity on v. So the higher s the smoother are the elements of Hs(S1): for any
real s− < s+, Hs+(S1) ⊂ Hs−(S1) and ∥v∥Hs− (S1) ≤ ∥v∥Hs+ (S1). If s > 1/2, the elements of Hs(S1) are
continuous functions, if s ≥ 0 they are L2(S1) classes of equivalence, for s < 0 they can only be understood
as distributions.

Exercise 3.5: (Dense embeddings). Show that for all s− < s+ the space Hs+(S1) is a dense subspace of
Hs−(S1). This means that for all v ∈ Hs−(S1) and ϵ > 0 there is w ∈ Hs+(S1) with ∥v − w∥Hs− (S1) ≤ ϵ.
Show also that Hs+(S1) ̸= Hs−(S1).

Hint: look for a common subspace of all Hs(S1) that is dense in each of them.

Exercise 3.6: (Special elements of Hs(S1)).
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• Compute the Fourier series of χ(θ) =

{
1 0 < θ < π,

0 π < θ < 2π.
Show that χ ∈ Hs(S1) if and only if s < 1

2 .

• Can you find a v ∈ H
1
2 (S1) \ C0(S1)?

• Show that a delta function δθ⋆ , θ∗ ∈ [0, 2π], belongs to Hs(S1) if and only if s < − 1
2 .

Exercise 3.7: (Random Sobolev functions on boundaries). We want to visualise how the decay of the
Fourier coefficients v̂ℓ affects the regularity of v(θ) =

∑
ℓ∈Z v̂ℓe

iℓθ. To this purpose, generate and plot a
function v on S1 with random Fourier coefficients that decay in such a way that v ∈ Hs−ϵ(S1) \Hs(S1). Of
course you need to truncate the series after a finite number of terms. Observe the behaviour of v for different
values of s.

3.3.2 General boundaries

Given a Lipschitz bounded domain Ω, if there is a bi-Lipschitz map Φ : B1 = {|x| ≤ 1} → Ω that
maps S1 in ∂Ω, we can define the space Hs(∂Ω) as the space of functions v defined on ∂Ω whose
pullback v∗(x) = v(Φ(x)) is an element of Hs(S1). For −1 ≤ s ≤ 1 this gives a well-defined space
Hs(∂Ω) independently of the choice of Φ. Different maps Φ give equivalent norms. The space H1(∂Ω)
is precisely the space of L2(∂Ω) functions whose tangential first derivative ∇T v is in L2(∂Ω); moreover
v 7→ (

∫
∂Ω

(|v|2 + |∇T v|2) ds)1/2 is an equivalent norm on H1(∂Ω).
If we do not have such a map Φ, Hs(∂Ω) (for −1 ≤ s ≤ 1) can be defined in a slightly more complicated

way, using the cover of ∂Ω from the definition of a Lipschitz set and a so-called “partition of unity”, see
[McLean00, pp. 98–99].

Several other definitions of the spaces Hs(∂Ω) exist and can be found in the literature. The norms
obtained with different definitions are equivalent (for −1 ≤ s ≤ 1) but not necessarily equal.

In most of these notes we will use Hs(∂Ω) only for s = ±1/2: H
1
2 (∂Ω) ⊂ L2(∂Ω) ⊂ H− 1

2 (∂Ω).

3.3.3 Duality product

An important property of these spaces is that H−s(∂Ω) can be identified to the anti-dual space of Hs(∂Ω),
i.e. the space of anti-linear continuous functionals on Hs(∂Ω). Let us look at what this means in the case
of S1. If v, w ∈ L2(S1), we have seen in (27) that we can write their scalar product as the scalar product of
the Fourier coefficients in the sequence space l2(Z) (times 2π). We want to use the same l2(Z) product of
Fourier coefficients also when either v or w is not in L2(S1). The Fourier coefficients of this function decay
slowly, thus for the series in (27) to be finite we need the other function (w or v) to have fast-converging
Fourier coefficients, i.e. to be smoother. We define the duality product

⟨v, w⟩S1 =
〈∑
ℓ∈Z

v̂ℓe
iℓθ,
∑
ℓ∈Z

ŵℓe
iℓθ
〉
S1

:= 2π
∑
ℓ∈Z

v̂ℓŵℓ

whenever the sum is bounded. If v ∈ Hs(S1) and w ∈ H−s(S1) for some s ∈ R then this series is bounded:
by the Cauchy–Schwarz inequality in l2(Z),

|⟨v, w⟩S1 | ≤ 2π
∑
ℓ∈Z

(1 + ℓ2)s/2|v̂ℓ|(1 + ℓ2)−s/2|ŵℓ| ≤ ∥v∥Hs(S1) ∥w∥H−s(S1) .

Moreover, if v, w ∈ L2(S1), then the duality product coincides with the L2 inner product: ⟨v, w⟩S1 =∫
S1 v(θ)w(θ) dθ.

Similarly, it is possible to define a duality product ⟨·, ·⟩∂Ω on ∂Ω, i.e. a sesquilinear form acting on
Sobolev functions defined on ∂Ω such that

|⟨v, w⟩∂Ω| ≤ C ∥v∥
H

1
2 (∂Ω)

∥w∥
H− 1

2 (∂Ω)
∀v ∈ H

1
2 (∂Ω), w ∈ H− 1

2 (∂Ω), and

⟨v, w⟩∂Ω =

∫
∂Ω

vw ds, if w ∈ L2(∂Ω).

Because of this, we sometimes abuse the notation and write the duality product simply as
∫
∂Ω
vw ds,

even when one of the two distributions is not in L2 and the product is not strictly speaking an inte-
gral. We write ⟨v, w⟩∂Ω also when v ∈ H− 1

2 (∂Ω) and w ∈ H
1
2 (∂Ω). To be more clear we might write

⟨v, w⟩
H

1
2 (∂Ω)×H− 1

2 (∂Ω)
and ⟨v, w⟩

H− 1
2 (∂Ω)×H

1
2 (∂Ω)

, depending on the regularity of the arguments.
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Exercise 3.8: (Dual norms). Let the domain Ω admit a bi-Lipschitz map Φ : B1 → Ω as above. For each v, w
defined on ∂Ω let v∗, w∗ be their pullbacks on S1 and define ∥v∥Hs(Γ) := ∥v∗∥Hs(S1) and ⟨v, w⟩Γ := ⟨v∗, w∗⟩S1 .

Show that ∥v∥Hs(Γ) = sup0̸=w∈H−s(Γ)
|⟨v,w⟩Γ|

∥w∥H−s(Γ)
.

Hint: show it first for Γ = S1.

Remark 3.9: (Integrals and restrictions of H− 1
2 distributions). For any element v ∈ H−s(S1), s > 0,

even if v /∈ L1(S1), we can compute its “integral” as a duality product
∫
S1 v ds = ⟨v, 1⟩S1 , because the constant

function 1 ∈ C∞(S1) ⊂ Hs(S1).
On the other hand, Exercise 3.6 shows that (non-constant) piecewise-constants do not belong to H

1
2 (∂Ω).

This is equivalent to say that we cannot test v ∈ H− 1
2 (S1) against the characteristic function of a an arc subset

of S1, so we cannot compute the integral of arbitrary v ∈ H− 1
2 (S1) over subsets. I.e.

∫
S1 v ds makes sense,

while
∫
S1∩{x2>0} v ds might be not well-defined. Restricting an element of Hs(S1) to an arc and extending

back to zero is guaranteed to give an element of Hs(S1) only if |s| < 1
2 . The same hold for general shapes.13

3.3.4 Trace operators

These spaces are closely related to trace operators. Given a smooth function v ∈ C1(Ω), we define its
Dirichlet and Neumann traces, respectively, as

γv := v|∂Ω, ∂nv := n · γ(∇v)

where n is the outward-pointing unit normal vector field on ∂Ω (which is defined almost everywhere if
the domain is Lipschitz, by Rademacher theorem). Can we define these traces for more general functions,
such as elements of Sobolev spaces?

Theorem 3.10: (Trace theorem). The Dirichlet trace γ can be extended to a surjective continuous operator
mapping γ : H1(Ω) → H

1
2 (∂Ω). The kernel of γ is H1

0 (Ω).
The Neumann trace ∂n can be extended to a surjective continuous operator ∂n : H1(Ω;∆) → H− 1

2 (∂Ω).

This theorem says that the spaces H
1
2 (∂Ω) and H− 1

2 (∂Ω) are precisely the spaces of the Dirichlet and
the Neumann traces of H1(Ω) and H1(Ω;∆) functions, respectively. See [McLean00, Thm. 3.37, 3.40(ii)]
(for the Dirichlet trace, using k = 1 in the book’s notation) and [Spence14, p. 6] for more details.14

The trace operators are local, i.e. γv and ∂nv depend only on the value of v in an arbitrary small
neighbourhood of ∂Ω. Thus, if Ω is unbounded (but ∂Ω is still bounded), in the trace theorem we can
substitute H1(Ω) and H1(Ω;∆) with H1

loc(Ω) and H1
loc(Ω;∆), respectively.

Exercise 3.11: (Equivalent norms on boundaries). Prove that the following are equivalent norms on
H± 1

2 (∂Ω):

∥u∥
H

1
2
# (∂Ω)

:= inf{∥U∥H1(Ω) : γU = u}, ∥u∥
H

− 1
2

# (∂Ω)
:= inf{∥U∥H1(Ω;∆) : ∂nU = u}.

Hint: use that all continuous linear surjective operators between Hilbert spaces admit continuous right inverses
[SBH19, Lemma 4.1].

Remark 3.12: (Sobolev spaces on Rn). We defined Sobolev spaces with non-integer exponents s on the
unit circle S1, however they can be defined on Rn and all its open subsets. We sketch a brief description of
these spaces, but we point out that we will not use them in the rest of this course (apart from a brief mention
in §6.3.4).

To define Hs(Rn), since Rn is unbounded, instead of Fourier series one has to use the Fourier transform,
i.e. switch from a discrete (ℓ ∈ Z) to a continuous (ξ ∈ Rn) spectral parameter. The Fourier transform of
u ∈ L1(Rn) is û(ξ) := (2π)−n/2

∫
Rn u(x)e

−iξ·x dx ∈ L∞(Rn). For a tempered distribution u ∈ S∗(Rn), its
Fourier transform û ∈ S∗(Rn) is defined by its action on Schwartz functions φ ∈ S(Rn) as ⟨û, φ⟩ := ⟨u, φ̂⟩Rn ,
where ⟨·, ·⟩Rn is the duality product between S∗(Rn) and S(Rn) that extends the L2(Rn) scalar product.
We say that u ∈ Hs(Rn) for s ∈ R if û is locally integrable and ∥u∥2Hs(Rn) :=

∫
Rn(1 + |ξ|2)s|û(ξ)|2dξ <

∞. The smoothness of u is measured in terms of decay or growth of û at infinity. Plancherel theorem
13A different concrete and instructive explanation of the same facts, making use of the trace theorem below, can be found

in Remark 2.5.1 of the book [Boffi, Brezzi, Fortin, Mixed Finite Element Methods and Applications, 2013].
14The continuity of the Neumann trace in Theorem 3.10 is a consequence of the continuity of the normal-component trace

of vector fields w 7→ w|∂Ω · n, from H(div; Ω) := {w ∈ L2(Ω)2 : divw ∈ L2(Ω)} to H− 1
2 (∂Ω), [SBH19, Thm. 6.1].

https://doi.org/10.1007/978-3-642-36519-5
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∥u∥L2(Rn) = ∥û∥L2(Rn) implies that H0(Rn) = L2(Rn). Combined with ∇̂u = iξû, for s = 1 we deduce

that ∥u∥2H1(Rn) =
∫
Rn(|u|2 + |∇u|2) dx, in agreement with §3.2. Properties analogous to those seen for

Hs(S1) hold for these spaces, such as the duality between Hs(Rn) and H−s(Rn), the dense embeddings
Hs+(Rn) ⊂ Hs+(Rn) for s+ > s−, and the equivalence between u ∈ Hm(Rn) with m ∈ N and the square-
integrability of the partial derivatives of u of order up to m.

For open subsets Ω ⊂ Rn, Hs(Ω) is the space of the restrictions to Ω of elements of Hs(Rn), and its
norm is ∥u∥Hs(Ω) := inf{∥U∥Hs(Rn) : U |Ω = u}. If Ω is Lipschitz, then one can define a norm equivalent
to ∥ · ∥Hs(Ω) for any s > 0 in terms of double singular integrals (Slobodeckij–Gagliardo norms). Note that
the definition of Hs(Ω) using restrictions is meaningful for open subsets only: the spaces on the boundaries
of Lipschitz sets Ω ⊂ Rn introduced earlier in this section can be related to the spaces introduced here using
charts, i.e. sufficiently smooth bijections between open sets of Rn−1 and subsets of ∂Ω.

A clear and rich introduction to these space is available in [McLean00, Ch. 3].

3.4 Green’s identities

The divergence (or Gauss) theorem says that for any F ∈ C1(Ω)2 we have
∫
Ω
divFdx =

∫
∂Ω

F · nds,
where n is the outward pointing unit normal vector field on ∂Ω, [McLean00, Thm. 3.34]. The product
rule for the divergence is div[wG] = ∇w ·G + w divG. The combination of these two ingredients gives
the multidimensional integration-by-parts formula15:∫

Ω

∇w ·Gdx+

∫
Ω

w divGdx =

∫
∂Ω

wG · n ds ∀w ∈ C1(Ω),G ∈ C1(Ω)2. (29)

Taking G as a gradient, with simple manipulations we get Green’s first and second identity for the
Helmholtz equation: for u,w ∈ C2(Ω), k ∈ R∫

Ω

(∆u+ k2u)w dx =

∫
∂Ω

∂nu γw ds+

∫
Ω

(k2uw −∇u · ∇w) dx, (30)∫
Ω

(
(∆u+ k2u)w − u(∆w + k2w)

)
dx =

∫
∂Ω

(∂nu γw − γu ∂nw) ds. (31)

Exercise 3.13: (Complete proof). Write in detail the proof of (30)–(31) for u,w ∈ C2(Ω).

Do these identities hold for Sobolev functions?

Proposition 3.14: (Green’s identities in Sobolev spaces). If Ω is a bounded Lipschitz domain, Green’s
first identity (30) holds for u ∈ H1(Ω;∆) e w ∈ H1(Ω). Green’s second identity (31) holds for u, v ∈
H1(Ω;∆).
The boundary integrals must be understood as the duality products ⟨∂nu, γw⟩∂Ω and ⟨γu, ∂nw⟩∂Ω.

Green’s identities are the main tools in the derivation of boundary integral equations. This is the
reason why the Sobolev spaces we need are H1(Ω), H1(Ω;∆) and their trace spaces H± 1

2 (∂Ω). The proof
of Proposition 3.14 can be found in [Spence14, Lemma 4.1–4.2].

Remark 3.15: (Glueing together H1 functions). Let Ω1, Ω2 and Ω = Ω1 ∪ Σ ∪ Ω2 be three Lipschitz
domains, where Ω1 ∩ Ω2 = ∅, Σ ̸= ∅, and Σ = (∂Ω1 ∪ ∂Ω2) \ ∂Ω ⊂ ∂Ω1 ∩ ∂Ω2 is the Lipschitz interface
separating Ω1 and Ω2.

Ω1 Ω2
Σ

Ω2 Ω1
Σ

For u1 ∈ H1(Ω1) and u2 ∈ H1(Ω2) let u ∈ L2(Ω) be such that u|Ωj
= uj . Then

u ∈ H1(Ω) if and only if the Dirichlet traces of u1 and u2 restricted to Σ coincide, i.e.
(γΩ1→∂Ω1u1)|Σ = (γΩ2→∂Ω2u2)|Σ.

In particular, if u1 ∈ H1
0 (Ω1), then the zero extension u ∈ L2(Ω) with u|Ω2 = 0

belongs to H1(Ω).
Moreover, given u1 ∈ H1(Ω1; ∆) and u2 ∈ H1(Ω2; ∆), then u ∈ H1(Ω;∆) if both

Dirichlet and Neumann traces of u1 and u2 coincide on Σ.

The first statement can be proved by taking the vector field w ∈ L2(Ω)2 such that w|Ωj
= ∇uj , j = 1, 2,

and verifying that it is the distributional gradient of u, as in Remark 3.2, by testing against any φ ∈ D(Ω)2

and integrating by parts with formula (29). The second statement is proved similarly.
15Here we do not explicitly write the trace operators because we have assumed that the functions involved are continuous

up to the boundary. Identity (29) holds also for w ∈ H1(Ω) and G ∈ H(div; Ω) (defined in footnote 14), with the obvious
traces in the boundary integral.
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3.5 Variational problems, Fredholm theory, Gårding inequality
As we do for Laplace equation, we typically write Helmholtz problems in variational form. The abstract
linear variational problem in the (complex) Hilbert space H is

find u ∈ H such that A(u,w) = F(w) ∀w ∈ H, (32)

where A is a sesquilinear form in H and F is a anti-linear functional in H. We recall that an anti-linear
functional satisfies F(λv + µw) = λF(v) + µF(w) for all λ, µ ∈ C and v, w ∈ H. A sesquilinear form is
linear in the first argument and anti-linear in the second one.

Given a variational problem such as (32), the (conforming) Galerkin method consists of choosing
an N -dimensional subspace VN ⊂ H and a basis φ1, . . . , φN , and of looking for a solution of the problem
restricted to VN :

find uN ∈ VN such that A(uN , wN ) = F(wN ) ∀wN ∈ VN . (33)

This is achieved computationally by solving the N ×N linear algebraic system AU = F where Aj,m :=

A(φm, φj), Fj := F(φj) and uN =
∑N
j=1 Ujφj .

Given a continuous sesquilinear form A, we can associate a linear bounded operator A : H → H∗

by (Au)(w) = ⟨Au,w⟩H∗×H = A(u,w) for all u,w ∈ H, where H∗ is the anti-dual of H, [Spence14,
Lemma 5.4]. The operator A admits a continuous inverse if and only if, for all F ∈ H∗, the variational
problem (32) is well-posed.

In the case of Laplace equation, the crucial result from functional analysis is Lax–Milgram theorem:
if A is continuous (|A(u,w)| ≤ CA ∥u∥H ∥w∥H ∀u,w ∈ H) and coercive16 (ℜ{A(w,w)} ≥ γA ∥w∥2H
∀w ∈ H), and F is continuous (|F(w)| ≤ CF ∥w∥H ∀w ∈ H), then the corresponding variational problem
is well-posed ([Brezis11, Cor. 5.8], [McLean00, Lemma 2.32]). Moreover, several good properties of all
Galerkin discretisations follow (well-posedness, stability bounds, quasi-optimality, bounds on the number
of linear solver iterations, . . . ).

Unfortunately, for most variational formulations of the Helmholtz equation coercivity does not hold,
so we cannot rely on Lax–Milgram. The branch of functional analysis that we need is called “Fredholm
theory” and studies compact perturbations of operators. Good introductions to Fredholm theory are in
[McLean00, Ch. 2] and [Brezis11, §6.2]. As recounted in [McLean00, Ch. 1], this theory, which nowadays
is written in the abstract language of Hilbert spaces and linear operators, originated from the work17 of
Ivar Fredholm on integral equations, which in turn relies on previous works by Vito Volterra. We recall
the definitions of two classes of bounded linear operators between Hilbert (or Banach) spaces; see e.g.
[Sayas06, p. 21].

Definition 3.16: (Compact and Fredholm operators). A linear operator K : H1 → H2 is compact if
the image of a bounded sequence admits a converging subsequence ((vj)j∈N ⊂ H1, ∥vj∥H ≤ C ∀j ∈ N ⇒
∃jm → ∞, w ∈ H2 such that Kvjm → w).
A bounded linear operator is a Fredholm operator if it is sum of an invertible one and a compact one (more
precisely, we should say it is a Fredholm operator of index 0).

18 We can think at Fredholm operators as “small” perturbations of invertible operators. The main
result is the “Fredholm alternative”, which, in its simplest form, reads as follows; [Brezis11, Thm. 6.6(c)],
[SBH19, §8.1, 8.6].

Theorem 3.17: (Fredholm alternative). Let T : H1 → H2 be a Fredholm operator.
T is injective if and only if it is surjective. In this case its inverse T−1 is bounded.

16Here terminology can be confusing. Coercivity is sometimes called “sign-definiteness”, “V -ellipticity”, “strong ellipticity”,
or “strict coercivity”, see [Spence14, §5.2]; [McLean00, p. 43] says that A is “positive and bounded below”. In some of these
cases, the word “coercive” is used for sesquilinear forms satisfying a Gårding inequality, which is a weaker condition, e.g.
[McLean00, eq. (2.7)]. Here we follow the convention of [Spence14] and [Brezis11, §5.3].

17[Fredholm, Sur une classe d’équations fonctionnelles, 1903]
18Well, this is not exactly the definition you find in functional analysis textbooks. E.g. [Brezis11, p. 168] defines T : H1 →

H2 (continuous operator between Hilbert spaces, for simplicity) as “Fredholm with index Ind(T )” if dim(kerT ),dim(ImT )⊥ <
∞ and Ind(T ) := dim(kerT )− dim(ImT )⊥. Let us check that this definition, with index 0, is equivalent to ours.

An invertible operator is Fredholm with index 0; then by [Brezis11, p. 169, ⋆1(c)] any operator in the form invert-
ible+compact as in Definition 3.16 is Fredholm with index 0.

Conversely, assume that T : H1 = (kerT ⊕ (kerT )⊥) → H2 = (ImT ⊕ (ImT )⊥) is Fredholm with index 0. Let {ϕ1, . . . , ϕn}
be an orthonormal basis of kerT and {ψ1, . . . , ψn} be an orthonormal basis of (ImT )⊥ (which are both finite-dimensional
and have the same dimension). Define K : H1 → H2 as Kϕj = ψj and Kv = 0 ∀v ∈ (kerT )⊥; this operator has finite rank,
so it is compact. Then L = T +K is an invertible operator and T = L−K is in the form invertible+compact, as desired.

To verify that an operator is Fredholm we will always use Definition 3.16.

https://doi.org/10.1007/bf02421317


Variational problems, Fredholm, Gårding, . . . |27| A. Moiola — February 24, 2025

This theorem has this name because it states that when we have a Fredholm operator T then only
two “alternatives” are possible: either T is injective and surjective, or is neither injective nor surjective.
Fredholm alternative says that if we want to prove that a Fredholm operator is invertible, then it suffices
to prove its injectivity. A useful idea to keep in mind is that, under this respect, Fredholm operators
behave like square matrices.19

How do we use Fredholm alternative? The general strategy is the following. We will show that some
linear operator T mapping “problem solution” to “problem data” are Fredholm. When we can show that
the homogeneous problem (with data equal to 0) only admits the trivial solution (i.e. T is injective),
Fredholm alternative guarantees that all data admit a solution (i.e. T is surjective), which is unique
by injectivity, and that the solution is controlled by the data (i.e. T−1 is bounded). A linear problem
whose “solution-to-data” operator is Fredholm is well-posed if the same operator is injective.

Typically, in time-harmonic problems, sesquilinear forms are not coercive but satisfy a weaker inequal-
ity, called Gårding inequality.

Definition 3.18: (Gårding inequality). Let H ⊂ V be two Hilbert spaces provided with the norms ∥·∥H
and ∥·∥V , and let the embedding H ↪→ V be continuous. A sesquilinear form satisfies a Gårding inequality
if there exists two positive constants α and CV such that

ℜ
{
A(v, v)

}
≥ α ∥v∥2H − CV ∥v∥2V ∀v ∈ H. (34)

20 Here we follow the notation of [Spence14, §5.3], where the letters H and V are swapped with respect
to the classical choice for Hilbert triples (as in [Brezis11, p. 136] and [McLean00, p. 44]).

The main use of Gårding inequality comes from the next result, see [Spence14, Theorem 5.20].

Proposition 3.19: (Gårding ⇒ Fredholm). Assume that H and V are as in Definition 3.18, the embedding
H ↪→ V is compact and the continuous sesquilinear form A(·, ·) satisfies the Gårding inequality (34).
Then the operator A : H → H∗ associated to A(·, ·) is Fredholm.

Proof. Let i : H → V be the (compact) inclusion map, and T : V → H∗ defined by ⟨Tv,w⟩H∗×H =
(v, iw)V , for v ∈ V and w ∈ H, where (·, ·)V is the scalar product in V . Then, by Cauchy–Schwarz
in V , T is continuous: ∥Tv∥H∗ = supw∈H

|⟨Tv,w⟩H∗×H |
∥w∥H

≤ supw∈H
∥v∥V ∥iw∥V

∥w∥H
≤ ∥v∥V ∥i∥H→V . Define

B := A+CV T ◦ i : H → H∗, where CV > 0 is the value in (34). Since T ◦ i is compact, in order to prove
that A is Fredholm, it is enough to see that B is invertible. Then the sesquilinear form

B(u,w) := ⟨Bu,w⟩H∗×H = ⟨Au,w⟩H∗×H + CV ⟨T ◦ iu, w⟩H∗×H = A(u,w) + CV (iu, iw)V , u, w ∈ H,

is continuous and coercive in H, which, by Lax–Milgram, implies that B is invertible. (Actually we have
proved something stronger, that A is sum of a compact operator and a coercive one.)

Proposition 3.19 and Theorem 3.17 imply that, in order to prove well-posedness of a variational problem
(32) whose sesquilinear form A(·, ·) satisfies a Gårding inequality, it suffices to study the homogeneous
problem (with F = 0):

Corollary 3.20: (Well-posedness from Gårding). Assume that:
• H ⊂ V are Hilbert spaces and the embedding H ↪→ V is compact,

• the sesquilinear form A(·, ·) is continuous in H and satisfies the Gårding inequality (34),

• the homogeneous variational problem, A(u0, w) = 0 for all w ∈ H, admits only the trivial solution u0 = 0.
Then also the inhomogeneous problem (32) is well-posed, for any F ∈ H∗.

To be able to exploit Corollary 3.20, we need to know when the embedding between two function
spaces is compact. A classical result, called Rellich embedding theorem, says that H1(Ω) ↪→ L2(Ω) is

19Indeed, an invertible linear operator between finite-dimensional spaces corresponds to a square matrix. All finite-range
operators are compact because all bounded sequences of Rn and Cn admit converging subsequences. Thus the operators
between finite-dimensional spaces that are Fredholm are precisely those associated to square matrices. We know from linear
algebra that a square matrix is injective if and only if it is surjective. This proves the Fredholm alternative in the case of
operators between finite-dimensional spaces.

(In this Cn → Cn case, Fredholm operators are compact, but in infinite dimensions a Fredholm operator is not compact.)
20We could take a more general definition using the inequality ℜ{σA(v, v)} ≥ α ∥v∥2H − CV ∥v∥2V for some 0 ̸= σ ∈ C

(the same σ for all v). Then all consequences of the Gårding inequality would follow precisely in the same way. However all
variational problems with A(·, ·) that satisfy this inequality can be reduced to equivalent problems satisfying (34) simply by
multiplying the sesquilinear form and the linear functional by σ.
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compact, when Ω is a bounded Lipschitz domain21. Similarly, one can show that Hs+(∂Ω) ↪→ Hs−(∂Ω)
is compact for all s+ > s−, [Nédélec01, Theorem 2.5.7].

Exercise 3.21: (Compactness of Sobolev embeddings). Let s− < s+ be real numbers. Show the com-
pactness of Sobolev embedding i : Hs+(S1) → Hs−(S1), in the simple case of the boundary of the unit
circle.

The key tool to use is [Brezis11, Cor. 6.2]: given a linear operator T : H1 → H2 and Tj : H1 → H2

finite-rank operators (i.e. with finite-dimensional image) for j ∈ N, if ∥T − Tj∥H1→H2
→ 0 then T is compact.

Construct a sequence of finite-rank “truncated embedding” operators iL : Hs+(S1) → Hs−(S1) for L ∈ N,
such that

∥i− iL∥2Hs+ (S1)→Hs− (S1) ≤
1

(1 + L2)s+−s−
.

Exercise 3.22: (Compact and Fredholm operators in sequence spaces). Let l2 be the Hilbert space of
squared-summable complex sequences x = (xj)j∈N, xj ∈ C, equipped with ∥x∥2l2 =

∑
j∈N |xj |2.

• Define the right and left complex shift operators R,L : l2 → l2 as (Rx)1 = 0, (Rx)j+1 = xj and
(Lx)j = xj+1 for j ∈ N. Show that R and L are neither Fredholm nor compact.

Are the composition LR and RL either Fredholm or compact? Which of L,R,LR,RL is invertible?

• Show that for any J ∈ N the truncation operator TJ : l2 → l2 defined by (TJx)j = xj if j ≤ J and
(TJx)j = 0 if j > J is compact.

• Show that the operator T : l2 → l2 defined by Tx = (x3, 0,−x3, 2x4, 2x5, . . . , (Tx)j = 2xj , . . .) is
Fredholm.

An extensive description of the relations between variational problems satisfying Lax–Milgram assump-
tions, Gårding inequality or the inf-sup inequality, and the consequences for the Galerkin method, can be
found in [Spence14, §5.3]; see also §6.3.1 below.

21See e.g. [Brezis11, Thm. 9.16] and [SBH19, Prop. 7.5] for a more general version.
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4 Boundary value problems for the Helmholtz equation

4.1 Plane waves reflected by a straight line

To understand what happens when a wave hits an impenetrable obstacle we start with
a very simple case that can be solved analytically. Let uInc(x) = eikx·d be a plane wave
with |d| = 1, d1 ≥ 0 and d2 ≤ 0 (i.e. propagating rightward and downward in the plane,
↘). This is called the “incoming field”, or “incident field”. Assume that we truncate
the domain of propagation to the upper half plane Ω+ = {x2 > 0} and on the horizontal
line Γ = {x2 = 0} we impose some boundary conditions that reflect the impinging wave.
We call uScat the reflected wave, i.e. the “scattered field”, and uTot = uInc + uScat the
“total field”. uTot is the physical field we would measure in a point of the half plane.

uInc uScat

n

Ω+

Γ

Given uInc, which is a datum, we now want to find uTot that satisfies the Helmholtz equation in the
upper half plane, and satisfies some desired homogeneous boundary conditions on Γ. This is the same as
saying that we want uScat that satisfies the Helmholtz equation in the same region, and satisfies boundary
conditions that depend on uInc on Γ.

By the law of reflection, we expect uScat to propagate upwards and to make with the horizontal line
Γ the same angle as uInc, ↗. This means that uScat is a plane wave with direction d̃ = (d1,−d2):
uScat(x) = Reikd̃·x = Reik(x1d1−x2d2) for some reflection coefficient R ∈ C that gives the amplitude and the
phase of uScat itself. The coefficient R depends on the particular type of boundary condition chosen.
• When the line Γ is sound-soft, the Dirichlet trace of the total field uTot vanishes on Γ:

0 = uTot(x1, 0) = uInc(x1, 0) + uScat(x1, 0) = eikx1d1 + Reikx1d1 ∀x1 ∈ R ⇒ R = −1.

• When the line Γ is sound-hard, the Neumann trace of the total field uTot, i.e. its normal derivative,
vanishes on Γ:

0 =
∂uTot

∂x2
(x1, 0) =

∂

∂x2

(
uInc(x1, 0)+uScat(x1, 0)

)
= ikd2e

ikx1d1 −Rikd2e
ikx1d1 ∀x1 ∈ R ⇒ R = 1.

• To impose the impedance boundary condition ∂uTot

∂n − ikϑuTot = 0 with ϑ > 0, we recall that n is the
outward-pointing unit normal vector on Γ so n = (0,−1). In this case we have

0 =
∂uTot

∂n
− ikϑuTot = −∂u

Tot

∂x2
− ikϑuTot =

(
ikd2(−1 + R)− ikϑ(1 + R)

)
eikx1d1 .

This vanishes for d2(−1 + R) = ϑ(1 + R), i.e. R = d2+ϑ
d2−ϑ .

Summarising, the fields are

uInc(x) = eik(x1d1+x2d2),

uScat(x) = Reik(x1d1−x2d2),

uTot(x) = eik(x1d1+x2d2) + Reik(x1d1−x2d2),

with R =


−1 for sound-soft Γ,

1 for sound-hard Γ,
d2+ϑ
d2−ϑ ∈ (−1, 1) for impedance Γ.

The plane waves reflected by sound-soft or sound-hard interfaces have the same amplitude of the incoming
plane waves and either opposite (sound-soft) or the same (sound-hard) phase. On the other hand, since
|R| < 1, the waves reflected by an impedance line have amplitude smaller than the incoming wave:
the impedance boundary absorbs some of the wave energy. The amount of wave that is reflected and
the amount that is absorbed depend on the direction of the incoming wave; in particular, if ϑ ≤ 1
the impedance boundary does not reflect (but absorbs completely) the impinging waves propagating in
direction d = (

√
1− ϑ2,−ϑ). An impedance boundary with ϑ = 1 does not reflect the waves hitting

perpendicularly. For another point of view on energy preservation and absorption by different boundary
conditions, see Exercise 4.18.

For ϑ→ 0 the impedance boundary condition converges to the sound-hard one, and consistently R → 1;
for ϑ→ ∞ it converges to the sound-soft boundary condition and R → −1.

Here we have considered a wave with infinite front hitting an infinite, perfectly flat barrier: clearly
this is not a realistic problem, but it helps to get an intuition of what happens when a wave hits an
impenetrable obstacle. A perturbation of Γ, such as the graph of a bounded surface, is termed rough
surface in the scattering literature; when it is periodic in x1 it is also called diffraction grating.
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Remark 4.1: (On unbounded domains: PDE + BCs ̸→ BVP). When we solve a well-posed boundary
value problem the solution is typically determined by the PDE and by the boundary conditions. Here we
have used something more. Let us look for example at the sound-soft case. Given uInc, any combination
uScatλ (x) = −λeik(x1d1+x2d2)−(1−λ)eik(x1d1−x2d2) satisfies the Helmholtz equation and the boundary condition
uScatλ = −uInc on Γ. We have chosen the case λ = 0 because from the law of reflection we expect the scattered
field to propagate upwards. We will see that in all problems posed on unbounded domains we need to select
the waves propagating in the desired direction, and that this is equivalent to imposing conditions “at infinity”.

Remark 4.2: (General wave reflected by a straight line). The same reasoning made above shows that
if uInc is any wave propagating downwards, then the reflected wave uScatD (x) = −uInc(x1,−x2) propagates
upwards and uInc+uScatD vanishes on Γ. So uTotD = uInc+uScatD is the total field in the presence of a sound-soft
line.

You can see the reflection of the Herglotz function uInc(x) =
∫ −π/6
−π/3 eik(x1 cosφ+x2 sinφ) dφ by a sound-soft

horizontal line in Figure 9 and in the animation on the course webpage9.
Similarly, uScatN (x) = uInc(x1,−x2) propagates upwards and ∂

∂n (u
Inc + uScatN ) vanishes on Γ, so uTotN =

uInc + uScatN is the reflection of any downward uInc by a sound-hard line.
For an impedance line Γ, the argument is slightly more complicated: since the reflection coefficient R

depends on the direction of the incoming wave, to compute uScat we need to be able to decompose uTot in
plane waves with different directions and reflect each one of them with its own coefficient. This is possible if
uInc is a Herglotz function with kernel supported in the lower half of the unit circle (g(φ) = 0 for 0 < φ < π).

Figure 9: Reflection of the Herglotz function with kernel g(φ) = χ(−π
3 ,−

π
6 )(φ) by the sound-soft line

{x2 = 0}. See Remark 4.2.

Exercise 4.3: (Neumann reflection of Herglotz function). Plot the total field when the incoming field is
the same Herglotz function as in Figure 9 and in Remark 4.2, but the horizontal line Γ acts as a Neumann
boundary. Start from the Matlab file provided.

Repeat the same for an impedance boundary.

Exercise 4.4: (Neumann traces on sound-soft boundaries and vice versa). For the problem of a plane
wave uInc impinging on Γ = {x2 = 0} as described above, show that, ∀x ∈ R,
• if Γ is a sound-soft boundary then ∂nuScat(x, 0) = ∂nu

Inc(x, 0) and ∂nuTot(x, 0) = 2∂nu
Inc(x, 0);

• if Γ is a sound-hard boundary then uScat(x, 0) = uInc(x, 0) and uTot(x, 0) = 2uInc(x, 0);

• if Γ is an impedance boundary then (∂n − ikϑ̃)uScat = (∂n − ikϑ̃)uInc for ϑ̃ = (d2)
2

ϑ .
These formulas motivate the “physical optics approximation” for high-frequency scattering by convex obstacles,
see Remark 5.36.

Exercise 4.5: (Reflection of vector plane waves). Consider a vector plane wave Aeikd·x that is solution
of Maxwell’s equations (14) as in Exercise 2.3. Compute the plane wave reflected by the horizontal plane
{x ∈ R3 : x3 = 0} equipped with PEC boundary conditions E × n = 0. Recall that the amplitude of the
reflected wave must be orthogonal to its propagation direction.

The reflection of elastic waves is more complicated: an impinging pressure (or shear) wave generates a
reflected waves that is sum of a pressure and a shear wave. This phenomenon is called “mode conversion”
and is due to the boundary conditions, which involve all three Cartesian components of the fields; see [BK00,
pp. 140–143].
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4.2 Helmholtz boundary value problems in bounded domains

Let Ω ⊂ R2 be a bounded, open, Lipschitz set. The Dirichlet BVP for the Helmholtz equation is: given a
source term f defined in Ω and a boundary datum gD defined on ∂Ω find u on Ω such that

∆u+ k2u = −f in Ω, γu = gD on ∂Ω. (35)

We know that the Dirichlet problem for the Poisson equation (problem (35) with k = 0) is well-posed
when the data f, gD are sufficiently smooth. Despite the Helmholtz equation looks like an innocuous
low-order perturbation of the Laplace equation, well-posedness of the Helmholtz Dirichlet problem is not
guaranteed.

We start from a simple example. Let Ω be the rectangle (0, L1) × (0, L2). Then for all j1, j2 ∈ N
the field uj1,j2(x) = sin( j1πL1

x1) sin(
j2π
L2
x2) vanishes on ∂Ω and is solution of ∆u + k2j1,j2u = 0 with

k2j1,j2 =
j21π

2

L2
1

+
j22π

2

L2
2

. So there are infinitely many values of k such that the homogeneous (f = 0 and
gD = 0) Helmholtz Dirichlet BVP admits non-trivial solutions. It follows that for these values of k the
problem (35) is not well-posed: if there is a solution then it cannot be unique.

Solutions of the homogeneous Helmholtz Dirichlet problem are called Dirichlet eigenfunctions of
the Laplacian with eigenvalue Λ = k2, as they satisfy the eigenproblem −∆u = Λu, γu = 0. The
corresponding value of k is a resonant wavenumber, and ω = kc is a resonant frequency.

As a second example, if Ω = BR is the disc of radius R, then the circular waves Jℓ(kr)e±iℓθ are Dirichlet
eigenfunctions for Λ = k2 and k such that kR is a zero of the ℓth Bessel function Jℓ (recall the plots in
the left panel of Figure 5 and the top panel of Figure 6: each Jℓ has infinitely many zeros).

In other domains we find the same situation as in the two examples described, even if we cannot
compute eigenvalues and eigenfunctions explicitly; see [SBH19, §9] for the spectral theory of elliptic
operators.

4.2.1 Variational formulations of interior BVPs, well-posedness, eigenvalues

To understand the problem in more general bounded Lipschitz domains, we study the problem from a
variational point of view. From Green’s first identity (30), the variational problem for the Helmholtz
Dirichlet BVP (35) with homogeneous boundary conditions gD = 0 is

find u ∈ H1
0 (Ω) such that A(u,w) :=

∫
Ω

(∇u ·∇w−k2uw) dx =

∫
Ω

fw dx =: F(w) ∀w ∈ H1
0 (Ω). (36)

The sesquilinear form A(·, ·) and the linear functional F(·) are continuous in H1
0 (Ω). On the other hand,

A(·, ·) is not coercive (for k sufficiently large), as the two terms (∇u∇w and −k2uw) have opposite signs,
see Exercise 4.8 or [Spence14, Lemma 6.2]. However, it satisfies a Gårding inequality (34) with α = 1 and
CV = k2 + 1:

ℜ
{
A(w,w)

}
= A(w,w) = ∥w∥2H1(Ω) − (k2 + 1) ∥w∥2L2(Ω) ∀w ∈ H1(Ω).

Proposition 3.19, together with the compactness of H1
0 (Ω) in L2(Ω), gives that the operator A : H1

0 (Ω) →
(H1

0 (Ω))
∗, A : u 7→ f , is Fredholm .22 Corollary 3.20 of Fredholm alternative then implies that, given Ω

and k, only two situations can happen:
• If Ω and k are such that the homogeneous (f = 0) problem (36) admits only the trivial solution u = 0,

then also problem (36) with any f ∈ L2(Ω) (or more generally F ∈ (H1
0 (Ω))

∗) admits a unique solution.

• On the other hand, if there is a u ̸= 0 such that A(u,w) = 0 ∀w ∈ H1
0 (Ω), then the problem (36) is

not well-posed for any f . It might have no solutions for some f , and many solutions for some other f .
22If A is Fredholm, what are the invertible and the compact operators that sum to A : H1

0 (Ω) → (H1
0 (Ω))∗?

We can split the sesquilinear form as A(u,w) = A0(u,w) + K(u,w) with A0(u,w) :=
∫
Ω ∇u · ∇w dx and K(u,w) :=

(−k2)
∫
Ω uw dx. Then A0(·, ·) is the sesquilinear form associated to the (well-posed) Laplace–Dirichlet BVP in H1

0 (Ω), so it
is continuous and coercive (by Poincaré inequality), thus the operator A0 associated, i.e. ⟨A0u,w⟩(H1

0 (Ω))∗×H1
0 (Ω) = A0(u,w),

is invertible. This operator is simply the Laplacian A0 = −∆ : H1
0 (Ω) → (H1

0 (Ω))∗. The operator K : H1
0 (Ω) → (H1

0 (Ω))∗

associated to the second sesquilinear form, i.e. ⟨Ku,w⟩(H1
0 (Ω))∗×H1

0 (Ω) = K(u,w), is −k2 times the embedding of H1
0 (Ω) in

(H1
0 (Ω))∗, which is a compact operator (the dual is a space larger than L2(Ω)).
The trick, hidden in Proposition 3.19, to decompose the Helmholtz “solution-to-data” operator A is to write the analogous

operator for the Laplace equation (A0, invertible) and to verify that the remainder (K = A − A0) is compact as it comes
from the lower-order term in the PDE. We will use again the “Helmholtz = Laplace + compact low-order perturbation” trick.
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We have proved part of the following proposition. To prove the remaining part (the existence, discrete-
ness and divergence at infinity of the eigenvalues), one needs the spectral theory of self-adjoint compact
operators, see e.g. [McLean00, Ch. 2] or [Brezis11, §6]. To treat inhomogeneous Dirichlet boundary con-
ditions gD ̸= 0, one uses a “lifting”, i.e. a uD ∈ H1(Ω) such that γuD = gD (which exists because of the
surjectivity of the trace operator), and then solves for u0 = u− uD ∈ H1

0 (Ω).

Proposition 4.6: (Well-posedness of the Helmholtz–Dirichlet BVP). For a Lipschitz bounded domain
Ω, there exist a sequence of positive numbers k1 < k2 < . . ., with kj → ∞, such that:
• If k = kj for some j, then the Dirichlet problem (35) is not well-posed.

In particular, the homogeneous case with f = 0 and gD = 0 admits non-trivial solutions.

• If 0 < k ̸= kj for all j, then the Dirichlet problem (35) is well-posed in H1(Ω) for all f ∈ L2(Ω) and
gD ∈ H

1
2 (∂Ω).

The smallest of the values kj equals the inverse of the Poincaré constant of Ω: the smallest value CP
such that ∥u∥L2(Ω) ≤ CP ∥∇u∥L2(Ω) for all u ∈ H1

0 (Ω) is CP = 1/k1 (this is an easy consequence of the
existence of an orthogonal basis of H1

0 (Ω) made of eigenfunctions).

Exercise 4.7: (Helmholtz–Neumann BVP).
• What are the eigenvalues and the eigenfunctions for the Laplacian with Neumann boundary conditions
∂nu = 0 on the rectangle and on the disc?

• Show that the positive Neumann eigenvalues for a rectangle coincide with the Dirichlet eigenvalues but the
eigenfunctions differ. (On the contrary, using subtle properties of the Bessel functions it is possible to see
that there are no Neumann eigenvalues of the disc that are also Dirichlet eigenvalues.)

• Write the variational formulation of the Helmholtz–Neumann BVP with inhomogeneous conditions ∂nu =
gN ∈ H− 1

2 (∂Ω): the sesquilinear form coincides with that in (36) but the linear functional and the function
space differ.

• What are the eigenvalues and the eigenfunctions for the Laplacian on the rectangle when Dirichlet conditions
are imposed on some of the sides and Neumann conditions on the others?

A result analogue to Proposition 4.6 holds for the Neumann BVP. The main differences are that the
first eigenvalue is k1 = 0 (with multiplicity equal to the number of connected components of Ω), the
function space is H1(Ω), and the datum regularity is H− 1

2 (∂Ω). Similar considerations hold also for
problems with mixed boundary conditions, i.e. with Dirichlet conditions on part of ∂Ω and Neumann on
the remaining part.

Exercise 4.8: (No coercivity for k > k1). Let u1, u2 be Dirichlet eigenfunctions in Ω, associated to different
eigenvalues k21 and k22 and normalised as ∥u1∥L2(Ω) = ∥u2∥L2(Ω) = 1. Let k1 < k < k2, and define w =

u1 ±
√

k2−k21
k22−k2

u2. Show that A(w,w) = 0.
Deduce that A(·, ·) is not coercive for all k2 larger than the first Dirichlet eigenvalue.
Hint: recall (or prove) that eigenfunctions associated to different eigenvalues are orthogonal both in L2(Ω)

and in H1(Ω) norms.

Exercise 4.9: (Domain scaling and eigenvalues). Let Ω be a bounded domain, ρ > 0 a constant factor,
and Ω̂ = ρΩ = {x̂ = ρx : x ∈ Ω} be a dilation of Ω. Let Λ be a Dirichlet (or Neumann) eigenvalue of Ω.
Show that Λ̂ = Λ/ρ is a Dirichlet (Neumann, respectively) eigenvalue of Ω̂.

Deduce that any given Λ > 0 is Dirichlet eigenvalue of the discs Bρ only for countably many radii ρ. Given
R > 0, show that Λ > 0 is Dirichlet eigenvalue of the discs Bρ contained in BR only for a finite number
(possibly zero) of radii ρ. Circles with radius ρ can be replaced by the images of diameter ρ of a given domain
under similarities (e.g. all squares, or all equilateral triangles,. . . ).

Exercise 4.9 allows to prove the following useful lemma. We will see a different proof as a consequence
of Theorem 5.15.

Lemma 4.10: (Helmholtz solutions with both zero traces are zero). Let u be a solution of the
homogeneous Helmholtz equation ∆u+ k2u = 0 in a bounded Lipschitz domain Ω. If both traces on ∂Ω of
u vanish, i.e. γu = ∂nu = 0, then u = 0 in Ω.

Proof. By contradiction, assume u ̸= 0. Let R > 0 be such that Ω ⊂ BR, the disc of radius R. By
Remark 3.15, the zero-extension ũ ∈ L2(BR), defined as ũ|Ω = u and ũ|BR\Ω = 0, belongs to H1(BR; ∆).
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So ∆ũ ∈ L2(BR) and ∆ũ+ k2ũ = 0 in the whole of BR. Since the trace of ũ on ∂BR is 0, ũ is a Dirichlet
eigenfunction of BR and k2 is a Dirichlet eigenvalue. The radius R is arbitrary: k2 is a Dirichlet eigenvalue
for all discs BR′ with any R′ > R. This is in contradiction with Exercise 4.9; the contradiction is resolved
only if ũ = 0, so also u = 0.

Lemma 4.10 means that a given function u cannot be simultaneously Dirichlet and Neumann eigen-
function of the Laplacian in Ω.

Exercise 4.11: (Absorption gives well-posedness.). Show that the Dirichlet and the Neumann problems

∆u+ k2u = −f in Ω, γu = 0 on ∂Ω, or

∆u+ k2u = −f in Ω, ∂nu = gN on ∂Ω,

are well-posed if ℑk > 0, f ∈ L2(Ω) and gN ∈ H− 1
2 (∂Ω).

Hint: First write the two BVPs as variational problems A(u,w) = F(w) in H1
0 (Ω) and H1(Ω), respectively.

Then use Lax–Milgram theorem. To prove the coercivity |A(w,w)| ≥ c ∥w∥2H1(Ω) of the sesquilinear form
obtained, first control the L2 norm of u, then the H1 seminorm by using the triangle inequality.

Deduce a bound on ∥u∥H1(Ω). The bounding constant C will blow up for ℑk ↘ 0.

If instead of sound-soft and sound-hard conditions we have impedance ones we obtain a different result.
Consider the impedance BVP:

∆u+ k2u = −f in Ω, ∂nu− ikϑ γu = gI on ∂Ω, (37)

for ϑ > 0, f ∈ L2(Ω), gI ∈ H− 1
2 (∂Ω). Its variational form is: find u ∈ H1(Ω) such that

AI(u,w) :=

∫
Ω

(∇u·∇w−k2uw) dx−ikϑ

∫
∂Ω

γu γw ds =

∫
Ω

fw dx+

∫
∂Ω

gI γw ds =: FI(w) ∀w ∈ H1(Ω).

(38)
As before, the sesquilinear form is continuous, coercive only for small k, and satisfies a Gårding inequality
since ℜ{AI(w,w)} = A(w,w). So, by Corollary 3.20, to check the well-posedness we only have to look at
the homogeneous problem. If u0 satisfies (38) with FI = 0 (i.e. f = 0 and gI = 0), taking the imaginary
part of AI(u0, u0) = 0, we see that γu0 = 0 on ∂Ω, and from the boundary condition that also ∂nu0 = 0
on ∂Ω. Then, since ∆u0 + k2u0 = 0, Lemma 4.10 implies that u0 = 0.

Proposition 4.12: (Well-posedness of interior impedance BVP). The impedance BVP (37) (equiva-
lently, (38)) is well-posed for all k > 0.

A slightly different proof can be found in [SBH19, §8.8]; see also [CGLS12, Thm. 2.3].
The Fredholm alternative implies that the solution of the impedance BVP (37) exists and is unique,

and also that its H1(Ω−) norm is controlled by the norm of the data (f and gI). However, the bounding
constant is not explicit as in the situations where we can use Lax–Milgram theorem.

Differently from the Dirichlet and the Neumann BVP form A(·, ·), the impedance BVP sesquilinear
form AI(·, ·) is not self-adjoint. This is consistent with the fact that Dirichlet and Neumann eigenvalues
are real, while the impedance BVP has no real eigenvalues.

4.2.2 Remarks on eigenvalues, eigenfunctions and interior BVPs

So far we studied the well-posedness of interior Helmholtz BVPs and the presence of eigenvalues. In the
following remarks and exercises we observe some properties of eigenfunctions and BVPs. Recall that we
have already seen in Remark 1.22 how Dirichlet and Neumann eigenfunctions correspond to TM and TE
modes propagating in a waveguide.

Remark 4.13: (What kind of waves are the eigenfunctions?). We have observed in §4.1 that Dirichlet and
Neumann boundary conditions reflect waves without losing energy. Roughly speaking, we can interpret Dirichlet
and Neumann eigenfunctions as waves that bounce around in Ω forever, without any damping. At the right
wavenumber the interference of the wave with itself is constructive (after a full round of bounces the wave has
precisely the same phase it started with), so, in a sense, it can exist without a source; see Exercises 4.14–4.15.
For example, if Ω is a disc, one can imagine a wave propagating along a regular polygon inscribed in Ω, reflected
by ∂Ω at every corner of the polygon. These are called creeping waves, as they “crawl” around ∂Ω and are
small in the centre of Ω, or whispering gallery modes (from some circular buildings where a whisper can be
heard in any place close to the wall but not in the centre); see Figure 10.
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On the other hand, impedance boundary conditions and complex wavenumbers entail some energy absorption
(see Exercise 4.18): in this case the waves cannot propagate forever and there are no eigenfunctions for any
k > 0.

For high frequencies k ↗ ∞ Helmholtz solutions resemble more and more trajectories of particles, or billiard
balls on a table, or light rays if the particles are photons. The study of the relationships between the dynamics of
“billiard trajectories” and the properties of PDEs with a vanishingly small parameter (h = k−1 in h2∆u+u = 0)
is the topic of “semiclassical analysis” (the name comes from the analogy with the relation particles : waves =
classical physics : quantum physics).

Figure 10: The Dirichlet eigenfunction J9(kr)e
i9θ with k = 13.3543 on the unit disc. This is a typical

“creeping wave” or “whispering gallery mode”, as it is concentrated along the boundary of the domain.

Exercise 4.14: (Billiards and eigenfunctions). Show that for all pairs j1, j2 ∈ N there is a closed “billiard
trajectory” in the unit square Ω = (0, 1)2 whose length is an integer multiple of the wavelength λj1,j2 =

2π
kj1,j2

= 2√
j21+j

2
2

of the Dirichlet eigenfunction with indices j1, j2.

A “billiard trajectory” is the trajectory of a particle leaving from a point in Ω, moving in a straight
line, that is reflected when it hits ∂Ω with the equal-angle law, and that never hits the corners of
Ω. It is closed if it is a loop, i.e. the particle repeats it infinitely many time.

Exercise 4.15: (Plane waves and eigenfunctions of the square).
Fix j1, j2 ∈ N and define the plane wave u↘(x) = eiπ(j1x1−j2x2). Write the wave u↗ defined as
the sound-soft reflection of u↘ on the line {x2 = 0}, using the rules learned in §4.1. Extend these
rules to write the wave u↖ defined as the reflection of u↗ on the line {x1 = 1}, and u↙ as the
reflection of u↖ on the line {x2 = 1}. Show that the reflection of u↙ on the line {x1 = 0} is u↘.

We have found a wave that after four sound-soft reflections on the lines corresponding to the sides of the
square (0, 1)2 is identical to itself.

Show that u↘ + u↗ + u↖ + u↙ is (a multiple of) one of the eigenfunctions of (0, 1)2 described at the
beginning of this section.

Exercise 4.16: (Resonances are denser at higher frequencies). For any domain Ω, the resonant wavenum-
bers become denser and denser when their value increase.

Compute numerically and plot all resonant wavenumbers kj of the unit disc, namely the zeros of all smooth
Bessel functions Jℓ, smaller than a given kmax.

Which of them correspond to eigenvalues with multiplicity 1 and which to multiplicity 2? Is there any
eigenvalue with multiplicity larger than 2?

Plot the “counting function” N(k) := #{resonant wavenumbers kj of B1, kj ≤ k}, where the resonances
are counted with their multiplicity.

A famous result called “Weyl law” states that, for any Lipschitz bounded Ω ⊂ R2 with Lebesgue measure
|Ω|, the number of Dirichlet eigenvalues (counted with multiplicity) smaller than a given Λ is approximately
|Ω|
4π Λ. Then the counting function is N(k) ≈ |Ω|

4π k
2. In particular, the number of resonant wavenumbers in the

interval (k, k + δ] for a fix δ > 0 is N(k + δ)−N(k) ≈ |Ω|
4π (2kδ + δ2), which grows linearly in k.

Do the same for the unit square (0, 1)2 (or any rectangle): in this case you can compute analytically all
resonant wavenumbers.

A comparison of N(k) and Weyl law for the unit disc and square in the range k ∈ (0, 100) is plotted in
Figure 11. See also [Runborg12, Rem. 2].
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Figure 11: The Dirichlet resonant wavenumbers kj ≤ 100 (the black + signs at the bottom) for
the unit disc B1 (left) and the unit square (0, 1)2 (right). The blue line is the counting function
N(k) and the red one is its approximation by Weyl law; note the quadratic behaviour. The num-
bers 92, 288, 491, 692, 893 (and 26, 89, 150, 217, 282) denote the number of resonances in the intervals
(0, 20], (20, 40], (40, 60], (50, 80] and (80, 100], respectively, showing that resonances becomes denser at
higher frequencies.

Remark 4.17: (Resonances in different dimensions and musical instruments). In one dimension, the
Laplacian is simply the second derivative and its eigenvalue are easy to compute. E.g. on the interval Ω =
(0, L), the Dirichlet resonant wavenumbers are kj = jπ

L for j ∈ N and the corresponding eigenfunctions
are uj(x) = sin(kjx). These frequencies kj are equally spaced, while the resonant wavenumbers of a two-
dimensional domain are distributed more irregularly (see e.g. Figure 11). This has important consequences in
music.

Musical instruments produce different notes by exciting resonances. Most instruments rely on the vibrations
of a one-dimensional part: air columns in wind instruments and strings in guitars, pianos, and violins (then other
parts, such as the soundboard, amplify and modify the sound produced by the strings). The different frequencies
excited when plucking a string or blowing a flute are related to one another as the resonant wavenumbers of
a one-dimensional interval, so they can produce harmonious sounds. On the other hand, the sound of a drum
depends on the disordered resonances of a two-dimensional object, its membrane, leading to a “less musical”
sound. The book [Heller13] describes in detail how different musical instruments produce sound.

Exercise 4.18: (Energy conservation and dissipation in time domain). Let Ω ⊂ Rn be a bounded Lipschitz
domain with outward-pointing unit normal n, T > 0, and let U be a sufficiently smooth real-valued function
defined on Ω × [0, T ]. Define the “acoustic energy” of U at time t ∈ [0, T ] as the sum of a potential and a
kinetic term:

E(U ; t) :=
1

2

∫
Ω

(
|∇U(x, t)|2 + 1

c2

(∂U
∂t

(x, t)
)2)

dx.

• Show that
∂E(U ; t)

∂t
=

∫
Ω

(
1

c2
∂2U

∂t2
−∆U

)
∂U

∂t
dx+

∫
∂Ω

∂nU
∂U

∂t
ds.

• Assume that U is solution of the homogeneous wave equation (6), and either U satisfies homogeneous
Dirichlet (γU = 0 on ∂Ω× [0, T ]) or Neumann (∂nU = 0 on ∂Ω× [0, T ]) conditions.

Deduce that its energy remains constant in time: E(U ; t) = E(U ; 0) for all t.

• Deduce that if the wave solution U satisfies the homogeneous impedance boundary condition ∂nU+ θ
c
∂U
∂t = 0

with θ > 0 (recall §1.1.1), then the energy decreases in time: E(U ; t2) ≤ E(U ; t1) for all 0 ≤ t1 < t2 ≤ T .

This is the case of “passive” boundary surfaces; “active” surfaces have θ < 0 and produce energy.

Remark 4.19: (Limiting amplitude principle). We know from §1.2 that a solution u(x) of a Helmholtz BVP
corresponds to a time-harmonic U(x, t) that solves the wave equation. Can we compute or approximate u by
solving an initial–boundary value problem (IBVP) for the wave equation?
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For instance, if u solves the Dirichlet BVP (35), then U(x, t) = ℜ{u(x)e−iωt} solves the Dirichlet IBVP

1

c2
∂2U

∂t2
(x, t)−∆U(x, t) = ℜ{f(x)e−iωt} in Ω× (0, T ),

U(x, 0) = u0(x) in Ω,

∂U

∂t
(x, 0) = u1(x) in Ω,

U(x, t) = ℜ{gD(x)e−iωt} on ∂Ω× (0, T ).

(39)

with u0 = ℜu and u1 = ωℑu and any choice of T > 0. This is a well-posed problem, but we cannot use it to
find u because the initial conditions u0, u1 require to know u itself.

On the other hand, we can easily check that the solution U of any IBVP in the form (39) can be decomposed
as U = ℜ{u⋆(x)e−iωt}+ Ũ , where the two terms solve

{
−∆u⋆ − k2u⋆ = f in Ω,

u⋆ = gD on ∂Ω,



1

c2
∂2Ũ

∂t2
(x, t)−∆Ũ(x, t) = 0 in Ω× (0, T ),

Ũ(x, 0) = u0(x)−ℜu⋆(x) in Ω,

∂Ũ

∂t
(x, 0) = u1(x)− ωℑu⋆(x) in Ω,

Ũ(x, t) = 0 on ∂Ω× (0, T ).

This means that any wave IBVP solution with time-harmonic data is sum of a time-harmonic term (u⋆) and
a “transient” wave solution (Ũ) generated only by the initial conditions (i.e. with zero source and boundary
conditions). The same argument holds for Neumann or impedance boundary conditions.

Assume that, for some class of initial data, after some time T † the term Ũ “dies out”, i.e. Ũ(x, t) ≈ 0
for t ≥ T †. This means that, after a possibly large time, the value of U depends only on the source and the
boundary data, while the initial data have been “forgotten”. Then, U(x, t) ≈ ℜ{u⋆(x)e−iωt} for t ≥ T † and
u⋆(x) ≈ U(x, 2πjω ) + iU(x, 2πj+π/2ω ) for some j ∈ N with 2πj

ω ≥ T †. So we can compute the Helmholtz
solution u⋆ by solving the IBVP (39) with some choice of u0, u1 (e.g. u0 = u1 = 0), instead of solving the
Helmholtz BVP (35). This is analogous to the convergence in time of solutions of parabolic PDEs with time-
independent sources to solutions of elliptic PDEs (e.g., if −∂V

∂t +∆V = f , γV = g, then limt→∞ V = v with
−∆v = f , γv = g). The fact that wave solutions with time-harmonic sources converge to Helmholtz solutions
for large times is called “ limiting amplitude principle” and is a classical topic in mathematical physics23.

Is this assumption true? For Dirichlet and Neumann problems in bounded domains: no, it is false because
energy is preserved for all times and transient solutions Ũ never decay, as proved in Exercise 4.18. On the
other hand, for problems posed in unbounded domains, such as those that we will consider from §4.3, if the
geometry is “non-trapping”, i.e. no wave can be trapped but they all dissipate towards infinity, then the limiting
amplitude principle holds. The presence of damping, either in the volume as in Exercises 1.5 and 1.14 or in
impedance boundary conditions, is another way to ensure the decay to zero of the transient solution Ũ and
thus the validity of the limiting amplitude principle.

Some numerical methods for approximating Helmholtz BVPs by solving wave IBVPs have been developed,
exploiting efficient time-stepping schemes and enforcing convergence to time-periodic solutions. Two examples
are the “WaveHoltz method”24 and the “controllability method”25.

4.3 Exterior boundary value problems
A typical problem in computational wave propagation is that of scattering. In a scattering problem we
want to compute how a given incoming wave is perturbed by the interaction with an obstacle. Here we
consider only bounded, sound-soft obstacles.

Different physical phenomena intervene in the interaction between a wave and an obstacle: reflection,
diffraction and refraction. When the obstacle is perfectly flat and impenetrable, as in §4.1, the wave is
simply reflected. When the obstacle is not flat but curved or has corners, the wave is also diffracted: this
will be our main concern. When the obstacle is penetrable, the wave is also refracted (recall Remark 1.15).

We fix some notation. Let Ω− ⊂ R2 be a bounded Lipschitz domain, denote Ω+ := R2 \ Ω− and

Γ = ∂Ω−. We will always assume that Ω+ is connected, i.e. Ω− has no holes. We choose the unit normal

23[Morawetz, The limiting amplitude principle, CPAM 1962]
24[Appelö, Garcia, Runborg, WaveHoltz: Iterative solution of the Helmholtz equation via the wave equation, SISC 2020]
25[Grote, Tang, On controllability methods for the Helmholtz equation, JCAM 2019]

https://doi.org/10.1002/cpa.3160150303
https://doi.org/10.1137/19M1299062
https://doi.org/10.1016/j.cam.2019.03.016
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vector field n on Γ that points out of Ω− and into Ω+. We need to take traces of fields defined in Ω−

and in Ω+: for clarity we write γ± and ∂±n for the traces taken from Ω+ and Ω−. If u ∈ H1
loc(R2) then

γ+u = γ−u by Remark 3.15 (and we may write γu); if instead u ∈ H1
loc(Ω− ∪ Ω+) then γ+u and γ−u

might differ. The same holds for the Neumann traces ∂±n and the H1(·; ∆) spaces.

Let uInc be the incoming wave, or incident wave, a given Helmholtz solution which will be the datum

of our scattering problem. We want to find the field uScat scattered by Ω−, that is a Helmholtz solution

in the exterior domain Ω+ and such that γ(uTot) = 0 on Γ, where uTot = uInc + uScat. We see in the
next section that these two conditions are not enough to determine uScat.

4.3.1 Example: scattering by a disc

Let us consider a simple example using separation of variables. Assume that (i) Ω− = BR is the disc
of radius R > 0 centred at the origin, and (ii) the trace of uInc on Γ is a circular harmonic, in polar
coordinates (γ+uInc)(R, θ) = eiℓθ for some ℓ ∈ Z. From §2.3, we know that all fields in the form26

uScatλ (r, θ) = −λ
H

(1)
ℓ (kr)

H
(1)
ℓ (kR)

eiℓθ − (1− λ)
H

(2)
ℓ (kr)

H
(2)
ℓ (kR)

eiℓθ, λ ∈ C, (40)

are Helmholtz solutions in Ω+ and satisfy γ+(uInc + uScatλ ) = 0 on the circle Γ. Which value of λ should
we choose?

The scattered field is produced by the interaction of the obstacle Ω− and the incoming field uInc. So
it should look like a wave propagating away from Ω− towards infinity.

First of all, we would like |u(x)| to decrease to zero for r → ∞ (the further we are from a sound source,
the weaker the sound we hear). In particular if |u(x)|2 ∼ r−1 for r → ∞, then the “energy”

∫
{|x|=R} |u|

2 ds

is bounded for R → ∞. All Fourier–Bessel and Fourier–Hankel functions decay as
√
2/(πkr) for r → ∞,

so this does not help choosing λ. All fields uScatλ in (40) belong to L2
loc(Ω+) and H1

loc(Ω+), but none of
them belongs to L2(Ω+): function spaces do not select the desired λ.

If we plot uScat in a position x very far from Ω−, we expect it to point away from
Ω−, i.e. radially towards infinity. We would like uScat close to x to look like a plane
wave pointing away from Ω−, i.e. in the direction d = x

r :

x d

uScat(x) ≈ Aeikx·
x
r = Aeikr x = (r cos θ, r sin θ).

Here A ∈ C includes the amplitude, proportional to 1√
r
, and the phase of the wave.

We recall that Bessel functions with large arguments can be approximated by the following formulas,
[CK2, (3.105)]:

Jℓ(z) =

√
2

πz
cos
(
z − ℓπ

2
− π

4

)(
1 +O

(1
z

))
, Yℓ(z) =

√
2

πz
sin
(
z − ℓπ

2
− π

4

)(
1 +O

(1
z

))
, z → ∞.

Recalling the relations (23) between Bessel and Hankel functions, we can write the scattered field as

uScatλ (x) ≈ −
√

2

πkr

(
λ
ei(kr−

ℓπ
2 −π

4 +ℓθ)

H
(1)
ℓ (kR)

+ (1− λ)
ei(−kr+

ℓπ
2 +π

4 +ℓθ)

H
(2)
ℓ (kR)

)(
1 +O

( 1

kr

))
. (41)

We see that the H(1)
ℓ term gives a factor eikr, while H(2)

ℓ term gives a factor e−ikr. This means that only
the first component is propagating outward, while the second one is directed towards the origin. So we
want to keep the first term only and choose λ = 1.

Another way to see that the eikr terms are outgoing is to recall the meaning of time-harmonic waves,
as described in §1.2. For u(x) = r−1/2eikr, the time-dependent field (10) is U(x, t) = r−1/2 cos(kr−ωt) =
r−1/2 cos(k(r−ct)) which spreads (in time) radially from the origin. Conversely, ũ(x) = r−1/2e−ikr = u(x)
gives Ũ(x, t) = r−1/2 cos(kr + ωt) = U(x,−t) which moves towards the origin. See also Figure 13 for
another way of reading the direction of propagation of a Fourier–Hankel function.

Exercise 4.20: (Circular wave motion). Using the Matlab code provided, make time-harmonic animations
of different combinations of Fourier–Bessel and Fourier–Hankel functions and observe in which direction they
propagate.

26Here we have chosen the Hankel functions, as opposed to Jℓ and Yℓ, because they are different from 0 for all values of
kR, so we can normalise as written.
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Figure 12: (Ex. 4.21.) Scattering of a plane wave with direction d = (
√
3
2 ,

1
2 ) by a a sound-soft disc with

radius 0.25 at k = 30. Top: scattered field; bottom: total field. We can observe that the uScat field is
strongest in the shadow region, and has phase opposite to uInc, so that uTot is minimal there. In uTot

we see the complicated pattern produced by the interference between uScat and uInc.

For a general uInc, we can expand its trace on the circle Γ in circular harmonics as uInc(R, θ) =∑
ℓ∈Z aℓe

iℓθ. The scattered field and the total field are then

uScat(r, θ) = −
∑
ℓ∈Z

aℓ
H

(1)
ℓ (kr)

H
(1)
ℓ (kR)

eiℓθ, uTot(x) = uInc(x) + uScat(x).

This choice ensures that (i) uScat is Helmholtz solution in Ω+, (ii) γ+uTot = 0 on Γ, and (iii) uScat is made
of outgoing waves only. This expression of the scattered field as combination of Fourier–Hankel functions
is called multipole expansion. In electromagnetics similar expansions are also called “Mie series”.

You can see an example of scattered field computed with this formula in Figure 12 and on the webpage9.

Exercise 4.21: (Scattering of a plane wave by a disc). Let uInc be a plane wave with direction d.
Compute the field scattered by a disc of radius R using Jacobi–Anger formula (25).
Reproduce the plots in Figure 12.
The sum over ℓ ∈ Z has to be truncated at |ℓ| ≤ ℓmax, with ℓmax (slightly) larger than kR. Plot the

magnitude of the coefficients ûℓ in uScat(x) =
∑
ℓ∈Z ûℓH

(1)
ℓ (kr)eiℓθ to justify this choice.

Exercise 4.22: (Scattering of a circular wave by a disc).
1. Using the “Graf’s addition theorem” in [DLMF, eq. 10.23.7], derive the formula

H
(1)
0 (k|x− y|) =

∑
ℓ∈Z

H
(1)
ℓ (k|y|)e−iℓθy Jℓ(k|x|)eiℓθx ∀x,y ∈ R2, |x| < |y|. (42)

Here θx and θy are the angular coordinates of x and y.

2. Let uInc(x) = H
(1)
0 (k|x− y|) be a 0-order Fourier–Hankel function centred at y ∈ R2 \BR, R > 0. Show

that, for this incoming field, the field scattered by the disc BR, is

uScat(r, θ) =
∑
ℓ∈Z

Jℓ(kR) H
(1)
ℓ (k|y|) e−iℓθy

H
(1)
ℓ (kR)

H
(1)
ℓ (kr)eiℓθ r > R.

3. Plot the scattered and the total fields.

https://dlmf.nist.gov/10.23.E7
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Figure 13: How can we see that u(x) = H
(1)
ℓ (kr)eiℓθ moves outwards from its definition? In this figure

we compare the real part (blue continuous lines) and the imaginary part (red dashed line) of these
circular waves for ℓ = 1, 2, 3, 4 and k = 1 along a ray from the origin (0, 0) (left) to the point (50, 0)
(right). We see that the imaginary part is always slightly “ahead” of the real part. Recall Exercise 1.13:
the time-dependent wave U(x, t), after taking value ℜu(x) will take value ℑu(x). From the figures we
see that this means that u is moving from left to right, i.e. from the origin towards infinity.
For comparison, in the first row we see the real and the imaginary parts of a plane wave propagating to
the right.

4.3.2 Sound-soft scattering problems

We have seen how to select “outgoing” waves using the expansion in polar coordinates. How to do the
same when this expansion is not available, namely when Ω− is not a circle?

The radial dependence of all the outgoing terms in the circular wave approximation (41) is 1√
r
eikr

(ignoring high-order terms). Deriving with respect to the radial direction r we have ∂r(
1√
r
eikr) =

ik 1√
r
eikr − 1

2r
−3/2eikr. So, if uScat is a linear combination of H(1)

ℓ (kr)eiℓθ for different ℓs, then it sat-

isfies ∂ruScat − ikuScat = O(r−3/2). On the other hand, the bad terms H(2)
ℓ (kr)eiℓθ satisfy only the

condition with the opposite sign ∂ru + iku = O(r−3/2) (recall that H(2)
ℓ = H

(1)
ℓ ). This suggests the

following classical definition27.

Definition 4.23: (Radiating/outgoing solution). Let u be an H1
loc(R2 \ BR) solution of the Helmholtz

equation in the complement of a ball. We say that u is radiating, or outgoing, if it satisfies the Sommerfeld
radiation condition:

|∂ru− iku| = o(r−1/2) r → ∞. (43)

Sommerfeld condition is meant to hold uniformly in all directions, namely

lim
r→∞

sup
θ∈[0,2π]

√
r
∣∣∂ru(r, θ)− iku(r, θ)

∣∣ = 0.

Since radiating solutions can be expanded in series of Fourier–Hankel functions, Sommerfeld condition (43)
is equivalent (for Helmholtz solutions only) to the apparently stronger condition

∃C,R > 0 such that
∣∣∂ru(r, θ)− iku(r, θ)

∣∣ ≤ Cr−3/2 ∀r > R, θ ∈ [0, 2π].

27For the history of the Sommerfeld radiation condition see [Schot, Eighty years of Sommerfeld’s radiation condition, 1992].

https://doi.org/10.1016/0315-0860(92)90004-U
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Sommerfeld condition also implies that limR→∞
∫
∂BR

|∂ru − iku|2 ds = 0, ∂BR = {x : |x| = R}. The

approximation (41) implies that all linear combinations of H(1)
ℓ (kr)eiℓθ that converge outside of some

ball are radiating. On the the other hand, no H
(2)
ℓ (kr)eiℓθ term is allowed in radiating functions. The

complex-conjugate of a radiating function is not radiating.
A more rigorous derivation of the Sommerfeld radiation condition can be done using the “limiting

absorption principle”: first consider the problem with absorption, i.e. ℑk > 0, where the eikr behaviour
corresponds to solutions decaying towards infinity, then study the limit for ℑk ↘ 0.

We can now define the class of exterior boundary value problems that we will consider in the following.

Definition 4.24: (Exterior Dirichlet problem—EDP). Let Ω− be a bounded Lipschitz domain, k > 0

and gD ∈ H
1
2 (Γ). We say that u ∈ H1

loc(Ω+) satisfies the exterior Helmholtz Dirichlet problem if

∆u+ k2u = 0 in Ω+,

γ+u = gD on Γ,

u is radiating.

(44)

In the language of scattering theory:

Definition 4.25: (Sound-soft scattering problem—SSSP). Let Ω− a bounded Lipschitz domain, k > 0
and uInc is a Helmholtz solution in a neighbourhood of Γ. We say that uScat ∈ H1

loc(Ω+) satisfies the
sound-soft scattering problem if

∆uScat + k2uScat = 0 in Ω+,

γ+(uScat + uInc) = 0 on Γ,

uScat is radiating.

(45)

The sound-soft scattering problem is an exterior Dirichlet problem with u = uScat and gD = −γ+uInc.
We will see in §4.4 that problems (44) and (45) are well-posed.

Ω−
Sommerfeld

radiation condition
∂ru

Scat−ikuScat=o(r−1/2)
∆uScat + k2uScat = 0

Ω+

γ+(uScat + uInc) = 0 on ΓuInc

uScat

uScat

n

Figure 14: Diagram of the sound-soft scattering problem (45).

In Definition 4.25 we have assumed that uInc is defined only in a neighbourhood of the scatterer’s
boundary. If the incoming wave is a plane wave, then of course it is defined in the whole of R2, but
this definition allows to include more realistic incoming waves such as “point sources”, i.e. Fourier–Hankel
functions centred at some point of Ω+.

The EDP and the SSSP are defined and analysed in details in, e.g., [CK2, §3.2]. However, [CK2]
focuses on the 3D case (so the powers of r in the Sommerfeld condition are different) and Cm spaces
rather than Sobolev spaces; the 2D case is described more briefly in [CK2, §3.5].

Besides the EDP (44), one can define exterior Neumann and impedance BVPs, by simply replacing
the boundary condition on Γ. The Sommerfeld radiation condition, being related to the field behaviour
far from the scatterer, is unaffected.
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Figure 15: Scattering of a plane wave with direction d = ( 12 ,
√
3
2 ) by a sound-soft triangle. Here k = 20

(so λ = π
10 ), the cathetus of the triangle has length 1 and the fields are plotted on a square of side 3.

4.3.3 Remarks and exercises on scattering problems

Remark 4.26: (Truncated problems). Often one does not want to deal with BVPs posed on unbounded
domains such as in Definition 4.25, for example because one wants to approximate the solution with a finite
element method. A possibility to reduce this problem to one posed on a bounded domain is to choose a
large ball BR (or a different shape) with Ω− ⊂ BR and solve a Helmholtz BVP on the truncated domain
BR ∩ Ω+. On Γ we impose the Dirichlet condition as above. On the artificial boundary ΓR = ∂BR one has
to impose some artificial boundary condition that mimics the Sommerfeld radiation condition. The simplest
choice is to choose impedance conditions ∂ruScat− ikuScat = 0 (compare with (43)). Many more efficient and
more complicated boundary conditions exist. They are called absorbing, non-reflecting, radiation, generalised-
impedance boundary conditions (ABC, NRBC, GIBC. . . ); a related concept is that of perfectly matched layer
(PML). The quality of an artificial boundary condition depends on the ability to absorb the waves coming from
the domain and to not reflect them back. See some examples in [Ihlenburg98, Ch. 3].

Remark 4.27: (Far-field pattern). It is possible to prove (e.g. [CK2, eq. (3.109)]) that if u is a radiating
Helmholtz solution, then it satisfies

u(x) =
eikr√
r

(
u∞(θ) +O(r−1)

)
for r = |x| → ∞, (46)

for a function u∞ ∈ C∞(S1) (recall that S1 is the unit circle, and that θ denotes the angular polar coordinate
of x). This means that, up to factoring out the phase factor eikr and the decay factor 1√

r
, when we move
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Poynting vector S(uScat), k=30
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Figure 16: The Poynting vectors S(uScat) for the scattering problems in Figures 12 and 15. See Exer-
cise 2.15.

towards infinity along a straight line in the direction θ, a radiating field converges to a given value u∞(θ). The
function u∞ is called far-field pattern. If u is defined in Ω+ and admits Dirichlet and Neumann traces on Γ,
the far-field pattern can be computed using the formula

u∞(θ) =
ei

π
4

√
8πk

∫
Γ

(
γ+u(y)∂+n e−iky·d − ∂+n u(y)e

−iky·d
)
ds(y) d = (cos θ, sin θ). (47)

The far-field pattern is one of the main quantities of interest in remote-sensing applications, for example to
quantify the amount of radiation “backscattered” by an obstacle when it is hit by a wave. In electromagnetics,
the “radar cross section” (RCS), which measures e.g. how stealth is an aircraft, is proportional to the logarithm
of the magnitude of the far-field of the scattered electric field. You can see the far-field pattern of the wave
scattered by a triangle in Figure 17.
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Figure 17: Some polar logarithmic plots (Matlab’s polarplot command) of the magnitudes of far-
field patterns log10 |u∞|. In this scattering problem, a plane wave with direction π

3 hits a sound-soft
triangular scatterer with vertices (0, 0), (1, 0) and (0, 1), as in Figure 15. Each plot corresponds to a
different wavenumber (k = 5, 10, 20, 40): for increasing frequencies the far field becomes more complex
and focused in few directions. The far-field pattern has maximal intensity in the direction π

3 of the
incoming wave (up right), where the triangle projects its shadow. Two other peaks are in directions
−π

3 and 2π
3 , corresponding to the wave reflected by the two illuminated sides. The field in all other

directions is due to the diffraction by the corners. The far-field patterns were computed numerically
with the BEM described in §5.2. The values −min0≤θ<2π log10 |u∞(θ)| (i.e. the values 0.641, . . . , 1.13
in the figure titles) have been added to log10 |u∞(θ)| to ensure that the curves are positive.
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Exercise 4.28: (Far-field pattern of a plane wave scattered by a disc). Compute (as a circular harmonic
expansion) and plot with Matlab the far-field pattern of the field scattered by a disc hit by a plane wave. Use
the Fourier expansion computed in Exercise 4.21. Study how the far-field pattern vary with k, R and the
propagation direction of uInc. Denote u∞(θ, ξ) the far-field for uInc(x) = eik(x1 cos ξ+x2 sin ξ): can you find any
symmetry between the two angles? See [CK2, Thm. 3.23].

Exercise 4.29: (Phased array). The far-field pattern u∞ can be computed for any radiating Helmholtz
solution u, non only for solutions of an EDP. Formula (47) can be applied taking as Γ any boundary such that
u is a radiating Helmholtz solution in the region exterior to it. For instance, Γ can be taken as a circle ∂BR
with sufficiently large radius.

Compute and plot the far-field pattern generated by the phased array u(x) =
∑J
j=1 e

iβjH
(1)
0 (k|x− xj |),

for a phase shift β and a set of aligned sources (e.g. xj = (− 1
2 + j

J , 0) on the segment [(− 1
2 , 0), (

1
2 , 0)]). Plot

also the near field u(x) (see also the course page9). Observe how the phase shift β steers the direction of the
emitted wave. What is the effect of the source spacing |xj+1 − xj |/λ?

Phased arrays are used for beam forming: to emit strong (electromagnetic, usually) waves in any desired
direction without moving the antenna. This is routinely used in wi-fi routers, 5G antennas, radar, sonar, and
ultrasound imaging.

Exercise 4.30: (Poynting vector of radiating solutions). Show that the radial component of the Poynt-
ing vector S(u) in (26) of a non-zero radiating Helmholtz solution satisfies (S(u))(x) · x

r = |u(x)|2 +
1
kℑ{u(x)O(r−3/2)} for r = |x| → ∞.

Remark 4.27 shows that |u(x)| ∼ r−1/2 for r → ∞, as we could expect from the large-argument asymptotics
(24) of Bessel and Hankel functions.

Deduce that, for large arguments, the Poynting vector (and so the energy flow of radiating solutions) points
“outwards” towards infinity. See the examples in Figure 16.

Remark 4.31: (Direct and inverse scattering). The SSSP is a direct scattering problem: we know the
incoming wave, we know the obstacle, we want to compute the scattered field. In applications (such as medical
imaging, oil retrieval, seismic and atmospheric remote sensing, fault detection in materials, radar and sonar. . . )
it is very important to consider also inverse scattering problem: given the scattered field or the far-field (typically
from measurements), one wants to compute the obstacle and/or the incoming wave. Inverse problems are ill-
posed and much harder than direct ones, both theoretically and computationally. Most numerical methods for
the approximation of inverse problems require the numerical solution of many direct problems: this is one of
the main motivations for the study of efficient methods to simulate direct scattering problems. Most of the
book [CK2] is devoted to inverse scattering problems.

Remark 4.32: (Radiation conditions in 3D, electromagnetism and elasticity). In three space dimensions,
the Sommerfeld condition requires a slightly faster decay of u: |∂ru− iku| = o(r−1), r → ∞, [CK2, Def. 2.4].
The limit limR→∞

∫
{|x|=R} |∂ru− iku|2 dS = 0 is equivalent to the Sommerfeld condition both in 2D and in

3D, [CK2, p. 23].
A pair (E,H) that solves the time-harmonic Maxwell’s equations (13) (with σ = 0) in the complement of a

bounded domain of R3 is outgoing if it satisfies one of the Silver–Müller radiation conditions [CK2, Def. 6.6]:

lim
r→∞

|H× x− rE| = 0 or lim
r→∞

|E× x+ rH| = 0.

This is equivalent to assuming that all the Cartesian components (which are Helmholtz solutions) of the fields
E,H satisfy the Sommerfeld condition, [CK2, Thm. 6.8].

A displacement field u that solves Navier’s equations (18) in the complement of a bounded domain is
outgoing if it satisfies the Kupradze condition: the scalar and vector potentials χ and ψ of (19) satisfy
the Sommerfeld condition with wavenumber kP and kS , respectively, [Martin06, §1.5.1]. So all Cartesian
components of radiating pressure and shear waves are radiating Helmholtz solutions.

Given a bounded Lipschitz domain in R3, one can define exterior boundary value problems for acoustic,
electromagnetic, and elastic waves, by imposing the corresponding PDE, a suitable boundary condition (one of
those seen in §1), and the appropriate radiation condition.
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Remark 4.33: (TE and TM modes in electromagnetic scattering). We have see in Remark 1.22 and
Exercise 1.23 that, in the presence of translational symmetry, the 3D Maxwell equations reduce to the 2D
Helmholtz equation. Here we describe a similar situation, but considering scattering as opposed to propagation
along a waveguide.

Given Ω−,Ω+,Γ,n as above, let Ω̃− := Ω− × R, Ω̃+ := Ω+ × R, Γ̃ := Γ × R be subsets of R3,
and ñ := (n1, n2, 0). Assume that Ω̃− is a perfect electric conductor (imagine a straight metal cable or
structure with constant section) hit by a time-harmonic electromagnetic wave (EInc,HInc) propagating the in
the homogeneous medium Ω̃+, and assume that this is non-conductive, i.e. σ = 0. This generates a scattered
field (EScat,HScat) in Ω̃+. The PEC condition is (EInc+EScat)× ñ = 0 on Γ̃. If the incoming field propagates
in the (x1, x2)-plane, meaning that it is independent of x3, by translation symmetry the same is true for the
scattered field. We consider two cases, see Figure 18.

TE mode

x2

x3

x1

Ω̃−
EInc

HInc

EScat

HScat

TM mode

x2

x3

x1

Ω̃−
HInc

EInc

HScat

EScat

Figure 18: Scattering of TE and TM fields by an infinite cylinder, see Remark 4.33.

If the electric field is parallel to the x3 axis, i.e. EInc(x) = (0, 0, uInc(x1, x2)), let uScat be the solution
of the SSSP (45) for the 2D Helmholtz equation. Then EScat(x) = (0, 0, uScat(x1, x2)) and HScat(x) =
1

iωµ curlEScat(x) = 1
iωµ (

∂uScat

∂x2
,−∂uScat

∂x1
, 0) solve the Maxwell equations (13) in Ω̃+, and satisfy the PEC

condition on Γ̃. This is called a TE (transverse electric) mode because the electric field is perpendicular to the
(x1, x2)-plane.

Instead, if the magnetic field is parallel to the x3 axis, i.e. HInc(x) = (0, 0, uInc(x1, x2)), we compute from
Maxwell equations (13) and the definitions of the curl and the vector product

EInc × ñ = − 1

iωϵ
curlHInc × ñ = − 1

iωϵ

(
∂uInc

∂x2
,−∂u

Inc

∂x1
, 0

)
× (n1, n2, 0)

= − 1

iωϵ

(
0, 0,

∂uInc

∂x2
n2 +

∂uInc

∂x1
n1

)
= − 1

iωϵ
(0, 0, ∂nu

Inc).

So letting uScat be the solution of the 2D Helmholtz exterior Neumann problem in Ω+ with datum −∂nuInc

on Γ, the fields EScat = − 1
iωϵ (

∂uInc

∂x2
,−∂uInc

∂x1
, 0), HScat = (0, 0, uScat) solve the Maxwell equations in Ω̃+ with

PEC conditions on Γ̃. This is a TM (transverse magnetic) mode.
Note that the TE/TM naming is apparently reversed from the waveguide case in Remark 1.22. There TE

and TM modes were computed by solving Helmholtz BVPs with Neumann and Dirichlet boundary conditions,
respectively, while here the boundary conditions are swapped. This is because of the different meaning given
to the word “transverse”. In the waveguide case (16), we call “transverse” the field that is perpendicular to the
waveguide itself (so in the plane where we solve the Helmholtz equation). In the present scattering case, the
transverse field is perpendicular to the plane where we solve the Helmholtz equation.

Remark 4.34: (The multipole method: scattering by several discs). In general, we cannot compute
analytically the solution of a scattering problem, so we resort to numerical methods: this is what we do in
§5.2. Thanks to separation of variables in polar coordinates, a simple exception is the case when the scatterer
is a disc, as we have seen in §4.3.1. A more complicated case that allows separation of variables is when the
scatterer is an ellipse [Martin06, §2.9]. Here we study the intermediate case of the union of a finite number
of disjoint discs, for which we can compute the solution “semi-analytically”: truncating an exact expansion,
solving a linear system, but without discretisations.
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Define J ∈ N discs Bj := BRj
(Oj), j =

1, . . . , J , with radii Rj > 0 and centres Oj ∈ R2.
Denote Dj,j′ := |Oj′ −Oj | the mutual distances
between the centres, and assume that the disc clo-
sures are disjoint, namely Dj,j′ > Rj +Rj′ .

Let the scatterer be Ω− :=
⋃
j=1,...,J Bj .

We use a system of polar coordinates (rj , θj)
associated to each disc: for any point x ∈ R2 we
have x = Oj + (rj cos θj , rj sin θj).

We also denote by θj,j′ the angular polar co-
ordinate of Oj′ with respect to Oj : Oj′ −Oj =
(Dj,j′ cos θj,j′ , Dj,j′ sin θj,j′).

O1
R1

θ1
θ1,2

B1

O2 R2

θ2

θ2,1

B2

x

r1

r2

D1,2

Notation for multiple scattering:
an example with J = 2.

Assuming for simplicity that the incoming field is a plane wave, we expand it in the local polar coordinate
systems using the Jacobi–Anger formula (25):

uInc(x) = eikd·x = eik(cosφ,sinφ)·x = eikd·Oj

∑
ℓ∈Z

iℓJℓ(krj)e
iℓ(θj−φ), j = 1, . . . , N.

It can be proved that the scattered field is a sum of multipole expansions, one for each disc:

there exist cj,ℓ ∈ C such that uScat(x) =
J∑
j=1

∑
ℓ∈Z

cj,ℓ
H

(1)
ℓ (krj)e

iℓθj

H
(1)
ℓ (kRj)

∀x ∈ Ω+. (48)

Provided the series converges appropriately, a function in this form is a radiating Helmholtz solution in Ω+.
We have normalised the expansions dividing by H(1)

ℓ (kRj) in such a way that the term multiplied to each cj,ℓ
has absolute value equal to 1 on ∂Bj .

The fundamental result relating multipole expansions with different centres is Graf’s addition theorem
[Martin06, Thm. 2.12, eq. (2.25)], [DLMF, eq. 10.23.7] (more general than (42)), which, in our notation, is:

H
(1)
ℓ (krj)e

iℓθj =
∑
ℓ′∈Z

H
(1)
ℓ−ℓ′(kDj,j′)e

i(ℓ−ℓ′)θj,j′ Jℓ′(krj′)e
iℓ′θj′

j ̸= j′ ∈ {1, . . . , J}, ℓ ∈ Z,
x ∈ R2 such that rj′ < Dj,j′ .

This formula can be thought as the expansion of (a Fourier component of) the field outgoing from the disc
Bj , “seen from” the disc Bj′ , i.e. in terms of circular waves Jℓ′(krj′)eiℓ

′θj′ centred at Oj . Thanks to the
disjointness Bj ∩Bj′ = ∅, the condition rj′ < Dj,j′ is satisfied for x ∈ ∂Bj′ , in which case rj′ = Rj′ .

Imposing the Dirichlet condition uScat = −uInc on each circle ∂Bj∗ , expanding uScat = −uInc in sum of
Fourier modes eiℓ

∗θj∗ on ∂Bj∗ , and setting the ℓ∗-th Fourier coefficient to zero, one obtains the relations:

cj∗,ℓ∗ +
∑
j ̸=j∗

∑
ℓ∈Z

cj,ℓ
H

(1)
ℓ−ℓ∗(kDj,j∗)e

i(ℓ−ℓ∗)θj,j∗ Jℓ∗(kRj∗)

H
(1)
ℓ (kRj)

= −iℓ
∗
eikd·OjJℓ∗(kRj∗)e

−iℓ∗φ ∀j∗ = 1, . . . , J,
ℓ∗ ∈ Z.

(49)

This is an infinite linear system of equations in the unknowns (cj,ℓ)j=1,...,J; ℓ∈Z. Its infinite matrix can be
partitioned in J × J infinite blocks, and each diagonal block (representing the self-interaction of a single disc)
is the infinite identity matrix.

Truncating the infinite sums in the expansion (48), the system (49) becomes a finite linear system, whose
solution is a finite coefficient vector c = (cj,ℓ)j=1,...,J; |ℓ|≤Lj

∈ C
∑J

j=1(2Lj+1). In Figure 19 we see an example
of an SSSP solved in this way.

Graf’s addition theorem can be extended to three dimensions, electromagnetic and elastic waves, [Martin06,
Ch. 2–3]. The technique presented in this remark is an example of the multipole method, which is the subject
of [Martin06, Ch. 4], where sound-hard problems in 2 and 3 dimensions, electromagnetic and elastic waves are
considered. The first instance of this method, for transmission problems, is due to Záviška28.

Problems involving several well-separated non-circular scatterers can profit from this technique: one can
approximate the scattering solution operator for each scatterer with a numerical method, and combine them in
a global system using the addition theorem. This is the basic idea of the T-matrix method [Martin06, Ch. 7].

Several videos of scientific talks given in Cambridge in 2023 on the broad topic of multiple scattering can
be found at https://www.newton.ac.uk/event/mws/

28[Záviška, Über die Beugung elektromagnetischer Wellen an parallelen, unendlich langen Kreiszylindern, 1913]

https://dlmf.nist.gov/10.23.E7
https://www.newton.ac.uk/event/mws/
https://doi.org/10.1002/andp.19133450511
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Scattering by 12 discs, k = 10, number of Fourier coe/cients = 780
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Figure 19: The scattering of a plane wave with direction d = (1, 1)/
√
2 and wavenumber k = 10 by

12 discs of radius R = 0.15, with centres equispaced on the unit circle. The scattered field has been
computed by solving a truncation (at |ℓ| ≤ 32) of the infinite linear system (49); see also Exercise 4.35.
The upper right plot shows the magnitude |cj,ℓ| of the Fourier coefficients in the multipole expansion
(48); note the exponential decay for large |ℓ| in the semilog scale.
The lower right plot shows the trace of ℜ{uScat} on the boundary of each circle; due to symmetry only
6 curves are visible.
This example models a Faraday cage: disjoint sound-soft obstacles (equipotential perfect electric con-
ductor cylinders in the TE-mode interpretation of the SSSP as in Remark 4.33) shield an incoming
electromagnetic wave.

Exercise 4.35: (Implementation of multiple scattering by discs). Implement numerically the procedure
described in Remark 4.34.
• Derive the infinite system of equations (49).

• Write this system in block form.

• Implement a truncation of the system (49) and solve it. Then use the coefficients cj,ℓ to compute and plot
uScat and uTot in a portion of Ω+, using the truncated (48).

A cautious way to truncate the expansion is to keep the terms with |ℓ| ≤ ⌈kRj⌉ + 30 for each Bj . In
the example of Figure 19, with this rule all truncated coefficients have magnitude below machine precision.
With the normalisation used in (48), it is enough to look at the computed coefficients (as in the upper right
plot of Figure 19) to understand if the truncation error committed is acceptable.

• To test the correctness of your implementation, compute the trace of uScat on Γ and compare it with the
plane wave −uInc.
In the example in the figure, the ratio ∥uTot∥L2(Γ)/∥uInc∥L2(Γ) for the numerical result is of the order 10−15.

Careful: for a given disc Bj , uScat|∂Bj
does not depend on the cj,ℓ only, but also on the other cj′,ℓ.

• Replicate the Faraday-cage example in Figure 19.

• Replicate a setting such as that in https://people.maths.ox.ac.uk/trefethen/10helmholtz.pdf

Here a plane wave hits two circular arrays of small discs: one of them shields the field, the other generates
a quasi-resonance and amplifies the field in its interior. The two circles differ only in their radius. To
obtain the quasi-resonance you have to tune carefully the radius of the circle (or the wavenumber); a simple
numerical optimisation can help.

https://people.maths.ox.ac.uk/trefethen/10helmholtz.pdf
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4.4 Well-posedness of the exterior Dirichlet problem (EDP)
The most common proof that the EDP (44) is well-posed relies on properties of BIOs and BIEs, e.g.
[CK1, Thm. 3.21] and [CK2, Thm. 3.11]. Here instead we prove the well-posedness using a variational
formulation on a truncated domain and the “DtN map”. However, both proofs rely on the same main
tools: Fredholm theory and a “Rellich lemma”, which ensures uniqueness.

4.4.1 DtN map

Let R > 0 be the radius of an open ball BR centred at the origin such that Γ ⊂ BR. We define the operator
DtN, which acts on functions defined on ∂BR by multiplying each terms in their Fourier expansion by the
ratio of the radial derivative of the corresponding Fourier–Hankel function and the value of the Fourier–
Hankel function itself:

DtN(v) = DtN
(∑
ℓ∈Z

v̂ℓe
iℓθ
)
=
∑
ℓ∈Z

Tℓv̂ℓe
iℓθ, for Tℓ :=

kH
(1)
ℓ

′
(kR)

H
(1)
ℓ (kR)

. (50)

This operator is called Dirichlet-to-Neumann (DtN) map or capacity operator (see [Nédélec01,
(2.6.92)] for the 3D version).

If u is a radiating solution in Ω+, then in R2 \BR it can29 be expanded as u(x) =
∑
ℓ∈Z aℓH

(1)
ℓ (kr)eiℓθ.

Then its traces on ∂BR are

γ+∂BR
u =

∑
ℓ∈Z

aℓH
(1)
ℓ (kR)eiℓθ and ∂+nBR

(u) =
∑
ℓ∈Z

aℓkH
(1)
ℓ

′
(kR)eiℓθ thus DtN(γ+∂BR

u) = ∂+nBR
(u).

In words: the DtN operator maps the Dirichlet trace (on ∂BR) of a radiating solution to its
Neumann trace (on ∂BR).

From the formulas ([DLMF, §10.6(i) and eq. 10.19.2]) for the derivative and the large-index asymptotics
of the Hankel functions

H
(1)
ℓ

′
(z) =

H
(1)
ℓ−1(z)−H

(1)
ℓ+1(z)

2
, H

(1)
ℓ (z) ∼ −i

√
2

π

( 2

ez

)ℓ
ℓℓ−

1
2 for ℓ→ ∞

we have

Tℓ = k
H

(1)
ℓ−1(kR)−H

(1)
ℓ+1(kR)

H
(1)
ℓ (kR)

∼ k
(ekR

2ℓ
− 2ℓ

ekR

)
= O(ℓ) ℓ→ ∞.

From the definition of the fractional norms (28) on the circle we have that DtN is continuous as an operator
DtN : Hs(∂BR) → Hs−1(∂BR) for any s ∈ R: for some C > 0,

∥DtNv∥2Hs−1(∂BR) = 2π
∑
ℓ∈Z

|v̂ℓ|2 |Tℓ|2︸︷︷︸
∼ℓ2

(1 + ℓ2)s−1 ≤ C
∑
ℓ∈Z

|v̂ℓ|2(1 + ℓ2)s ≤ C ∥v∥2Hs(∂BR) .

4.4.2 Truncated problem

The EDP (44) is equivalent to the following problem on the
truncated domain ΩR := BR ∩ Ω+:

∆u+ k2u = 0 in ΩR,

γu = gD on Γ,

DtN(γu)− ∂nu = 0 on ∂BR.
(51)

Γ
Ω−

ΩR = BR ∩ Ω+

∂BR

n

n

The last condition on the exterior boundary ∂BR is equivalent to the Sommerfeld radiation condition.
To write this BVP as a variational problem we define the space H1

0,R(ΩR) := {u ∈ H1(ΩR) : γu = 0 on Γ}
(the H1 functions whose trace vanishes on the interior boundary Γ but not necessarily on ∂BR).

29We haven’t proved that all radiating solutions can be expanded in Fourier–Hankel series; see [CK1, Thm. 3.6] for a proof
(in the 3D case) which relies on Green’s representation (which we will see later). This is called Atkinson–Wilcox expansion.

https://dlmf.nist.gov/10.6i
https://dlmf.nist.gov/10.19E2
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From the surjectivity of the trace operator (Theorem 3.10) there exists a lifting uD ∈ H1(ΩR) such
that γ+uD = gD; it is possible to choose uD ∈ H1(ΩR; ∆) (e.g. by solving an auxiliary Laplace BVP). If
we can solve the problem

∆u0 + k2u0 = −f in ΩR,

γu0 = 0 on Γ,

DtN(γu0)− ∂nu0 = gR on ∂BR,
f := −∆uD − k2uD, gR := −DtN(γuD) + ∂nuD,

then u = uD + u0 would solve (51). (We could also choose uD such that gR = 0.) Using Green’s first
identity it is easy to deduce a variational problem for u0:

find u0 ∈ H1
0,R(ΩR) such that AR(u0, w) = FR(w) ∀w ∈ H1

0,R(ΩR) where (52)

AR(u0, w) :=

∫
ΩR

(∇u0∇w − k2u0w) dx−
∫
∂BR

(DtNγu0)(γw) ds,

FR(w) :=
∫
Ω

fw dx−
∫
∂BR

gRγw ds.

Using the continuity of the trace operator (γ : H1
0,R(ΩR) → H

1
2 (∂BR)) and the DtN map (DtN :

H
1
2 (∂BR) → H− 1

2 (∂BR)) we deduce the continuity of AR and FR in H1
0,R(ΩR).

30

4.4.3 Gårding inequality

We first look at the real part of the boundary sesquilinear form associated to DtN: for all v(x) =∑
ℓ∈Z v̂ℓe

iℓθ ∈ H
1
2 (∂BR) we have

ℜ
∫
∂BR

(DtNv)v ds(x) = R ℜ
∫ 2π

0

(∑
ℓ∈Z

Tℓv̂ℓe
iℓθ
)(∑

ℓ∈Z
v̂ℓe

−iℓθ
)
dθ = 2πR

∑
ℓ∈Z

|v̂ℓ|2ℜ{Tℓ}.

For any complex-valued differentiable function f of a real variable we have

ℜ
{f ′(t)
f(t)

}
= ℜ

{f ′(t)f(t)
|f(t)|2

}
=
f ′(t)f(t) + f ′(t)f(t)

2|f(t)|2
=

1

2|f(t)|2
∂
(
f(t)f(t)

)
∂t

=
1

2|f(t)|2
∂(|f(t)|2)

∂t
.

Choosing f(r) = H
(1)
ℓ (kr) we have

ℜ{Tℓ} = ℜ
{f ′(R)
f(R)

}
=

1

2|H(1)
ℓ (kR)|2

∂(|H(1)
ℓ (kr)|2)
∂r

∣∣∣∣
r=R

< 0

since the absolute value of the Hankel function is monotonically decreasing. Combining all these ingredients
we see that the sesquilinear form satisfies a Gårding inequality:

ℜ{AR(w,w)} =

∫
ΩR

(|∇w|2 − k2|w|2) dx−ℜ
∫
∂BR

(DtNγw)γw ds

= ∥∇w∥2L2(ΩR)2 − k2 ∥w∥2L2(ΩR) − 2πR
∑
ℓ∈Z

|ŵℓ|2 ℜ{Tℓ}︸ ︷︷ ︸
≤0

≥ ∥∇w∥2L2(ΩR)2 − k2 ∥w∥2L2(ΩR) = ∥w∥2H1(ΩR) − (k2 + 1) ∥w∥2L2(ΩR) ,

where we have expanded (γw)(θ) =
∑
ℓ∈Z ŵℓe

iℓθ on ∂BR. Moreover, H1
0,R(ΩR) is compactly embedded

in L2(ΩR). From Corollary 3.20 we have that if the homogeneous version of the variational problem (52)
(find u0 ∈ H1

0,R(ΩR) such that AR(u0, w) = 0 for all w ∈ H1
0,R(ΩR)) admits only the trivial solution

u0 = 0, then (52) is well-posed for any right-hand side.
30For a detailed analysis of the truncated problem (52), and in particular its stability and the dependence on the wavenum-

ber, see [Chandler–Wilde, Monk, Wave-number-explicit bounds in time-harmonic scattering, SIMA 2008].

https://doi.org/10.1137/060662575
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4.4.4 Uniqueness

We first prove the following important result, [CK1, Thm. 3.12].

Theorem 4.36: (Rellich’s lemma). Let u be a radiating Helmholtz solution in Ω+.

If ℑ
∫
∂BR

∂nu γuds ≤ 0, then u = 0 in Ω+.

Proof. As before, we assume that u admits a Fourier–Hankel expansion u =
∑
ℓ∈Z ûℓe

iℓθH
(1)
ℓ (kr), [CK1,

Thm. 3.6]. With this normalisation, on ∂BR we have

ℑ
∫
∂BR

∂nu γuds = R ℑ
∫ 2π

0

(∑
ℓ∈Z

ûℓe
iℓθkH

(1)
ℓ

′
(kr)

)(∑
ℓ∈Z

ûℓe
−iℓθH

(1)
ℓ (kr)

)
dθ

= 2πR
∑
ℓ∈Z

|ûℓ|2ℑ{kH(1)
ℓ

′
(kR)H

(1)
ℓ (kR)}

= 2πR
∑
ℓ∈Z

|ûℓ|2k
(
Y ′(kR)J(kR)− Y (kR)J ′(kR)

)
= 2πR

∑
ℓ∈Z

|ûℓ|2
2

πR
= 4

∑
ℓ∈Z

|ûℓ|2 ≥ 0,

from the Wronskian identity [DLMF, eq. 10.5.2]. Since all terms in the series are positive, if the series is
≤ 0 then it is 0 and ûℓ = 0 for all ℓ ∈ Z, so u = 0.

If we choose u0 to be the solution of the homogeneous variational problem (52) with FR = 0, then

0 = ℑ{FR(u0)} = ℑ{AR(u0, u0)} = −ℑ
∫
∂BR

(DtNγu0)γu0 ds = −ℑ
∫
∂BR

∂nu0 γu0 ds

and u0 = 0 by Rellich’s lemma 4.36.

We can now complete the proof of the well-posedness. The homogeneous variational problem ((52)
with FR = 0) admits only the trivial solution u0 = 0 (§4.4.4) and its sesquilinear form satisfies a Gårding
inequality (§4.4.3). By Corollary 3.20 the problem (52) is well-posed for all f and gR. Thanks to the
equivalence with (51), also the EDP (44) and the special case of the SSSP (45) are well-posed.

https://dlmf.nist.gov/10.5.E2
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5 Boundary integral equations and the boundary ele-
ment method

5.1 Single-layer potential, operator and the first BIE
We define the 2D Helmholtz fundamental solution:

Φk(x,y) :=
i

4
H

(1)
0 (k|x− y|), x ̸= y ∈ R2. (53)

As a function of x, this is a radiating Fourier–Hankel function of order 0 centred at y. It is a smooth
Helmholtz solution in R2\{y} and has a singularity at y. The roles of x and y are symmetric. It represents
the field produced by a point source located in y. The value of Φk(x,y) only depends on the distance
|x − y| between the arguments (more precisely: it depends on the number of wavelengths contained
in that distance: |x−y|

λ = k|x−y|
2π ). When the arguments x,y approach one another, the fundamental

solution blows up logarithmically; more precisely, from the small-argument asymptotics of the Hankel
function [DLMF, eq. 10.8.2] and the smoothness of J0 (equivalently, [CK2, eq. (3.107)]), one can show
that

Φk(x,y) = − 1

2π
log(k|x− y|) +R(|x− y|) for a function R ∈ C1(R). (54)

We will see in Exercise 5.24 that the normalisation factor i
4 in (53) gives that, for all y ∈ R2, ∆Φk(·,y)+

k2Φk(·,y) = δy, in the sense of distributions, where δy is the Dirac delta centred at y. Moreover this
coefficient will allow to write a simple Green’s integral representation in §5.3.

Any linear combination
∑
j ψjΦk(·,yj) of fundamental solutions centred at points y ∈ Ω− satisfies

the Helmholtz equation in Ω+ and is radiating.31 We can also take a continuous linear combination of
fundamental solutions, which we write as

(Sψ)(x) :=
∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Ω+, (55)

where ψ is a function on Γ. We can think at ψ as the density of acoustic sources32 generating the field
Sψ. The function x 7→ Φk(x,y)ψ(y) belongs to C∞(Ω+) for any given y ∈ Γ. Thus, by the differentiation
under integral sign theorem, the function Sψ belongs to C∞(Ω+), is radiating and is a solution of the
Helmholtz equation, [CGLS12, Thm. 2.14]. The operator S is called (acoustic) single-layer potential or,
sometimes, simple-layer potential. It is possible to prove that the single-layer potential is continuous
as a mapping S : H− 1

2 (Γ) → H1
loc(Ω+), [CGLS12, Thm. 2.15].

This suggests to look for a solution of the EDP (44) in the form u(x) = (Sψ)(x) for some “density” ψ.
But, how can we find ψ? We need to relate Sψ to the boundary condition.

We first introduce the single-layer operator S:

(Sψ)(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Γ. (56)

The only difference between the single-layer potential S and operator S is that the former is evaluated
in points off the boundary, and the latter on the boundary Γ. When ψ ∈ C0(Γ), then the evaluation
of (Sψ)(x) is the integral of a continuous function. On the other hand, no matter the regularity of ψ,
the evaluation of (Sψ)(x) is a singular integral, because of the singularity of Φk(x,y) at x = y. The
single-layer operator is a first example of boundary integral operator (BIO), in particular it is a
weakly singular integral operator, as the singularity of Φk is logarithmic.

31This suggests a numerical method consisting in choosing N points y1, . . . ,yN ∈ Ω− and in searching the coefficients
ψ1, . . . , ψN that minimise

∥∥∥∑N
j=1 ψjΦk(·,yj)− gD(·)

∥∥∥
L2(Γ)

(or some other norm on Γ). This is a well-known scheme called

the method of fundamental solutions (MFS), see e.g. [Barnett, Betcke, Stability and convergence of the method of
fundamental solutions for Helmholtz problems on analytic domains, JCP 2008]. It is simple to code and can give extremely
good accuracy but has some drawbacks: it is very sensitive with respect to the location of the poles yj , the minimisation
generally leads to ill-conditioned linear systems, it struggles to approximate solutions for scatterers with corners, it is not
easily extended to 3D and does not have a complete stability and convergence theory. The lightning method is a modern
variant of the MFS, extremely effective at approximating the solution singularities at the scatterer corners, see [Ginn,
Trefethen, Lightning Helmholtz solver, arXiv:2310.01665, 2023].

32The terminology (“potential”, “layer”, “density”, . . . ) comes from electrostatics, i.e. the Laplace equation case k = 0. In
this case ψ represents the surface density of electric charges generating, by Coulomb’s law, the electrostatic potential Sψ.
For a simple and very brief summary see https://cims.nyu.edu/~oneil/courses/sp19-math2840/electrostatics.pdf

https://dlmf.nist.gov/10.8.E2
https://doi.org/10.1016/j.jcp.2008.04.008
https://doi.org/10.1016/j.jcp.2008.04.008
https://arxiv.org/abs/2310.01665
https://cims.nyu.edu/~oneil/courses/sp19-math2840/electrostatics.pdf
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The next proposition shows that the Dirichlet trace operator relates S and S. This fact seems obvious
from the definitions (55)–(56) of single-layer potential and operator, but its justification requires some
care because of the singularity of the fundamental solution Φk, which appears in the definition of S and S.
We will see in §5.4 (equation (76)) another boundary integral potential/operator pair defined by similar
formulas, where the operator is not the trace of the potential.

Proposition 5.1: (S = γ+S). The Dirichlet trace of the single-layer potential is the single layer operator:

Sψ = γ+(Sψ) for ψ ∈ H− 1
2 (Γ). (57)

Proof. We show this (intuitively very plausible) fact when ψ ∈ C0(Γ) and Γ is a polygon.
We recall that R is the C1 function introduced in (54) and we denote by LR := supt∈[0,diamΓ] |R′(t)|

its Lipschitz constant. We fix a point x ∈ Γ and a sequence (xj)j∈N ⊂ Ω+ ∩B1/4(x) with xj
j→∞−−−→ x. We

denote ϵj := 2|x− xj |1/2. Then

|Sψ(x)− Sψ(xj)| =
∣∣∣∣∫

Γ

[Φk(x,y)− Φk(xj ,y)]ψ(y) ds(y)

∣∣∣∣
≤ ∥ψ∥L∞(Γ)

(∫
Γ

∣∣R(|x− y|)−R(|xj − y|)
∣∣ds(y) + 1

2π

∫
Γ

∣∣ log(k|x− y|)− log(k|xj − y|)
∣∣ds(y)))

≤ ∥ψ∥L∞(Γ)

(
|Γ|LR|x− xj |+

∫
Γ\Bϵj

(x)

∣∣ log |x− y| − log |xj − y|
∣∣ ds(y)

+

∫
Γ∩Bϵj

(x)

∣∣ log |x− y| − log |xj − y|
∣∣ds(y)).

The first term clearly vanishes in the limit xj → x. Using that | log t − log s| ≤ |t−s|
min{t,s} for all t, s > 0,

also the second term vanishes in the same limit:∫
Γ\Bϵj

(x)

∣∣ log |x− y| − log |xj − y|
∣∣ ds(y) ≤ ∫

Γ\Bϵj
(x)

∣∣|x− y| − |xj − y|
∣∣

min{|x− y|, |xj − y|}
ds(y)

≤ 2|Γ|
ϵj

|x− xj | = |Γ||x− xj |1/2.

Here we used that for y /∈ Bϵj (x) we have |x− y| ≥ ϵj and |xj − y| ≥ |x− y| − |xj − x| ≥ ϵj −
ϵ2j
4 ≥ ϵj

2 .
Now assume that x belongs to a side of Γ (which was assumed to be a polygon) and that ϵj is smaller

than the distance between x and the closest vertex of Γ (which is true for sufficiently large j). Let tj ∈
[0,

ϵj
2 ) be the distance between x and the point of Γ closest to xj . Then, recalling that log t = (t log t− t)′,

the last integral term can be bounded as∫
Γ∩Bϵj

(x)

∣∣ log |x− y| − log |xj − y|
∣∣ds(y)

≤
∫ ϵj

−ϵj

∣∣ log |t|∣∣+ ∣∣ log |t− tj |
∣∣dt

= 2ϵj | log ϵj − 1|+ (ϵj + tj)| log(ϵj + tj)− 1|+ (ϵj − tj)| log(ϵj − tj)− 1|
≤ Cϵj | log ϵj |.

Γ
x

ϵj xj
tj

If x is instead a vertex of Γ, one can proceed in a similar way by treating separately the two segments
of Γ∩Bϵj (x). From the definition of ϵj , all three terms in the bound on |Sψ(xj)−Sψ(x)| converge to 0 for
j → ∞, so limj→∞ Sψ(xj) = Sψ(x). We have also shown that x 7→

∫
Γ
Φk(x,y)ψ(y) ds(y) is a continuous

function on Ω+ ∪Γ (actually it is continuous on R2). See [SS11, Thm. 3.3.5] for a more general proof.

If we are able to find ψ on Γ such that

Sψ = gD on Γ, (58)

where gD is the Dirichlet datum of the EDP (44) (recall that gD = −γ+uInc for the SSSP (45)), then

u = Sψ in Ω+ (59)
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is a radiating Helmholtz solution in Ω+ with γ+u = γ+Sψ = Sψ = gD by (57), thus u itself is a solution
of the EDP (44).

Equation (58) is the first example of boundary integral equation (BIE) and (59) is the correspond-
ing representation formula. The unknown of the BIE is ψ, which is a distribution supported on Γ and
does not need to have a physical meaning: for this reason this is called indirect method. If we could
solve the BIE and compute ψ, then the solution u of the EDP could be obtained from the representation
formula, which amounts to the computation of an integral on Γ for each point x ∈ Ω+ where we want to
evaluate u.

We will see in §6.1 that the BIE (58) is well-posed under some conditions on Γ and k. Moreover, in
§6.3.4 (in particular (112)) we will study the regularity of the solution ψ for a polygonal scatterer, showing
that ψ ∈ L2(Γ).

From the continuity of the single-layer potential S : H− 1
2 (Γ) → H1

loc(Ω+), the trace formula (57) and
the trace theorem 3.10, it follows that the single-layer operator is continuous as a mapping S : H− 1

2 (Γ) →
H

1
2 (Γ). We demonstrate this continuity in the case of the disc in Remark 5.2.
This continuity property allows us write a variational form of the BIE (58). Recall from §3.3.3 that

the range H
1
2 (Γ) of S is the anti-dual of its domain H− 1

2 (Γ). So we can write the variational problem:

seek ψ ∈ H− 1
2 (Γ) such that

A(ψ, ξ) := ⟨Sψ, ξ⟩
H

1
2 (Γ)×H− 1

2 (Γ)
= ⟨gD, ξ⟩

H
1
2 (Γ)×H− 1

2 (Γ)
=: F(ξ) ∀ξ ∈ H− 1

2 (Γ).
(60)

A(·, ·) and F(·) are the sesquilinear and the antilinear form of the variational problem. When ξ ∈ L2(Γ)
the duality products ⟨·, ·⟩Γ in (60) can be written as integrals over Γ. Recall that when we deal with
BVPs for PDEs we obtain sesquilinear forms from integration by parts; with BIEs we simply multiply the
equation by a test function and integrate (using the duality product) over Γ.

100 101 102

`

10-2

10-1

100

jA
`j

=
jd (Sv)

`j=
jv̂

`j

R = 1, k = 1
R = 1, k = 5
R = 1, k = 10
R=2`

Figure 20: A log–log plot of the absolute values of the multipliers Aℓ =
(̂Sv)ℓ
v̂ℓ

in the circular-harmonic
expansion of the single-layer operator S on the boundary of a circle. They decay proportionally to 1

ℓ ,
demonstrating the continuity of S : Hs(Γ) → Hs+1(Γ). Each colour correspond to a wavenumber k.
See Remark 5.2.

Remark 5.2: (Continuity of the single-layer operator on the circle). We can verify the continuity S :

H− 1
2 (Γ) → H

1
2 (Γ) for a circular boundary Γ = ∂BR = {x : |x| = R} for R > 0, where these norms can be

computed from Fourier coefficients. Let v(θ) =
∑
ℓ∈Z v̂ℓe

iℓθ be a function (or distribution) defined on Γ and
x = (R cos θx, R sin θx) ∈ ∂BR. By Graf’s addition formula (42), the orthogonality of the circular harmonics,
the large-index asymptotics [DLMF, eq. 10.19.1–10.19.2] for Bessel and Hankel functions

(Sv)(x) =

∫
∂BR

Φk(x,y)v(y) ds(y) = R

∫ 2π

0

(∑
ℓ∈Z

i

4
H

(1)
ℓ (kR)Jℓ(kR)e

iℓθxe−iℓθy

)(∑
ℓ∈Z

v̂ℓe
iℓθy

)
dθy

https://dlmf.nist.gov/10.19.E1
https://dlmf.nist.gov/10.19.E2
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= 2πR
i

4

∑
ℓ∈Z

H
(1)
ℓ (kR)Jℓ(kR) v̂ℓ e

iℓθx

⇒ (̂Sv)ℓ = Aℓv̂ℓ, Aℓ :=
πR i

2
H

(1)
ℓ (kR)Jℓ(kR) ∼

R

2ℓ
ℓ→ ∞.

We say that S “diagonalises” in the Fourier basis: expanding the argument v in the eiℓθ basis, the action of S
corresponds to a multiplication of each coefficient v̂ℓ by a factor Aℓ (exactly as when we multiply a diagonal
matrix and a vector). In Figure 20 we show the log–log plot of the factors |Aℓ| for 0 ≤ ℓ ≤ 100, R = 1 and
different values of k. The important observation is that the coefficients decay as |Aℓ| ∼ ℓ−1.

Recalling the definition of the fractional Sobolev norms (28) on the circle, this gives that ∥Sv∥Hs+1(∂BR) ≤
C ∥v∥Hs(∂BR) for all s ∈ R and all v ∈ Hs(Γ), or equivalently S : Hs(∂BR) → Hs+1(∂BR). This bound can
be proved rigorously for all boundaries Γ and for a range of s that depends on the boundary regularity.

Exercise 5.3: (Quasi-self-adjointness of S). Formula (54) implies that there is a constant C > 0 such that
supx,y∈Γ |Φk(x,y) + 1

2π log 1
|x−y| | ≤ C.

• (Difficult!) Deduce that the function Γ → R, x 7→ ∥Φk(x, ·)∥L2(Γ) is bounded.

Use the definition of Lipschitz domain.

• (Easier.) Show that the single-layer operator S is “quasi-self-adjoint” [CGLS12, p. 120], i.e. for ψ, ϕ ∈ L2(Γ)
it holds ∫

Γ

(Sψ)ϕds(y) =

∫
Γ

ψ(Sϕ) ds(y).

Careful: to use Fubini theorem you need to verify that the integrand is integrable (L1) on a suitable Cartesian
product set.

• Show that S is not self-adjoint, i.e., in general,
∫
Γ
(Sψ) ϕ ds(y) ̸=

∫
Γ
ψ (Sϕ) ds(y).

5.2 Piecewise-constant BEM for the single-layer BIE
We have seen that if we were able to find a solution ψ to the BIE (58) then we would have a solution
u = Sψ of the EDP. In general we cannot solve the BIE analytically, thus we resort to a numerical method.

The boundary element method (BEM) consists of choosing an N -dimensional space VN ⊂ H− 1
2 (Γ)

and looking for a ψN ∈ VN that approximately solves the BIE (58). There are two ways of imposing the
BIE.
• Collocation-BEM. We choose N points x1, . . . ,xN on Γ and look for

ψN ∈ VN such that (SψN )(xj) = gD(xj), j = 1, . . . , N.

• Galerkin-BEM. We restrict the variational form (60) to the finite-dimensional space VN , as in
(33). In practice, all discrete functions we may want to consider belong to L2(Γ), so we can write
the Galerkin-BEM as: find ψN ∈ VN such that

A(ψN , ξN ) =

∫
Γ

(SψN )ξN ds =

∫
Γ

gDξN ds = F(ξN ) ∀ξN ∈ VN .

We recall that H− 1
2 (Γ) is a space larger than L2(Γ), so it accommodates dis-

continuous functions. This makes the construction of the discrete space VN simpler.
The simplest choice of VN is the following: we partition the curve Γ in a mesh
TN (Γ) of N (possibly curvilinear) segments K1, . . . ,KN ⊂ Γ (with

⋃N
j=1Kj = Γ and

Kj ∩ Kj′ = ∅ for j ̸= j′) and choose VN to be the space of piecewise constant
functions on TN (Γ).

+
+
+

+ + +

×
×
×
×
×

K1K2
. . .

KN

The obvious basis {φj}Nj=1 of VN is defined by φj(x) = 1 if x ∈ Kj and φj(x) = 0 if x ∈ Γ \Kj .

We expand the BEM solution in coordinates as ψN =
∑N
j=1 Ψjφj , where Ψj = (Ψ)j is the jth element

of the vector Ψ ∈ CN . So ψN (x) = Ψj if x ∈ Kj .
With this discrete space and basis, in the collocation-BEM we choose the collocation nodes xj such

that xj ∈ Kj for all j = 1, . . . , N and obtain the linear system AColΨ = FCol , where

ACol
j,m := (Sφm)(xj) =

∫
Γ

Φk(xj ,y)φm(y) ds(y) =

∫
Km

Φk(xj ,y) ds(y), FCol
j := gD(xj). (61)
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Indeed, by the linearity of S, if ψN is the collocation-BEM solution then its coefficient vector Ψ solves
AColΨ = FCol:

FCol
j = gD(xj) = (SψN )(xj) =

(
S

N∑
m=1

Ψmφm

)
(xj) =

N∑
m=1

Ψm(Sφm)(xj) = (AColΨ)j .

To be able to evaluate the collocation-BEM right-hand side vector FCol we need gD ∈ C0(Γ), which is
typically satisfied if the EDP comes from a scattering problem such as (45) and gD = −γ+uInc.

Similarly, if ψN is the Galerkin-BEM solution, its coefficient vector Ψ solves AGalΨ = FGal with

AGal
j,m : = A(φm, φj) = ⟨Sφm, φj⟩Γ =

∫
Γ

(Sφm)(x)φj(x) ds(x) =

∫
Γ

∫
Γ

Φk(x,y)φm(y)φj(x) ds(y) ds(x)

FGal
j : = F(φj) = ⟨gD, φj⟩Γ =

∫
Γ

gD(x)φj(x) ds(x). (62)

Choosing piecewise-constant basis functions on the elements Kj , these expressions simplify to

AGal
j,m =

∫
Kj

∫
Km

Φk(x,y) ds(y) ds(x), FGal
j =

∫
Kj

gD(x) ds(x).

Multiplying each row of ACol and FCol by the length of the corresponding element, we see that the
collocation-BEM is a Galerkin-BEM with a simple 1-point quadrature. Formally, one can also think at
the collocation method as a Petrov–Galerkin method with delta functions as test functions, but this is
not mathematically correct in the H± 1

2 (Γ) framework because delta functions do not belong to H− 1
2 (Γ).

Exercise 5.4: (Testing against constants is taking means). Show that the Galerkin-BEM with piecewise-
constant functions is equivalent to impose that the integral averages of SψN and gD coincide on each element.

Both matrices ACol and AGal are dense: this is a major difference between the BEM and the finite
element method (FEM). The Galerkin matrix is also complex-symmetric, but not Hermitian.

This shortcoming of the BEM with respect to the FEM is compensated by a dimensional reduction:
to solve a 2D problem we only need to mesh a 1D object, the boundary Γ. Thus typically BEM requires
much fewer degrees of freedom (DOFs) than FEM for comparable problems and accuracies.

Another advantage of BEM is that it deals with a BVP posed on the unbounded domain Ω+ by
discretising only a bounded object, Γ. To treat the EDP with FEM one has to truncate Ω+ as in
Remark 4.26, introducing additional errors, [Ihlenburg98, §3].

The collocation-BEM is simpler to implement than the Galerkin-BEM. However, in many situations the
choice of the collocation nodes adversely affects the performance of the method. To improve the numerical
stability of the collocation method, often one chooses M collocation nodes with M > N (oversampling)
and solves an overdetermined rectangular linear system in the least-squares sense. If the datum gD is
discontinuous (which is possible since H

1
2 (Γ) ̸⊂ C0(Γ)), then the computation of FCol is not well-defined;

on the other hand, for typical scattering problems gD is continuous and piecewise smooth. Moreover, the
stability and convergence theory for the Galerkin-BEM is much more complete.

A simple Galerkin-BEM simulation of the scattering of a plane wave by a polygon is shown in Figure 15.
Figure 21 shows an example of a 3D collocation-BEM computation for the acoustic scattering by a jet
fighter, taken from a recent paper33.

According to [Martin06, §5.9.1], the first article proposing a BEM for the Helmholtz equation (a
collocation-BEM for an exterior Neumann problem in three dimensions) was published in 196334.

Exercise 5.5: (Least-squares BEM). A third version of the BEM, after collocation and Galerkin, is a least-
squares formulation. In this case, one looks for ψN ∈ VN such that

∫
Γ
(SψN )(SξN ) ds =

∫
Γ
gD(SξN ) ds for

all ξN ∈ VN . Compute the entries of the matrix ALS and the right-hand side FLS of the corresponding linear
system. How many integrations are needed for each of them? Show that ALS is Hermitian and, if (58) is
uniquely solvable, positive definite.

33[Chaillat, Groth, Loseille, Metric-based anisotropic mesh adaptation for 3D acoustic boundary element methods, 2018]
34[Chen, Schweikert, Sound radiation from an arbitrary body, JASA 1963]

https://doi.org/10.1016/j.jcp.2018.06.048
https://doi.org/10.1121/1.1918770
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Figure 21: Scattering of a plane wave by an F15 figther aircraft from the paper in footnote 33. Left: the
solution of (the 3d version of) the single-layer BIE (58) approximated with a piecewise-linear collocation-
BEM. Right: the mesh used, with more than 160 000 triangles.

5.2.1 BEM and quadrature

From (61) and (62) we see that to compute each entry of the system matrix we need to compute an
integral of the fundamental solution: it is a single integral on a mesh element for the collocation-
BEM and a double integral on the Cartesian product of two elements for the Galerkin-BEM. To compute
each entry of the right-hand side vectors, in the collocation-BEM we only need to evaluate the boundary
datum gD while for the Galerkin-BEM we need an integral over an element.

All these integrals require accurate quadrature formulas: these are among the main difficulties in a
BEM implementation. In particular, for both matrices, the diagonal entries require the approxima-
tion of singular integrals, because of the (logarithmic) singularity of Φk(x,y) at x = y.

Let us assume that Ω− is a connected polygon and each mesh element is a straight segment.
For j = 1, . . . , N , the element Kj has endpoints pj and pj+1 and length hj := |pj+1 − pj | (of course
pN+1 = p1). The element is parametrised by Xj : (0, hj) → Kj , Xj(s) := pj+sτ j , where τ j :=

pj+1−pj

|pj+1−pj |
is the unit tangent vector to Kj .

Recalling the definition of the fundamental solution (53), the entries of the BEM matrices and vectors
are then computed as integrals over intervals and rectangles:

ACol
j,m =

i

4

∫ hm

0

H
(1)
0 (k|pm + sτm − xj |) ds, FCol

j = gD(xj), FGal
j =

∫ hj

0

gD(pj + sτ j) ds,

AGal
j,m =

∫ hj

0

(∫ hm

0

Φk(pj + tτ j ,pm + sτm) ds

)
dt =

i

4

∫ hj

0

(∫ hm

0

H
(1)
0

(
k|pj − pm + tτ j − sτm|

)
ds

)
dt.

Each diagonal entry of the collocation-BEM matrix is a singular integral, as xj ∈ Kj for all j. A
simple recipe to compute ACol

j,j is to split the element in the two components of Kj \ {xj} and apply
Gauss quadrature on each side. To this purpose a Gauss–Legendre quadrature is a good choice, while
Gauss–Lobatto rules cannot be used as they involve the value of the integrand at the endpoints, where
the singularity is located. The obvious choice for the collocation nodes is to take the element midpoints:
xj =

1
2 (pj + pj+1).

The jth diagonal entry of the Galerkin-BEM matrix is a double integral on the square (0, hj)
2 = {0 <

s, t < hj}, whose integrand has a singularity along the diagonal s = t. One can use a quadrature formula
for triangles (e.g. based on Duffy transform) on each half of the square. Alternatively, splitting the square
in four triangle, exploiting the symmetries, and using the isometric change of variables ξ = s−t√

2
, η = s+t√

2
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(s = ξ+η√
2

, t = η−ξ√
2

), we obtain

AGal
j,j =

∫ hj

0

∫ hj

0

i

4
H

(1)
0

(
k|s− t|

)
dsdt = 4

∫ hj√
2

0

(∫ hj√
2

ξ

i

4
H

(1)
0 (

√
2kξ) dη

)
dξ

=

∫ hj√
2

0

i
( hj√

2
− ξ
)
H

(1)
0 (

√
2kξ) dξ

(hjζ=
√
2ξ)

=
ih2j
2

∫ 1

0

(1− ζ)H
(1)
0 (khjζ) dζ.

s

t

ξ

η
hj

hj

(63)

This is a one-dimensional integral with a weak singularity at the endpoint ζ = 0. Its approximation with
a Gauss–Legendre quadrature rule gives acceptable results.

If all elements are identical, e.g. straight segments of the same length, then also the diagonal terms are
identical and they need to be computed only once: hj = hj′ ⇒ Aj,j = Aj′,j′ .

In the Galerkin-BEM, also when two element share an endpoint we have a singularity. For example, if
the segments Kj and Kj+1 are aligned (τ j = τ j+1), we have

AGal
j,j+1 =

∫ hj

0

(∫ hj+1

0

i

4
H

(1)
0

(
k|hj − s+ t|

)
dt

)
ds.

s
hj

t
hj+1

integrand
singularities

t = s− hj

This is a double integral on the rectangle {0 < s < hj , 0 < t < hj+1} with a logarithmic singularity at
the vertex s = hj , t = 0. Again, since the since the weak singularity is at the boundary of the domain of
integration, Gauss rules can be used.

Exercise 5.6: (BEM on non-polygonal Γ). Write the entries of the collocation- and Galerkin-BEM when Ω−
is not a polygon but a general Lipschitz domain and its boundary is defined by a parametrisation X : [0, L] → Γ.

Remark 5.7: (Gauss–Legendre quadrature). The following code computes the Gauss–Legendre nodes and
weights for the interval (0, 1) with the Golub–Welsch algorithm (1969). The output x, w are two length-q
column vectors containing the quadrature nodes and weights, respectively. The quadrature

∑q
j=1 wjf(xj)

converges (for q → ∞) to
∫ 1

0
f(x) dx for all continuous f , and it integrates exactly polynomials of degree up

to 2q − 1.

1 function [x,w] = gaussquad( q )
2 b = ( 1:(q-1) ) ./ sqrt( 4*( 1:(q-1) ).^2 - 1 );
3 [V,D] = eig( diag(b,-1) + diag(b,1) );
4 x = ( diag(D)+1 )/2;
5 w = ( V(1,:).*V(1,:) )’;

To use this quadrature on the general interval (a, b), do not forget to scale nodes and weights by the factor b−a:∫ b
a
f(x) dx ≈

∑q
j=1(b− a)wjf(a+ (b− a)xj).

Exercise 5.8: (Singularity extraction quadrature). A typical technique to compute the singular integrals
needed for the BEM is the “singularity extraction”. Inserting the small-argument asymptotics (54) for the
fundamental solution in the expression of ACol/Gal

j,j , one can compute analytically the terms coming from the
logarithm and use a standard quadrature for the remainder R.

One of the several possible ways to implement this idea is the following. Show that, for h > 0,∫ h

0

log
∣∣∣s− h

2

∣∣∣ ds = h
(
log

h

2
− 1
)
,∫ h

0

∫ h

0

log |s− t|dsdt = h2
(
log h− 3

2

)
.

Use [x(log x− 1)]′ = log x and [ 12x
2 log x− 1

4x
2]′ = x log x, and the change of variables in (63).

Use these formulas together with (54) to approximate the BEM matrix diagonal entries ACol
j,j and AGal

j,j .

Once we have assembled and solved the BEM linear system, we have an approximation ψN ∈ VN of the
solution ψ ∈ H− 1

2 (Γ) of the BIE (58). However to approximate the solution of the EDP (44)/SSSP (45),
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we need to approximate u in the unbounded domain Ω+. Recalling the representation formula u = Sψ
(59), the BEM approximation of u is

uN (x) := (SψN )(x) =

∫
Γ

Φk(x,y)ψN (y) ds(y) =

N∑
j=1

Ψj

∫
Kj

Φk(x,y) ds(y) x ∈ Ω+. (64)

Again, each term in this sum is an integral that needs to be approximated with a quadrature formula.
For all x ∈ Ω+ the integrand is C∞. However, if x lies very close to Γ the accurate evaluation of uN (x)
requires a careful use of the quadrature as the integral is near-singular.

The function uN computed with the BEM is an exact solution of the Helmholtz equation and exactly
satisfies the Sommerfeld radiation condition. It is an approximation of the solution u of the exterior
Dirichlet problem (44) only because it satisfies the boundary condition on Γ approximately.

The plots in Figure 15 have been made with the quadrature described in this section. The assembly
of the Galerkin-BEM matrix and the right-hand side vector, with N = 1001 degrees of freedom, 5 Gauss
quadrature points for the computation of the off-diagonal terms and for FGal, and 20 Gauss points for the
terms on the diagonal of AGal, took less than 4 seconds on an average laptop in Matlab. With the same
parameters, the assembly for the collocation method takes less than a second.
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Figure 22: The piecewise-constant (top) and the continuous piecewise-linear (bottom) interpolants of
the Bessel function J0(kx) for different wavenumbers k = 1 (left) and k = 10 (right). In all examples,
the domain (0, 5) is divided in a uniform mesh made of 10 segments. It is clear that at low frequencies
(k = 1) the interpolant is able to describe the shape of the function, while for high frequencies (k = 10)
it completely misses it. This tells us that when solving problems at higher frequencies with the BEM
we need to refine the mesh (at least) proportionally to k, see Remark 5.9.

Remark 5.9: (Resolution of oscillations). Another difficulty is due to the oscillatory behaviour of both
Φk and the solution for large values of the wavenumber k.

A first issue is that to approximate the solution one needs to use more DOFs for larger values of k. See
Figure 22 for a simple visual justification of this statement. A typical recipe for “engineering accuracy” (a
few percent relative errors) is to use at least 10 DOFs per wavelength λ. This means that the length of
each element should not exceed λ

10 = π
5k . (Sometimes the rule of thumb is to use 6 DOFs per wavelength,

corresponding roughly to khj ≤ 1, for 10%/15% error.) This implies that the number of DOFs must grow like
N = O(k) for increasing k: high-frequency problem are computationally very expensive. On the other hand, a
2D FEM needs at least O(k2) DOFs as the wavelength has to be resolved in two dimensions, which is a much
stronger requirement; the difficulties encountered by FEM in solving high-frequency problems are described e.g.
in [Ihlenburg98] (see also §6.3.2 below).

The fundamental solution oscillates with wavelength close to λ = 2π
k . Thus, even for elements Kj , Km

far from each other, in the assembly of the matrices ACol/Gal one has to use a sufficiently accurate quadrature
formula to take into account the oscillations.
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Exercise 5.10: (Gauss quadrature and oscillating functions). The q-point Gauss–Legendre quadrature
corresponds to the integration of a degree-(2q − 1) polynomial interpolating f in q points. To integrate more
oscillatory solutions, we need higher-degree polynomial interpolants, so higher-order Gauss quadratures.

Using the code in Remark 5.7, plot the Gauss–Legendre quadrature error for the approximation of
∫ 1

0
f(x) dx

with f(x) = cos(kx)esin(kx), in dependence of the number of quadrature nodes and of k > 0. Study how
the number of quadrature nodes have to be increased in dependence of k to maintain the error below a given
threshold. See an example in Figure 23.
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Figure 23: The use of Gauss–Legendre quadrature to approximate the integral of the oscillatory function
f(x) = cos(kx)esin(kx) on (0, 1) for different values of k.
Left: the function f for different values of k.
Centre: the quadrature error for the same values of k and Gauss–Legendre points from 1 to 100.
Right: the minimal number q of Gauss–Legendre points needed to have error |

∫ 1

0
f(x) dx −∑q

j=1 wjf(xj)| ≤ 10−4 (the red line is q = k). See Exercise 5.10.

An obvious improvement of the piecewise-constant BEM is the use of piecewise-polynomial discrete
spaces of higher order. These can be discontinuous, or C0(Γ) or of higher continuity (at least away from
corners of Γ) such as splines. The choice of basis functions, collocation points and quadrature rules is in
general non-trivial. When Γ is smooth one can use also global functions such as mapped trigonometric
functions, in the spirit of spectral methods. If Γ is a polygon (possibly with curvilinear sides), the BIE
solution is usually singular close to its corners: to approximate it efficiently one can use a graded mesh,
i.e. a mesh whose elements are smaller the closer they are to a corner.

5.2.2 BEM coding project

Implement the collocation-BEM method for the scattering of a plane wave by a polygon Ω−.
Use a discrete space VN of piecewise-constant functions. Choose a mesh such that the elements on a
given side of Γ have equal length. Plot the scattered field uN and the total field on a portion of Ω+.
You can use the quadrature routine provided.

A possible suggestion for the main steps in the code:
1. Initialise the geometric data structure. Given the vertices of the polygon, decide the number of

elements on each side, and generate (for each element Kj) the endpoint pj , the length hj , the tangent
vector τ j , and the collocation point xj , chosen as the element midpoint. Choose elements with roughly
the same size.

(In Matlab it might be convenient to treat points and vectors in the plane as complex numbers with
the usual identification C ∼ R2; then the abs function allows for immediate computation of distances.)

2. Assemble the matrix ACol (being careful with the quadrature) and the right-hand side FCol.

You can use the Gauss–Legendre quadrature routine gaussquad provided.

3. Solve the linear system.

4. Evaluate the near-field uN on a grid of points in 2D using the representation formula and plot it.
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To generate the grid of points for the plot use meshgrid. To plot the field you can use one of the
Matlab commands pcolor (used for Figure 15), surf, mesh or contour. To hide the grid points that
lie inside Ω− you can locate them with inpolygon and set them to 0 or NaN (or use patch).

Plot the total field uTotN = uN + uInc: if it does not vanish approaching Γ then the code is not correct.

Plenty of interesting extensions are possible:
• Choose as incident wave uInc a fundamental solution centred in some x0 ∈ Ω+. (The total field

cannot be plotted close to x0.) You can also try more exotic incident waves, such as Herglotz functions.

• Implement the problem of the scattering by multiple polygons, i.e. with Ω− made of several compo-
nents. Here Matlab’s “cell arrays” are useful to store vectors with different lengths in a single variable,
e.g., the coordinates of the vertices of polygons with different numbers of sides.

• Implement the Galerkin-BEM for the same problem, on the same mesh. The only difference is in the
assembly of the matrix and the right-hand side. Compare the solutions obtained with the two versions
of the scheme.

• Generate a time-harmonic animation of the scattered and total fields.

You can generate a .gif file using the script provided or export a video in various formats such as .avi.

• Implement the singularity-extraction quadrature of Exercise 5.8.

• Use meshes that are locally refined towards the corners of Γ to better approximate the solution
singularities.

• Compute and plot the Helmholtz Poynting vector S(uScat) defined in Exercise 2.15 (see Figure 16).

The Matlab command quiver helps. You can approximate the gradient ∇uScat with finite differences.

• Approximate the error committed by the scheme e.g. as ∥ψN − ψref∥L2(Γ) or ∥uN − uref∥L2(Ω∗)
where

Ω∗ is (a subset of) the portion of Ω+ where you plot the near-field and ψref/uref are the reference
solutions obtained with a very fine mesh. Plot the convergence of the error against N or h.

Another way to estimate the accuracy of the numerical solution is provided by Remark 5.35.

• Test the code by solving the EDP (44) with a radiating Fourier–Hankel function centred inside Ω− (or
a linear combination of such functions) as solution u. This is not an SSSP (45) but allows to compute
the near-field error uN − u. In this case the solution is smooth also close to the corners of Ω−.

• Study the dependence of the results on the parameters. You can see how the plots and the norms
of the solution and the error vary when you change the number N of DOFs, the wavenumber k, the
product kh, the quality of the quadrature, the shape of Ω−. . .

For instance: for increasing k, if the mesh is refined keeping kh constant, how does the error behave?

How does the condition number depend on h?

Do convergence rates differ for the scattering of a plane wave or for a prescribed Fourier–Hankel u?

• Test the code (for a square scatterer) by computing the near-field error against the reference so-
lution provided.35 This was computed with MPSpack (https://github.com/ahbarnett/mpspack).
Compare your result against Figure 32.

• Implement the collocation-BEM with oversampling, i.e. with M collocation points, N degrees of
freedom, and M > N . For instance take M = cN for some fixed c > 1. Solve the rectangular
linear system in the least-square sense (with the backslash command). Does the accuracy of the
method improve? How does the cost increase? How does the position (equispaced, random,. . . ) of the
collocation points impact the results?

• Solve the BEM linear system using an appropriate iterative method, e.g. GMRES (gmres in Mat-
lab). Study its performance (number of iterations to reach a given accuracy, computing time. . . ) in
dependence of the problem parameters (N, k, the shape of Ω−,. . .).

35Load the .mat file provided. The vectors gx, gy contain the coordinates of the nodes of a Cartesian grid in the square
(−1.5, 1.5)2. The matrix ui contains the values of an incoming plane wave with direction d = 1√

2
(1,−1) and wavenumber

k = 20, in the the grid points exterior to the unit circle, and 0 otherwise. The entries of the matrix u are: the values of the
scattered field u = uScat in the grid points exterior to the unit circle, the values of the total field uTot in the points interior
to the unit circle but exterior to the scatterer (−0.5, 0.5)2, and not-a-number nan values inside the scatterer. You can plot
the total field with the commands
load MPSpackBenchmarkSquareScatt.mat; pcolor(gx,gy,real(ui+u)); shading flat; axis square;
It is also easy to generate other benchmark solutions with MPSpack, which is a package running in Matlab.

https://github.com/ahbarnett/mpspack
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• Extend the code to curvilinear polygons and/or smooth scatterers.

The use of the arclength parametrisation of the boundary makes the implementation simpler. Make
sure that the quadrature points lie on the curve Γ.

You can test your code for a circular obstacle against the analytic solution obtained in Exercise 4.21.

• Implement a higher-order version of the BEM with (either C0(Γ) or discontinuous) piecewise-
polynomial basis functions of degree p > 0.

• Extend the code to discrete spaces made of continuous splines of maximal regularity, i.e. piecewise-
polynomials of degree p with continuity Cp−1(Γ). In the collocation version of the scheme, for even
p choose the collocation nodes as the element mid-points (as we have done for p = 0), for odd p
choose them as the element endpoints. With this choice, the collocation-BEM is well-posed and quasi-
optimal36 for sufficiently small h.

• Implement a spectral BEM on a smooth curvilinear scatterer.

Choose a smooth scatterer defined by a parametrisation X : [0, 2π] → Γ. E.g. a shape often used as
example for scattering problems is the kite X(t) = (cos t+0.65(cos 2t−1), 1.5 sin t), [CK2, Fig. 3.1]. For
L ∈ N and N = 2L+1, choose as basis functions the mapped complex exponentials φℓ(x) = eiℓX

−1(x),
−L ≤ ℓ ≤ L, or the corresponding trigonometric functions sin(ℓX−1(x)), cos(ℓX−1(x)).

• Apply the uncertainty quantification (UQ) techniques to scattering problems approximated with
the BEM. For instance, how do random perturbations of the position of the vertices of a triangular
scatterer affect the far-field u∞? How does its variance depend on the wavenumber?

• . . .
The next sections provide several suggestions for further extensions of your code; see in particular the
exercises.

Exercise 5.11: (Proximity resonance). Choose uInc(x) = Φk(x,y) for a fixed source point y at a small
distance from a straight side of a sound-soft obstacle. Compare the total field uTot when the distance between
y and the obstacle is λ

2 and λ
4 , λ being the problem wavelength. What do you observe? Can you explain it?

Compare with [Heller13, p. 193], where sound-hard obstacles are considered.

Exercise 5.12: (Build your own quasi-resonance). When a plane wave impinges on a scatterer Ω− with a
simple shape, for example convex or star-shaped37, it is possible to prove that some norm of the scattered field
is stable (does not grow) for k → ∞. On the contrary, if Ω− has a cavity (part of Ω+, which is connected)
that can “trap” a wave, the scattered field in the cavity can be extremely large.

Using your BEM code, try to find a polygonal scatterer that traps an incoming plane wave. Recall the
discussion of Dirichlet eigenfunctions (which exist only for bounded regions) in §4.2. With a simple polygon
with 12 sides it is not difficult to obtain a scattered field with magnitude |uScat| > 30 in some region (with∥∥uInc∥∥

L∞(R2)
= 1).

Careful: for a given domain only some wavenumbers will do. The computations in §4.2 might help you
choosing the right k for your trapping domain.

Exercise 5.13: (BEM vs FEM). Recall the approximation of the SSSP/EDP described in Remark 4.26
and Exercise 5.17: Ω+ is truncated to ΩR = BR \ Ω− and the homogeneous impedance boundary condition
∂nu

Scat − ikuScat = 0 is imposed on ∂BR.
Use the 2D FEM code you have implemented in the finite element course to discretise this BVP. Careful:

FEM basis functions (e.g. tent functions) are real, but the right-hand side vector and the coefficients of the
discrete solution are complex. Compare the results against those obtained with BEM.

Extra: Instead of the impedance condition, impose the DtN map (50) using circular harmonics. This is
harder and involves the assembly of a dense block in the matrix.

Remark 5.14: (Fast Matlab code). Often, most of the computational time in a simple BEM code is spent
evaluating the fundamental solution for the assembly of ACol/Gal and the evaluation of uN . You can check
how much time is spent on each part of your Matlab code using the profile command, for instance

1 profile on; MyFunctionDoingWhatever; profile viewer

36[Arnold, Wendland, The convergence of spline collocation for strongly elliptic equations on curves, Numer.Math. 1985]
37A domain D ⊂ Rn is called star-shaped with respect to a point x0 if, for all x ∈ D, the segment with endpoints x0

and x is contained in D. It is star-shaped with respect to a subset D′ if it is star-shaped with respect to all points in D′.

https://doi.org/10.1007/BF01389582
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A simple implementation of the piecewise-constant collocation-BEM assembles the matrix ACol using a triple
loop: over rows, columns and quadrature points. This requires N2q calls to the function besselh, where q is
the number of quadrature nodes per element (ignoring the different treatment needed for the diagonal terms).
The evaluation of the near-field uN on a M ×M grid, for plots such as Figure 15, using a q-point quadrature
approximation of (64), requires M2Nq evaluations of Φk, and can be easily coded with a quadruple loop and
M2Nq calls to besselh. However, we know that Matlab is most efficient if we reduce as much as possible
the use of nested loops and apply functions such as besselh to few vectors or matrices (as opposed to many
scalars). You can observe this running

1 n = 5000; A=rand(n);
2 B=ones(n)*1i; C=ones(n)*1i; % Initialise complex matrices
3 tic; B=besselh(0,1,A); toc
4 tic; for j=1:n; for jj=1:n; C(j,jj)=besselh(0,1,A(j,jj)); end; end; toc

Keep this in mind to write a fast Matlab code: avoid loops, vectorise operations, and reduce the number of
calls to the fundamental solution.

On the other hand, the evaluation of besselh on so many inputs simultaneously might require too much
memory (e.g. to store N2q complex numbers instead of N2 for the matrix assembly, M2Nq instead of M2 for
uN ) and prevents computation with large values of N, q,M . Thus, also excessive vectorisation can hinder the
BEM code. To obtain an efficient code, you have to find a balance between the reduction of function calls and
the memory constraints (also, do not forget to delete large temporary variables, such as the stiffness matrix,
after they have been used).

5.3 Green’s integral representation
The Green’s integral representation, or Green’s third identity, is an important tool to derive new BIEs
and BEMs, and to understand the properties of the corresponding BVPs. It extends Green’s second
identity (31). We write it and prove it for bounded and unbounded Lipschitz domains.

We keep using the notation introduced in §4.3. In particular, we recall that the unit normal n on the
boundary of the bounded domain Ω− is defined to point outwards, into the complement Ω+; this enters
the definition of the Neumann trace ∂n. Since the fundamental solution Φk depends on two variables, we
write ∂Φk(x,y)

∂n(x) and ∂Φk(x,y)
∂n(y) to make clear which is the variable with respect to which we derive and take

the trace. We recall that when we write
∫
Γ
φψ ds for φ ∈ H− 1

2 (Γ) and ψ ∈ H
1
2 (Γ) (or vice versa) we mean

the duality product ⟨φ,ψ⟩Γ.

Theorem 5.15: (Green’s representation in Ω−). Let Ω− be a bounded Lipschitz domain and u ∈
H1(Ω−; ∆) ∩ C2(Ω−) be a Helmholtz solution in Ω−. Then:∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
u(x) if x ∈ Ω−,

0 if x ∈ Ω+.
(65)

Proof. If x ∈ Ω+, then both u and Φk are Helmholtz solution in Ω− thus the volume integral in Green’s
second identity (31) vanishes and what is left is (65).

If x ∈ Ω− we take ϵ > 0 such that the ball Bϵ(x) := {z ∈ R2 : |z − x| < ϵ} ⊂ Ω−. Applying again
Green’s second identity in Ω− \Bϵ(x) we have∫
Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) = −

∫
∂Bϵ(x)

(
∂nu(y)Φk(x,y)− γu(y)

∂Φk(x,y)

∂n(y)

)
ds(y),

where n points into the ball (this is why we have a minus sign in front of∫
∂Bϵ(x)

). We now want to take the limit for ϵ ↘ 0 of the right-hand side,
and see that the first term vanish, while the second converges to u(x). The
advantage of using a ball centred at x, is that on its boundary the value
of Φk(x, ·) and its normal derivative are constant.

n n

Ω−

Γ

x

ϵ

To this purpose, we need some properties of Hankel functions: the formula for the first derivative of
H

(1)
0 and the asymptotics for small arguments (from [DLMF, §10.7], recall also (54)):

∂

∂z
H

(1)
0 (z) = −H(1)

1 (z), H
(1)
0 (z) ∼ 2i

π
log z, H

(1)
ℓ (z) ∼ − i

π
(ℓ−1)!

2ℓ

zℓ
, ℓ ∈ N, z → 0. (66)

https://dlmf.nist.gov/10.7
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(Here a(z) ∼ b(z) for z → 0 means that limz↘0
a(z)
b(z) = 1.)

We take the limit limϵ→0 of the first term using the expression of the fundamental solution, the
divergence theorem, div∇ = ∆, ∆u = −k2u, the asymptotics (66), the mean value theorem (in the form
lim
ϵ→0

1
πϵ2

∫
Bϵ(x)

f(y) dy = f(x)), the boundedness of u in x:

−
∫
∂Bϵ(x)

∂nu(y)Φk(x,y) ds(y) = − i

4
H

(1)
0 (kϵ)

∫
∂Bϵ(x)

∂nu(y) ds(y)

=
i

4
H

(1)
0 (kϵ)

∫
Bϵ(x)

∆u(y) dy

= − i

4
H

(1)
0 (kϵ)k2

∫
Bϵ(x)

u(y) dy ∼ − i

4

(2i
π
log kϵ

)
k2πϵ2u(x)

ϵ↘0−−−→ 0.

Using the expression of the radial derivative of Φk, the asymptotics (66), the mean value theorem
(lim
ϵ→0

1
2πϵ

∫
∂Bϵ(x)

f(y) ds(y) = f(x)) we get

∫
∂Bϵ(x)

u(y)
∂Φk(x,y)

∂n(y)
ds(y) = k

i

4
H

(1)
1 (kϵ)

∫
∂Bϵ(x)

u(y) ds(y)

∼ k
i

4

(−2i

πkϵ

)∫
∂Bϵ(x)

u(y) ds(y) ∼
( 1

2πϵ

)
2πϵu(x) = u(x).

(The first of the two limits limϵ→0

∫
∂Bϵ(x)

. . . vanishes, while the second one is non-zero: this is because
the singularity of the first derivative of the fundamental solution Φk is stronger than that of Φk itself, so
it compensates the infinitesimal length of the circle on which it is integrated.)

Green’s representation formula allows to compute any Helmholtz solution from its two traces.
Representation (65) also explains why we chose the coefficient i

4 in the definition (53) of Φk: it allows
to write a simple Green’s representation.

Green’s representation is sometimes called “Kirchhoff–Helmholtz integral”.

Remark 5.16: (Green representation and impedance BVP). From Green’s representation (65), it follows
immediately that if u is a Helmholtz solution in Ω− and γ−u = ∂−n u = 0 then u = 0. We have already proved
the same fact by other means (extending u by zero and using the discreteness of Laplace–Dirichlet eigenvalues)
in Lemma 4.10. This was a key step to prove the well-posedness of the impedance interior problem (37) in
Proposition 4.12.

Exercise 5.17: (Truncated BVP). Let ΩR = BR \ Ω−, where BR is an open ball containing Ω−. Write a
truncation of the EDP (44) to ΩR, as described in Remark 4.26 imposing impedance boundary conditions on
∂BR and sound-soft conditions on Γ. Show that the BVP obtained is well-posed.

Remark 5.18: (Green’s representation with volume term). If u in (65) were not Helmholtz solution we
would need to add to the left-hand side of Green’s representation the volume integral term −

∫
Ω−

(
∆u(y) +

k2u(y)
)
Φk(x,y) dy. When x ∈ Ω− the integrand is weakly singular, see (66), and the integral is well-defined.

Remark 5.19: (Green’s representation in 3D). In the 3-dimensional case all the arguments are similar. The
fundamental solution has the simpler expression Φk(x,y) =

eik|x−y|

4π|x−y| , which does not involve Bessel and Hankel
function, so checking the limits for ϵ↘ 0 is simpler.

The integral over ∂Bϵ(x) in the proof of Theorem 5.15 gives the same value for any path in Ω− with
winding number 1 around x. This reminds of complex analysis, but the key ingredient here is just integration
by parts. Indeed the same argument works in 3D.

To write a Green’s representation formula for unbounded domains,
we denote by BR the ball of radius R > 0 centred at 0 and fix n = x

r
on ∂BR. We work in the bounded region BR ∩ Ω+, for sufficiently
large R and use Sommerfeld condition to take the limit R→ ∞. The
unit normal n points into BR ∩Ω+ on the inner boundary Γ and out
of BR ∩ Ω+ on the outer boundary ∂BR.

Γ
Ω−

BR ∩ Ω+

∂BR

n

n
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Lemma 5.20: (Properties of radiating solutions). Let Ω− be a bounded Lipschitz domain, Γ = ∂Ω−,
Ω+ = R2 \ Ω−, and u,w ∈ H1

loc(Ω+; ∆) ∩ C2(Ω+) be two radiating Helmholtz solutions in Ω+. Then:

lim
R→∞

∫
∂BR

|u|2 ds <∞, ℑ
∫
Γ

∂nu γuds ≥ 0 lim
R→∞

∫
∂BR

(∂nu w − u∂nw) ds = 0. (67)

Proof. We first prove the boundedness of the limit of ∥u∥L2(∂BR). The imaginary part of Green’s first
identity (30) with w = u in BR ∩ Ω+ gives

ℑ
∫
Γ

∂nu γuds = ℑ
∫
∂BR

∂nu γuds+ ℑ
∫
BR∩Ω+

(k2|u|2 − |∇u|2) dx︸ ︷︷ ︸
=0, imaginary part of real value

=
1

2k

∫
∂BR

(
k2|u|2 + |∂nu|2 − |∂nu− iku|2

)
ds,

where we have used the identity |a− ib|2 = |a|2 + |b|2 − 2ℜ{a ib} = |a|2 + |b|2 − 2ℑ{ab}, which holds for
all a, b ∈ C, applied to a = ∂nu, b = ku. Taking the limit for R→ ∞, the term

∫
∂BR

|∂nu− iku|2 ds→ 0,
by the Sommerfeld condition (43). The left-hand side is independent of R, thus

lim
R→∞

1

2k

(
k2 ∥u∥2L2(∂BR) + ∥∂nu∥2L2(∂BR)

)
= ℑ

∫
Γ

∂nu γuds <∞.

Since the norms are non-negative and the limit is finite, each of them is bounded, which is the desired
inequality. In particular u = O(r−1/2) for r → ∞. Moreover the left-hand side is non-negative, so also
the second inequality is proved.

The Sommerfeld condition, together with u,w = O(r−1/2), gives the identity involving w:∫
∂BR

(∂nu w − w∂nu) ds =

∫
∂BR

((
iku+ o(R−1/2)

)
w − u

(
ikw + o(R−1/2)

))
ds

=

∫
∂BR

(
o(R−1/2)O(R−1/2)−O(R−1/2)o(R−1/2)

)
ds =

∫
∂BR

o(R−1) ds
R→∞−−−−→ 0.

Recall that we have already seen in Theorem 4.36 (Rellich’s lemma) a stronger version of the second
inequality in (67): if this integral is 0 then u = 0 (see the first formula in the proof to relate the integrals
on Γ and on ∂BR).

The Sommerfeld radiation condition can be extended to problems with complex wavenumbers with
ℑk ≥ 0, Lemma 5.20 holds also in this case, see [CK1, Thm. 3.3].

Theorem 5.21: (Green’s representation in Ω+). Let Ω− be a bounded Lipschitz domain, Γ = ∂Ω−,
Ω+ = R2 \ Ω−, and u ∈ H1

loc(Ω+; ∆) ∩ C2(Ω+) be a radiating Helmholtz solution in Ω+. Then:

−
∫
Γ

(
∂+n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
0 if x ∈ Ω−,

u(x) if x ∈ Ω+.
(68)

Proof. Let R > 0 be the radius of a ball such that Γ ⊂ BR and, if x ∈ Ω+ also x ∈ BR. Then Green’s
representation (65) applied in Ω+ ∩BR gives

(∫
∂BR

−
∫
Γ

)(
∂+n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

{
0 if x ∈ Ω−,

u(x) if x ∈ Ω+.

Taking the limit for R→ ∞, the integral over ∂BR vanishes by the identity in (67) and we conclude.

Corollary 5.22: (There are no entire radiating solutions). Let u+ ∈ H1
loc(Ω+; ∆) be a radiating

Helmholtz solution and u− ∈ H1(Ω−; ∆) a Helmholtz solution. If they have the same traces on Γ, i.e.
γ+u+ = γ−u− and ∂+n u+ = ∂−n u−, then u+ = 0 and u− = 0.
In particular, the only radiating Helmholtz solution in the whole of R2 is u = 0.
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In this corollary, the assumption that the solution is radiating is necessary: plane waves and smooth
Fourier–Bessel functions are Helmholtz solutions in R2, but not radiating. The radiating Fourier–Hankel
functions are not defined in the whole of R2 as they are singular at the origin. Intuitively, the corollary
says that all radiating solutions “go towards infinity” and they need to have a source somewhere; on the
other hand, plane waves are not radiating and have “a source at infinity”.

We have evaluated the integral in Green’s representation in x ∈ Ω−∪Ω+ = R2 \Γ. What about x ∈ Γ?
We extend Green’s representation (65)/(68) to this case.

For x ∈ Γ define
σ(x) := lim

ϵ→0

1

2πϵ

∫
y∈Ω−,|y−x|=ϵ

ds.

If Γ is C1 in x then σ(x) = 1
2 ; if Γ forms an angle with opening α at x then σ(x) = α

2π . By Rademacher
theorem (Lipschitz functions are differentiable a.e.), for a Lipschitz Γ, σ = 1

2 almost everywhere on Γ.

Lemma 5.23: (Green’s representation on Γ). Let u ∈ H1(Ω−; ∆) ∩ C0(Ω−) be a Helmholtz solution.
Then ∫

Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) = σ(x)u(x) x ∈ Γ. (69)

If u ∈ H1
loc(Ω+; ∆) ∩ C0(Ω+) is a radiating Helmholtz solution then

−
∫
Γ

(
∂+n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =

(
1− σ(x)

)
u(x) x ∈ Γ. (70)

Proof. We prove the first identity, the second one is analogous.
For simplicity we denote the integrand with the shorthand

⋆ := ∂−n u(y)Φk(x,y)− γ−u(y)
∂Φk(x,y)

∂n(y)
.

For x ∈ Γ, we apply Green’s second identity on Ω− \ Bϵ(x) (see figure). Its
boundary is decomposed in Γ\Bϵ(x) and ∂Bϵ(x)∩Ω−; on both parts we choose
n pointing outwards:

0 =

∫
∂(Ω−\Bϵ(x))

⋆ ds(y) =

∫
Γ\Bϵ(x)

⋆ds(y) +

∫
∂Bϵ(x)∩Ω−

⋆ ds(y).

n

Ω−
Γ

x
ϵ

The limit for ϵ → 0 of the integral over Γ \ Bϵ(x) is exactly the integral of the same integrand over the
whole Γ, the left-hand side of the assertion (understood as a Cauchy principal value):∫

Γ

⋆ ds(y) = lim
ϵ→0

∫
Γ\Bϵ(x)

⋆ ds(y) = − lim
ϵ→0

∫
∂Bϵ(x)∩Ω−

⋆ ds(y).

Proceeding as in the proof of Theorem 5.15 we see that limϵ→0

∫
∂Bϵ(x)∩Ω−

∂−n u(y)Φk(x,y) ds(y) = 0,
while the last term gives:∫

∂Bϵ(x)∩Ω−

γ−u(y)
∂Φk(x,y)

∂n(y)
ds(y) = k

i

4
H

(1)
1 (kϵ)

∫
∂Bϵ(x)∩Ω−

u(y) ds(y)

∼k i
4

(−2i

πkϵ

)∫
∂Bϵ(x)∩Ω−

u(y) ds(y) ∼
( 1

2πϵ

)
2πσ(x)ϵu(x) = σ(x)u(x).

We summarise Green’s representations (65), (68), (69) and (70) as follows. With u as in Lemma 5.23:

∆u+ k2u = 0 in Ω− :∫
Γ

(
∂−n u(y)Φk(x,y)− γ−u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =


u(x) if x ∈ Ω−,

σ(x)u(x) if x ∈ Γ,

0 if x ∈ Ω+,

∆u+ k2u = 0 in Ω+, radiating:
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−
∫
Γ

(
∂+n u(y)Φk(x,y)− γ+u(y)

∂Φk(x,y)

∂n(y)

)
ds(y) =


0 if x ∈ Ω−,(
1− σ(x)

)
u(x) if x ∈ Γ,

u(x) if x ∈ Ω+.

Exercise 5.24: (Fundamental solution and delta function). Show that the fundamental solution deserves
its name: for any fixed y ∈ R2, it satisfies −∆Φk(·,y) − k2Φk(·,y) = δy in distributional sense, where δy is
the Dirac delta at y.

This means that
∫
R2 Φk(x,y)

(
∆ρ(x) + k2ρ(x)

)
dx = −ρ(y) for all ρ ∈ D(R2) and y ∈ R2.

Hint: integrate by parts in R2 \ Bϵ(y) and take the limit for ϵ → 0 using the technique of the proof of
Theorem 5.15.

Show that for f ∈ D(R2), u(y) :=
∫
R2 Φk(x,y)f(x) dx is solution of the inhomogeneous Helmholtz

equation −∆u− k2u = f and is radiating.
The operator

V : {f ∈ L2(R2) : supp f is compact} → H2
loc(R2), (Vf)(y) :=

∫
R2

Φk(x,y)f(x) dx (71)

is called “volume potential” or “Newton potential” (since in the Laplace case k = 0, with f ≥ 0, it represent
the gravitational potential generated by a mass distribution f) and is used to construct the “volume integral
equations”; see [CK2, Ch. 8] and [SS11, §3.1.1].

Remark 5.25: (Distributions of charges on Ω− or on Γ). In §5.1 we decided to try to represent a radiating
solution u in Ω+ as a single-layer potential, i.e. as a continuous linear combination of “acoustic charges”
distributed on Γ. (In §5.4 and §6.2.1 we will see that we could proceed similarly representing u as a combination
of “acoustic dipoles” on Γ.) Is this representation sufficiently rich or are we loosing some generality? Can we
represent some more radiating fields if we distribute the charges in the whole scatterer Ω−?

To answer these questions, let u(x) =
∫
Ω−

Φ(x,y)f(y)dy for some density f supported on Ω− (or u = Vf
in the notation of (71)). By Exercise 5.24, u is well defined on R2, is radiating, and ∆u + k2u = −f in R2.
Can we write u = Sψ for some surface charge density ψ on Γ?

Assume that k2 is not a Dirichlet eigenvalue of Ω−. Let w ∈ H1(Ω−; ∆) be the solution of ∆w+ k2w = 0

in Ω− with boundary condition γ−w = γ±u. Set ψ := ∂−n (w − u) ∈ H− 1
2 (Γ). Then, using Green’s second

identity (31), for x ∈ Ω+,

Sψ(x) =
∫
Γ

Φ(x,y)∂−n
(
w(y)− u(y)

)
ds(y)

=

∫
Γ

(
Φ(x,y)∂−n

(
w(y)− u(y)

)
− ∂−n Φ(x,y) γ−

(
w(y)− u(y)

)︸ ︷︷ ︸
=0 by def. of w

)
ds(y)

=

∫
Ω−

(
Φ(x,y) (∆ + k2)w(y)︸ ︷︷ ︸

=0

−Φ(x,y) (∆ + k2)u(y)︸ ︷︷ ︸
=−f

− (∆ + k2)Φ(x,y)︸ ︷︷ ︸
=0, as x∈Ω+,y∈Ω−

(
w(y)− u(y)

))
dy

= Vf(x) = u(x).

This means that, away from eigenvalues, any radiating solution written as superposition of charges in Ω− (with
density f) can also be written as superposition of charges on Γ (with density ψ), i.e. as a single-layer potential.
(This is easier to imagine in the Laplace case, thinking at distributions of electric charge or mass, and Coulomb
or gravitational potentials.)

What if k2 is a Dirichlet eigenvalue of Ω−? We will see in §6.1.1 that in this case the single-layer BIE
(58) is not even well-posed. To represent all radiating solution in Ω+, for all k > 0, we need to use Green’s
representation (68) instead of the single-layer one (59); we will do this in §6.2.

Exercise 5.26: (Huygens’ principle). Consider the SSSP (45) with incoming field uInc that is Helmholtz
solution in a neighbourhood of Ω−. Using Green’s representation formulas, show that uScat = −S∂+n uTot and
uTot = uInc − S∂+n uTot in Ω+. In [CK2, p. 64], this formula is called Huygens’ principle.

Exercise 5.27: (Discrete-valued field). Find a field u ∈ C∞(R2) and a bounded, Lipschitz, connected
domain Ω− such that the function Z : x 7→

∣∣∣∫Γ (∂−n u(y)Φk(x,y)− γ−u(y)∂Φk(x,y)
∂n(y)

)
ds(y)

∣∣∣ takes exactly the

values 0, 1, 2, 4 for x ∈ R2.
Despite the function Z is defined by the same formula for all x ∈ R2, it takes exactly 4 different values.
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5.4 Double-layer potential and operator
Green’s representation formulas (65) and (68) mean that all Helmholtz solutions in Ω− and all radiating
Helmholtz solutions in Ω+ can be written as boundary integrals over Γ. The integral of ∂nu Φk is the
single-layer potential Sψ for ψ = ∂±n u we already know from (55). Now we are evaluating (Sψ)(x) for
both x ∈ Ω+ and x ∈ Ω−, so we are extending the definition of the single-layer potential (55) to all points
in the complement of Γ:

(Sψ)(x) :=
∫
Γ

Φk(x,y)ψ(y) ds(y) x ∈ Ω+ ∪ Ω−.

In particular, for any ψ ∈ H− 1
2 (Γ), Sψ is a Helmholtz solution both in Ω− and Ω+ and is radiating. With

the same reasoning as in Proposition 5.1, the Dirichlet traces from both sides of Γ coincide:

γ+(Sψ) = γ−(Sψ) = Sψ.

In particular, if ψ ∈ C0(Γ), then Sψ ∈ C∞(R2 \ Γ) admits an extension in C0(R2) but not in C1(R2)
because, as we will see, the normal derivative of Sψ is discontinuous across Γ.

The second term in (65) and (68) is a new potential:

(Dψ)(x) :=
∫
Γ

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) x ∈ Ω− ∪ Ω+. (72)

This is called acoustic double-layer potential.38 For a function ψ on Γ, sufficiently smooth, Sψ is a
smooth Helmholtz solution in both Ω− and Ω+, and satisfies the radiation condition. It can be proved that
it is continuous as mapping D : H

1
2 (Γ) → H1

loc(Ω−∪Ω+), [CGLS12, Thm. 2.15] (here we need the density
to be in H

1
2 (Γ), while for the single-layer potential H− 1

2 (Γ) was enough, this is because the singularity of
∇Φk is stronger than that of Φk).

Then Green’s representation can be written as:

if u is Helmholtz solution in Ω− : u = S∂−n u−Dγ−u in Ω−,

if u is radiating Helmholtz solution in Ω+ : u = −S∂+n u+Dγ+u in Ω+.
(73)

This means that any radiating Helmholtz solution is known once we know the “Cauchy data” γu and ∂nu,
i.e. its Dirichlet and Neumann traces.

As we did for the single-layer, we can define the double-layer operator:

(Dψ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) x ∈ Γ. (74)

If Γ is of class C2 and ψ ∈ C0(Γ), then Dψ is well-defined as a standard (weakly singular) integral and
Sψ ∈ C0(Γ). On the other hand, if Γ is only Lipschitz and ψ ∈ L2(Γ), then Dψ must be understood as
Cauchy principal value:

(Dψ)(x) = lim
ϵ→0

∫
Γ∩{y: |y−x|>ϵ}

∂Φk(x,y)

∂n(y)
ψ(y) ds(y) a.e. x ∈ Γ.

Then Dψ ∈ L2(Γ).

Exercise 5.28: (Double-layer operator on straight segments). Assume that Γ∗ ⊂ Γ is a straight segment
and that ψ ∈ C0(Γ) is supported in Γ∗. Show that (Dψ)(x) = 0 for all for all x ∈ Γ∗.

Hint: you do not need the precise value of Φk but only that it depends only on |x− y|.

We have seen in (57) that S = γS. One might expect that D = γD, but this is not the case.
The assertions of Lemma 5.23, Green’s representation on the boundary, can be written in terms of

layer operators as (compare against (73))

S∂−n u−Dγ−u = σγ−u, Dγ+u− S∂+n u = (1− σ)γ+u. (75)

38The double-layer potential has this name because it can be thought as the acoustic potential generated by two “sheets” of
charges with opposite signs, parallel to Γ, in the limit when the distance between the sheets decreases to 0 (from ∂Φk(x,y)

∂n(y)
=

limδ→0
1
2δ

(Φk(x,y + δn)− Φk(x,y − δn)). In electrostatics (Laplace equation) this would be a layer of dipoles.
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Now let u be a Helmholtz solution in Ω− and denote ψ := γ−u ∈ H
1
2 (Γ). We have

ψ = γ−u

Green repr.
(65)
= γ−S∂−n u− γ−Dψ

single-layer
trace (57)

= S∂−n u− γ−Dψ and σψ
(75)
= S∂−n u−Dψ

Taking the difference between these two equations we have the Dirichlet trace formula for the double-
layer potential:

γ−Dψ = Dψ − (1− σ)ψ, γ+Dψ = Dψ + σψ. (76)

The second of these equations is obtained similarly using (68) in place of (65) and (70) in place of (69).
Recall that σ = 1

2 in all smooth points, so (76) reads almost everywhere as

γ±Dψ = Dψ ± 1

2
ψ, or, in operator form, γ±D = D ± 1

2
I,

where I is the identity operator. All these formulas tell us that the Dirichlet trace of D is not simply D
but a correction term is needed, due to the singular behaviour of ∂Φk

∂n . Taking the difference between the
two equations in (76), the correction terms ± 1

2ψ give the jump relation:

[[γDψ]] := γ+Dψ − γ−Dψ = ψ.

Given a ψ on the boundary Γ, the double-layer potential Dψ is a radiating Helmholtz solution in the
complement of Γ, whose jump on Γ is ψ itself.

For simplicity, in the following we write 1
2 instead of σ and 1 − σ, with the implicit convention that

equalities on Γ hold almost everywhere (everywhere except at corners).

5.5 Neumann traces of the potentials: two more BIOs and jump
relations

In the previous section we have learned how to construct fields in Ω−∪Ω+ from distributions defined on Γ:

∀ψ ∈ H− 1
2 (Γ), ∀φ ∈ H

1
2 (Γ), Sψ, Dφ ∈ H1(Ω−; ∆)×H1

loc(Ω+; ∆) (77)

are radiating Helmholtz solution in the complement of the boundary Γ. Moreover, the Dirichlet traces of
Sψ coincide: γ+Sψ = γ−Sψ, so Sψ ∈ H1

loc(R2; ∆), while Dφ is discontinuous on Γ, (76).
We now want to look at the Neumann traces of Sψ, Dφ. To this purpose, we need to introduce two more

BIOs (the last ones!): the adjoint double-layer operator D′ and the hypersingular operator H:

(D′φ)(x) :=

∫
Γ

∂Φk(x,y)

∂n(x)
φ(y) ds(y), (Hφ)(x) :=

∂

∂n(x)

∫
Γ

∂Φk(x,y)

∂n(y)
φ(y) ds(y), x ∈ Γ. (78)

Note thatD′ differs fromD only in that the normal derivation is taken with respect to a different variable of
Φk. If Γ is not C2 or φ /∈ C0(Γ), the adjoint double-layer operator has to be understood as a principal value
integral, in the same way as D. Its name and notation are due to the identity

∫
Γ
(Dφ)ψ ds =

∫
Γ
φ(D′ψ) ds,

valid for all φ,ψ ∈ L2(Γ), which can be proved using Fubini theorem and with some complications due to
the singularity of the integrand, [CGLS12, eq. (2.37)].

The hypersingular operator is more complicated: it has to be understood as a limit (Hφ)(x) =
limz→x n(x) · ∇(Dφ)(z), for a suitable choice of the points z, [CGLS12, eq. (2.36)]. In its definition we
are not allowed to move ∂

∂n(x) inside the integral because the second derivatives of Φk are not integrable.
The main properties of the BIOs are their relations with the traces of the two layer potentials:

γ±S = S, γ±D = D ± 1

2
I,

∂±n S = D′ ∓ 1

2
I, ∂±n D = H.

(79)

Here I is the identity operator. We have already derived the formulas of the Dirichlet traces, those for
the Neumann ones are proved in a similar way, [CK1, §2.4–2.5]. Taking the difference between outer and
inner traces we find the jump relations (we have already encountered those for the Dirichlet traces)

[[γSψ]] =γ+Sψ − γ−Sψ = 0, [[γDψ]] = γ+Dψ − γ−Dψ = ψ,

[[∂nSψ]] =∂+n Sψ − ∂−n Sψ = −ψ, [[∂nDψ]] = ∂+n Dψ − ∂−n Dψ = 0.
(80)
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From (79), using (77) and the trace theorem 3.10, the mapping (continuity) properties of the BIOs follow:

S : H− 1
2 (Γ) → H

1
2 (Γ),

D : H
1
2 (Γ) → H

1
2 (Γ),

D′ : H− 1
2 (Γ) → H− 1

2 (Γ),

H : H
1
2 (Γ) → H− 1

2 (Γ).

H− 1
2 (Γ) H

1
2 (Γ)

S

H
D′ D

H1(Ω−; ∆)×H1
loc(Ω+; ∆)

S D

∂±n γ±

From (79) we also see that all four operators are averages of traces of the potentials:

S = {{γS}} =
γ+S + γ−S

2
, D = {{γD}} =

γ+D + γ−D
2

,

D′ = {{∂nS}} =
∂+n S + ∂−n S

2
, H = {{∂nD}} =

∂+n D + ∂−n D
2

.

These formulas can be taken as alternative rigorous definitions of the four BIOs, given those of the two
layer potentials (see e.g. [SBH19, §14.2] for a PDE different from Helmholtz).

Remark 5.29: (BIOs notation). There is no universal notation for boundary integral operators and sometimes
the same symbol is used by different authors to mean different BIOs: comparing references can be a nightmare.
To help navigating the literature, we list here the notation used in several references39 on BIEs for Helmholtz
(some of these only consider the 3D case).

Φk S D S D D′ H
(53) (55) (72) (56) (74) (78) (78)

[Spence14, p. 36], [CGLS12, pp. 108–113] Φk Sk Dk Sk Dk D′
k Hk

[Sayas06, §3,§11.1] ϕ SΓ DΓ VΓ KΓ Kt
Γ WΓ

[CK1, §2.7], [CK2, (3.8–11)] Φ S K K ′ T
[Nédélec01, p. 116] E S D D∗ N
[SS11, §3.9] Gk Sk Dk Vk Kk K ′

k Wk

[McLean00, pp. 217–218] G SL DL S T T̃ R

[Martin06, §5.1–5.3] G S D S K K
∗

N
[Hsiao and Wendland 2008, §2.1] Ek Vk Wk Vk Kk K ′

k Dk

[Antoine 2012, §3.3] G L S L N D S
[Steinbach 2008, §6.9] (W used for Laplace d.l.p.) U∗

k Ṽk Vk Kk K ′
k Dk

Moreover, in some cases the hypersingular operator H is defined with the opposite sign, e.g. [Sayas06, §11.1]
and [McLean00, eq. (7.3)]. In other cases all four BIOs include a factor 2 [CK2, eq. (3.8–11)] (to avoid the
factor 1

2 in the trace relations). [Martin06, eq. (5.1)] defines the fundamental solution as (−2) times our
(standard) definition.

Exercise 5.30: (Double-layers operators on the disc). Let Ω− = BR be a disc of radius R > 0.
Show that (x− y) · n(x) = (x− y) · n(y) for all x,y ∈ Γ.
Deduce that, for the disc, double-layer and adjoint double-layer operators coincide: D = D′.

Remark 5.31: (Explicit double-layer formulas). Using ∂
∂zH

(1)
0 (z) = −H(1)

1 (z), we can write more explicit
formulas for the double-layer and the adjoint double-layer operators:

(Dψ)(x) =
ik

4

∫
Γ

H
(1)
1 (k|x− y|) (x− y) · n(y)

|x− y|
ψ(y) ds(y),

(D′ψ)(x) =
ik

4

∫
Γ

H
(1)
1 (k|x− y|) (y − x) · n(x)

|x− y|
ψ(y) ds(y).

39The last three in the table are: [Hsiao, Wendland, Boundary integral equations, Springer 2008]
[Antoine, Introduction to integral equations for time harmonic acoustic scattering problems, notes 2012]
[Steinbach, Numerical approximation methods for elliptic boundary value problems, Springer 2008]

https://doi.org/10.1007/978-3-540-68545-6
https://www.researchgate.net/publication/274959860_Introduction_to_integral_equations_for_time_harmonic_acoustic_scattering_problems
https://doi.org/10.1007/978-0-387-68805-3
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From this formulas, we see that if Γ is a polygon and E is one of its edges, the points y ∈ E do not
contribute to the computation of (Dψ)(x) for x ∈ E, because (x− y) · n(y) = 0. So H(1)

1 is evaluated only
for |x − y| > dist(x, ∂E), i.e. away from the singularity. The singularity in the integrand has to be treated
carefully when x is very close to a corner, while it is harmless otherwise. If Γ is smooth then (x−y)·n(y)

|x−y| → 0

for y → x, partially compensating the strong singularity of H(1)
1 .

Remark 5.32: (Regularisation of the hypersingular operator). On sufficiently smooth domains, the hyper-
singular operator H can be computed with a “regularisation” technique. This circumvents the strong singularity
in the kernel with two applications of the single-layer operator S:

(Hψ)(x) =∂τ

∫
Γ

Φk(x,y)∂τψ(y) ds(y) + k2
∫
Γ

Φk(x,y)n(x) · n(y)ψ(y) ds(y),

⟨Hψ,φ⟩Γ =− ⟨S∂τψ, ∂τφ⟩Γ + k2⟨S(ψn), φn⟩Γ

=

∫
Γ

∫
Γ

Φk(x,y)
(
− ∂τψ(x)∂τφ(y) + k2n(x) · n(y)ψ(x)φ(y)

)
ds(y) ds(x).

Here ∂τ = (−n2, n1) · ∇ denotes the tangential derivative along Γ. Note the presence of the scalar product
n(x) · n(y) between the unit normals. This formula can be found in [McLean00, Ex. 9.6]40. The 3D version
of this formula is in [McLean00, Thm. 9.15] (for the Helmholtz equation) and [SS11, Thm. 3.3.22] (for more
general PDEs).

Exercise 5.33: (Calderón calculus). Given a bounded Lipschitz scatterer Ω−, we can collect the Dirichlet
and the Neumann traces (either from Ω− or Ω+) in a vector-valued Cauchy trace:

γ±
C := (γ±, ∂±n ) : H1

loc(Ω±; ∆) → H, where H := H
1
2 (Γ)×H− 1

2 (Γ).

For k > 0, we define the Calderón projectors P± as the operator matrices

P± : H → H, P± := ±
(
γ±D −γ±S
∂±n D −∂±n S

)
=

1

2
I ±

(
D −S
H −D′

)
=

(
1
2 ±D ∓S
±H 1

2 ∓D′

)
.

(When we say “Helmholtz solution” it is understood that the wavenumber is k.)
• Check the equality between the expressions of P± using the trace formulas (79).
• Let u+ be a radiating Helmholtz solution in Ω+ and u− a Helmholtz solution in Ω−.

Use the Green representations (73), u± = ±(Dγ±u± − S∂±n u±), to show that

P±γ±u± = γ±u±.

• Let ϕ = (ϕ1, ϕ2) ∈ H. Define u = Dϕ1 − Sϕ2 ∈ H1
loc(Ω+ ∪ Ω−; ∆). Show that γ±

Cu = ±P±ϕ.

• Deduce that the Calderón operators are indeed projectors, i.e. (P±)2 = P± in H.

• Deduce the operator identities

D2 − SH = (D′)2 −HS =
1

4
I, DS = SD′, HD = D′H. (81)

• Since the projectors satisfy P+ + P− = I, they project on complementary subspaces of H:

∀ϕ ∈ H, ϕ = P−ϕ− + P+ϕ+ where ϕ± = P±ϕ.

• Let ϕ ∈ H be such that P±ϕ = ϕ. Deduce that ϕ = γ±
Cu

±, where u± ∈ H1
loc(Ω±; ∆) is a (radiating, if

the sign is +) Helmholtz solution.

Hint: define u± = ±(Dϕ1 − Sϕ2)|Ω± .

• The Calderón projectors allow to identify the Cauchy traces of Helmholtz solutions in the two domains Ω±.
The space H is direct sum of kerP+ and kerP−. For all ϕ ∈ H,

P+ϕ = 0 ⇐⇒ P−ϕ = ϕ ⇐⇒ ϕ = γ−
Cu

−

where u− is a Helmholtz solution in Ω−,

P−ϕ = 0 ⇐⇒ P+ϕ = ϕ ⇐⇒ ϕ = γ+
Cu

+

where u+ is a radiating Helmholtz solution in Ω+.

(82)

40Also, eq. (4) in [Domínguez, Lu, Sayas, A Nyström method for the 2-dimensional Helmholtz hypersingular equation, 2014]

https://doi.org/10.1007/s10444-014-9344-5
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Calderón projectors are described in [CGLS12, pp. 117–118] (for the Helmholtz equation) and [SBH19, §14.4]
(for the reaction–diffusion equation). They are often used to design new BIEs and preconditioners for the BEM,
exploiting formulas (81). For instance, if one wants to solve a BIE for the operator S, as we have been doing
in this section, pre-multiplying left- and right-hand sides of the BIE by the hypersingular operator −4H gives a
BIE for the operator I − 4(D′)2, which is a compact perturbation of the identity when the domain is smooth,
[SS11, §3.9.3]. An accurate discretisation of this BIE gives a well-conditioned matrix whose eigenvalues cluster
at 1, so its solution with an iterative solver might require very few iterations. However, the assembly of the
system may require the construction of compatible “dual meshes” and be extremely complicated. This “Calderón
operator preconditioning” is particularly relevant and well-studied in computational electromagnetism.

5.6 Single-layer potential in Ω−, value of ψ and far-field pattern
Consider the SSSP (45) and the corresponding single-layer BIE Sψ = gD (58). The representation formula
uScat = (Sψ)|Ω+ (59) gives the value of the scattered field in Ω+ as a single-layer potential. Denote by u−
the same potential evaluated inside the scatterer Ω−, i.e. u− = (Sψ)|Ω− . Then u− is a Helmholtz solution
in Ω− with trace γ−u− = γ−Sψ = Sψ = gD = −γuInc. We now assume that: (i) k2 is not a Dirichlet
eigenvalue and (ii) uInc is an incoming wave that is Helmholtz solution also in Ω−, e.g. a plane wave.
Then, by the uniqueness of the solution of the interior Helmholtz Dirichlet problem (Proposition 4.6),

(Sψ)|Ω− = u− = −uInc|Ω− . (83)

This equality has a few useful consequences.
From one of the jump relations (80) we can relate the BIE density ψ to a “physical” quantity, the

Neumann trace of the total field:

ψ = −[[∂nSψ]] = ∂−n Sψ − ∂+n Sψ = ∂n(−uInc)− ∂+n u
Scat = −∂+n uTot. (84)

This allows to compute the Neumann trace of the scattered field from the data and the BIE solution as

∂+n u
Scat = −ψ − ∂nu

Inc.
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Figure 24: Left: the density ψ = −∂+n uTot for the problem of Figure 15 with k = 20, computed with
the BEM of §5.2. The x-axis represent the curvilinear abscissa along the boundary of the triangle Γ,
starting from the lower-left vertex and proceeding anticlockwise. We observe that ψ oscillates on the
two illuminated sides of Γ, is small (but non-zero) on the shadow side, and has singularities at the three
vertices. Right: the same for k = 40.

We recall from Remark 4.27 that the far-field pattern of the scattered field is the function u∞ ∈ C∞(S1)
such that uScat(x) = eikr

√
r
(u∞(θ) +O(r−1)). Its explicit formula (47) requires the value of ∂+n uScat on Γ.

We can use the formula that we have just obtained to compute the far-field pattern of the scattered field
(solution of the SSSP (45)) from the BIE (58) solution ψ:

u∞(θ) =
ei

π
4

√
8πk

∫
Γ

(
γ+uScat(y)∂ne

−iky·d − ∂+n u
Scat(y)e−iky·d

)
ds(y)
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=
ei

π
4

√
8πk

∫
Γ

(
− γuInc(y)∂ne

−iky·d +
(
ψ(y) + ∂nu

Inc(y)
)
e−iky·d

)
ds(y) (85)

=
ei

π
4

√
8πk

∫
Γ

ψ(y)e−iky·d ds(y) d = (cos θ, sin θ).

The last equality comes from Green’s second identity (31) in Ω−, applied to uInc and the plane wave
y 7→ e−iky·d (recall that here we have assumed that the datum uInc is a Helmholtz solution in Ω−).

Exercise 5.34: (Far-field pattern with BEM). Use your BEM code to approximate the far-field pattern of
the field scattered by a polygon; see an example in Figure 17.

Remark 5.35: (Checking BEM accuracy). The formula (Sψ+uInc)|Ω− = 0 is useful to check the correctness
of a BEM implementation of the BIE (58). The routine used to evaluate the numerical near-field uN = SψN
in a portion of Ω+ can be used to approximate Sψ in Ω−. The value |SψN + uInc| in Ω− must be small for
an accurate BEM implementation and must decrease to 0 when the BEM mesh is refined.

Choose a simple domain Υ compactly contained in Ω− and test your BEM code by computing the value∥∥SψN + uInc
∥∥
L2(Υ)

/
∥∥uInc∥∥

L2(Υ)
and see how this ratio depends on the problem parameters and on the

numerical ones (k, Ω−, N , quadrature,. . . ). (The reason for taking Υ instead of Ω− is that the convergence
to zero of (SψN + uInc)(x) for N → ∞ is slow for x ∈ Ω− close to Γ.)

Remark 5.36: (Kirchhoff/physical optics approximation). We know from the analysis in §4.1 that, when a
plane wave uInc(x) = eikx·d is reflected by an infinite flat Dirichlet obstacle, then the corresponding total field
satisfies ∂nuTot = 2∂nu

Inc, where n is the unit normal to the obstacle. We can imagine that when the same
wave hits a flat part of a “very large”, convex, bounded, obstacle Ω− then, at least locally, it behaves as if the
obstacle was infinite. For a time-harmonic wave, “very large” means much larger than the problem wavelength
λ = 2π

k . This suggests to approximate the BIE solution ψ = −∂+n uTot with

ψPO :=

{
−2∂nu

Inc = −2ikd · nuInc on the part of Γ where d · n ≤ 0 i.e., in the part illuminated by uInc,
0 on the part of Γ where d · n > 0 i.e., in the shadow part of Γ.

(Recall Exercise 4.4.) This is equivalent to approximating ∂+n uScat with ∂+n uInc on
the illuminated part and with −∂+n uInc on the shadow part. Then one can com-
pute uPO = S(ψPO) as an approximation of uScat. Numerically, this only requires
approximating the representation formula, with no need to solve linear systems or
to approximate BIEs. This is called Kirchhoff or physical optics approximation
(sometimes geometrical optics approximation), see [CK2, pp. 64] and [CGLS12,
§3]. Physically, it corresponds to taking into account only the reflection of the in-
coming wave disregarding more subtle phenomena such as diffraction by the corners
and/or the curved parts of Γ. This can be accurate only for large values of k. See
Figure 25 for an example.

Ω−

shadow

n

d

Figure 24 suggests that indeed, for the example with triangular Ω− of Figure 15, ψ is close to 0 on the
hypotenuse (in the shadow) and close to −2∂ne

ikx·d on the other sides. The physical optics approximation
completely misses the singularities of ψ at the corners of the polygon.

Exercise 5.37: (Physical optics approximation vs BEM). Compute the physical optics approximation ψPO

and uPO and plot them against ψN and uN for a given uInc and a convex polygon, or for a disc (as in Figure 25).
Plot some norm of their difference as function of the wavenumber.

Remark 5.38: (Geometrical theory of diffraction). The Kirchhoff approximation described in Remark 5.36
does not include diffraction phenomena, e.g. it incorrectly predicts ∂nuTot = 0 in the shadow region {x ∈
Γ : d · n(x) > 0} of the boundary. An improvement is the geometrical theory of diffraction (GTD)
developed by J.B. Keller. Assume that Ω− is a convex polygon and that the incoming field is a plane wave.
Let x : [0, Lj ] → Γj be the arclength parametrisation of the side Γj of Ω−. The GTD predicts that

ψ
(
x(s)

)
= −∂nuTot

(
x(s)

)
= ψPO

(
x(s)

)
+ v+j (s)e

iks + v−j (Lj − s)e−iks,

where v±j are non-oscillatory functions that are singular at s = 0 and smooth for s > 0. This means that
ψ|Γj

is sum of the physical-optics approximation and of two waves creeping along Γ in opposite directions
and that singularities may appear only at corners. This is consistent with what we see in Figure 24 and is the
starting point for the construction of the very efficient hybrid numerical-asymptotic (HNA) BEM schemes,
see [CGLS12, §3].



Single-layer potential in Ω−, value of ψ and FFP |72| A. Moiola — February 24, 2025

Remark 5.39: (Scattering by screens). A sound-soft obstacle does not need to have a positive volume
to scatter acoustic waves. Imagine a plane wave propagating in direction d = (0,−1) hitting the sound-soft
rectangle Ω− = (0, 1)× (0, δ) for small δ. The region immediately underneath the obstacle lies in the “shadow”
of Ω− and the total field will be small, whatever the value of the rectangle thickness δ > 0. In the limit δ ↘ 0,
the scatterer volume vanishes, but the scattered field does not. Indeed, we can consider compact scatterers
Γ ⊂ R2 with empty interior that are segments or Lipschitz curves. These scatterers are usually called screens
or cracks. See a simple example in Figure 26.

The corresponding SSSP is identical to (45) where Ω+ = R2 \ Γ. We can define the single-layer operator
and potential on Γ as in §5.1, consider the BIE Sψ = gD, and the scattered field is uScat = Sψ. The Dirichlet
traces of uScat on both sides of Γ are equal to the trace of −uInc, while the Neumann traces of uScat from
the two sides differ. The BIE solution ψ turns out to be the difference (the jump) between the two Neumann
traces of uScat on the two sides of Γ.

An important difference from problem (45) with a Lipschitz Ω−, is that when Γ is a screen then the
unbounded propagation domain Ω+ is not a Lipschitz domain, and both uScat and uTot have a strong singularity
at the endpoints of Γ. In particular, ψ ̸∈ L2(Γ) (compare with (112)). The function spaces needed to
appropriately formulate BVPs and BIEs on screens are slightly more complicated than H± 1

2 (Γ), to account for
the singular behaviour at the endpoints.

A special property of flat screens, i.e. screens contained in a straight line (or a plane in 3D) is that the
sesquilinear forms associated to the Helmholtz single-layer and the hypersingular operators are coercive.41

Exercise 5.40 studies another special feature of the scattering by flat screens.

Exercise 5.40: (Babinet principle). Let Γ∞ = {(x1, 0), x1 ∈ R} ⊂ R2 be a horizontal line in the plane.
Let uInc(x) = eik(x1d1+x2d2) be a downward-pointing plane wave, with d2 < 0. Let Γ ⊂ Γ∞ be a flat
screen, i.e. a bounded union of disjoint closed segments, and Ω+ = R2 \ Γ. Let uScat be the solution of the
problem described in Remark 5.39: a radiating Helmholtz solution in Ω+ with trace gD = −uInc on Γ. From
Remark 5.39, uScat(x) = Sψ(x) =

∫
Γ
Φk(x,y)ψ(y) ds(y), for ψ supported on Γ. Define

w(x) =

{
uInc(x) + eik(x1d1−x2d2) + uScat(x) x2 > 0,

−uScat(x) x2 < 0.

Γ
Γ∞

uInc

uScatΩ+

Recall from §4.1 that eik(x1d1−x2d2) is the reflection of uInc by the infinite line Γ∞ equipped with sound-hard
boundary conditions.

• Show that uScat is even-symmetric with respect to Γ∞: uScat(x1,−x2) = uScat(x1, x2), and ∂uScat

∂x2
(x1, 0) =

0 for (x1, 0) ∈ Γ∞ \ Γ.

• Show that w is a Helmholtz solution in R2 \ (Γ∞ \ Γ) = Ω+ ∪ Γ. In particular, it is smooth across Γ.

• Show that ∂w
∂x2

(x1, 0) = 0 on Γ∞ \ Γ.

This means that w is the total field obtained when uInc hits the unbounded screen Γ∞ \ Γ equipped with
sound-hard boundary conditions.

This is Babinet’s principle: the scattering by a Dirichlet screen Γ is the “complementary” of the scattering
by the Neumann screen Γ∞ with aperture Γ. Here “complementary” means that the scattered fields for the
two problems in the lower half plane are opposite to one another.42 See Figure 27 for an example.

When electromagnetic waves are involved, Babinet’s principle states that the electric field scattered by a
perfectly conducting (PEC) screen Γ corresponds to the magnetic field diffracted and transmitted by the comple-
mentary aperture Γ∞\Γ, and vice versa (so one swaps electric↔magnetic fields, instead of Dirichlet↔Neumann
boundary conditions). The field scattered by a flat screen, approximated for instance with the BEM, can be
used to compute the classical aperture “diffraction patterns”.

41[Chandler-Wilde, Hewett, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar
screens, IEOT 2015]

42See [Bouwkamp, Diffraction theory, 1954], in particular pp. 38–39 and pp. 45–46 for acoustic and electromagnetic waves.

https://doi.org/10.1007/s00020-015-2233-6
https://doi.org/10.1007/s00020-015-2233-6
https://doi.org/10.1088/0034-4885/17/1/302
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Figure 25: The Kirchhoff (physical optics) approximation of the scattering by a sound-soft disc.
Left: the field ℜ{uScat} scattered by the unit disc B1, hit by a horizontal plane wave for different
wavenumbers k ∈ {10, 30, 100}. This has been computed with the multipole expansion as in Figure 12.
Centre: the approximation ℜ{uPO} computed as the single-layer potential applied to the density ψPO

defined in Remark 5.36. Numerically, uPO has been computed with 200-point Gauss–Legendre quadra-
ture on the left half of the disc boundary (recall that ψPO = 0 in the shadow part).
Right: the error ℜ{u − uPO} committed by the Kirchhoff approximation. This is not a numerical er-
ror but it contains the diffracted waves that are not taken into account by this approximation. The
error is higher near the “shadow boundary”, i.e. the part of Γ separating the lit and the shadow parts.
The ∥uScat − uPO∥L2((−2,2)2\B1)/∥uScat∥L2((−2,2)2\B1) relative error is reported for each example and
decreases with the wavenumber.
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Figure 26: The scattering of a plane wave with k = 20, d = (0,−1), impinging on the rectangle
(0, 1) × (−0.1, 0) (left) and on the screen [0, 1] × {0} (right). The imaginary part of the total field is
plotted on (−1, 2)× (−1.5, 1.5).
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Figure 27: An illustration of Babinet’s principle (Exercise 5.40). A plane wave with wavenumber
k = 40 and direction d = (cos π3 ,− sin π

3 ) is scattered by the 2-component sound-soft screen Γ =
([0, 13 ] ∪ [ 23 , 1]) × {0} (top row), and is transmitted by an aperture with the shape of Γ in the infinite
sound-hard screen Γ∞ = {x2 = 0} (bottom row). The real and the imaginary parts of the scattered
and total fields are plotted in the square (−1, 2)× (−1.5, 1.5). The scattered field for the two problems
is identical in the upper half plane and have opposite signs in the lower half plane.
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6 Well-posedness, other BIEs, and error analysis

6.1 Well-posedness of the single-layer BIE
We want to study the well-posedness of the single-layer BIE Sψ = gD (58). To this purpose, we want to
verify that the single-layer operator S : H− 1

2 (Γ) → H
1
2 (Γ) is (i) injective and (ii) Fredholm. When both

conditions are satisfied, then Fredholm alternative (Theorem 3.17) implies that S is invertible and the
BIE is well-posed. However, injectivity is not always true: the EDP (44) is always well-posed (§4.4) but
its BIE (58) might fail.

6.1.1 Injectivity of the single-layer operator

As in §4.2, two cases may happen:
• If Λ = k2 is a Dirichlet eigenvalue in Ω−, then there exists an eigenfunction w ̸= 0 such that ∆w+k2w =
0 and γ−w = 0. Define ψ = ∂−n w. By Green’s representation (65), w = S∂−n w−Dγ−w = S∂−n w = Sψ.
Then ψ ̸= 0 because otherwise w = Sψ would be zero, and Sψ = γ−Sψ = γ−w = 0. In this case the
single-layer operator is not injective: 0 ̸= ψ ∈ kerS. The BIE (58) is not well-posed.

• If Λ = k2 is not a Dirichlet eigenvalue in Ω−, then assume that Sψ = 0 and define u = Sψ. We
have that u− = u|Ω− is Helmholtz solution in Ω− and γ−u− = γ−Sψ = Sψ = 0. But the interior
homogeneous Helmholtz Dirichlet BVP is well-posed by Proposition 4.6 and admits only the solution
u− = 0. Similarly u+ = u|Ω+

is a radiating Helmholtz solution in Ω+ with γ+u+ = γ+Sψ = Sψ = 0.
By the well-posedness of the EDP of §4.4 also u+ = 0. The jump relation (80) gives ψ = −[[∂nSψ]] =
−∂+n u+ + ∂−n u

− = 0, so the single-layer operator is injective.
Combining with Proposition 4.6 we obtain the following fact.

Lemma 6.1: (Injectivity of S). For each bounded, Lipschitz Ω− ⊂ R2, there exist a sequence of positive
number k1 < k2 < . . ., limj→∞ kj = ∞, such that S is injective if and only if k ̸= kj for all j ∈ N.

These values are called spurious resonances or spurious frequencies. Even if the BIE (58) is
not solvable in this case, the EDP (44) is well-posed: the interior eigenvalues affect and spoil the BIE
formulation of the exterior problem. This can be understood as follows: the same BIE solves both an
exterior and an interior Helmholtz Dirichlet problem (with solutions (Sψ)|Ω+ and (Sψ)|Ω−), when the
latter is not well-posed then the BIE cannot be well-posed either. In §6.2 we will see other (slightly more
complicated) BIEs that always admit a solution.

Exercise 6.2: (Spurious frequencies and BEM). We observe how spurious resonances affect numerical
computations. Plot the condition number of the BEM matrix ACol/Gal and the accuracy test of Remark 5.35
(e.g.

∥∥SψN + uInc
∥∥
L2(Υ)

) for several values of k close to a resonance to see how they blow up.
Hint: choose Ω− as a square, so that the values of kj are easily computed by hand as in §4.2.

6.1.2 The single-layer operator is Fredholm

We now want to show that the single-layer operator S : H− 1
2 (Γ) → H

1
2 (Γ) is Fredholm, i.e. it is sum of

an invertible and a compact operator.
We define the single-layer operator for Laplace equation −∆u = 0 as

(S0ψ)(x) := − 1

2π

∫
Γ

log
|x− y|
d

ψ(y) ds(y), x ∈ Γ, (86)

where d is a positive parameter43 satisfying d > diam(Γ) = supx,y∈Γ |x− y|.
Given a positive number c, we also define the single-layer operator for the homogeneous reaction–

diffusion equation (in this setting sometimes called “Yukawa equation” [SBH19], or “modified Helmholtz
equation” [Spence14]) −∆u+ c2u = 0 as

(Scψ)(x) :=
1

2π

∫
Γ

K0(c|x− y|)ψ(y) ds(y), x ∈ Γ, (87)

43Different values of d give different “versions” of the single-layer. This corresponds to adding a constant to S0; recall
the following difference between Laplace and Helmholtz solutions: ∆u = 0 ⇒ ∆(u + C) = 0 but (∆ + k2)u = 0 ⇒
(∆ + k2)(u+ C) ̸= 0 for all constants C ̸= 0. This is related to the fact that the 2D Laplace fundamental solution does not
decay to 0 at infinity. We will see in Remark 6.8 that the precise value of d only matters to ensure the coercivity of S0. This
is not true in 3D, where there is no need for the parameter d.



Well-posedness of the single-layer BIE |76| A. Moiola — February 24, 2025

where K0(t) :=
iπ
2 H

(1)
0 (it) for t ≥ 0 is the “modified Bessel function of the second kind”. 44 Formally, Sc

equals the single-layer operator for the Helmholtz equation with purely imaginary wavenumber (i.e. with
ic in place of k).

The following two facts hold:

Lemma 6.3: (Single-layer: compactness of S − Sc and coercivity of Sc). For all c ≥ 0,

• S − Sc : H
− 1

2 (Γ) → H
1
2 (Γ) is compact;

• Sc : H
− 1

2 (Γ) → H
1
2 (Γ) is coercive, i.e. ∃αc > 0 such that ⟨Scψ,ψ⟩Γ ≥ αc ∥ψ∥2

H− 1
2 (Γ)

∀ψ ∈ H− 1
2 (Γ).

In the next pages we explain where Lemma 6.3 comes from, but we do not give a complete proof.
Note that we allow also the case c = 0: Sc can stand either for the Laplace or for the reaction–diffusion

operator.
The second item of Lemma 6.3 and Lax–Milgram theorem imply that Sc : H− 1

2 (Γ) → H
1
2 (Γ) is

invertible and that the corresponding BIE (for Laplace or reaction–diffusion) Scψ = g is well-posed for all
g ∈ H

1
2 (Γ). From Definition 3.16, S = Sc + (S − Sc) is a Fredholm operator. Moreover, the sesquilinear

form A(·, ·) defined in (60) and used to define and implement the Galerkin-BEM method is sum of a
coercive and a compact form: A(ψ, ξ) = ⟨Sψ, ξ⟩Γ = ⟨Scψ, ξ⟩Γ + ⟨(S − Sc)ψ, ξ⟩Γ.

By Fredholm alternative 3.17, S is invertible if and only if it is injective. By §6.1.1, the single-layer
BIE Sψ = gD is well-posed (i.e. S is invertible) if and only if −k2 is not a Dirichlet eigenvalue for Ω−.
Combining with what we already know about the eigenvalues, we obtain the following fact.

Theorem 6.4: (Single-layer BIE well-posedness). For each Ω− there exist a sequence of positive numbers
k1 < k2 < . . ., limj→∞ kj = ∞, such that the BIE Sψ = gD is well-posed for all gD ∈ H

1
2 (Γ) if and only if

k ̸= kj for all j ∈ N.

We repeat: Theorem 6.4 follows from Lemma 6.3, Lax–Milgram theorem, Fredholm alternative 3.17,
and Lemma 6.1.

Why do we consider both the Laplace (S0) and the reaction–diffusion (Sc) cases? To prove the Fredholm
property of S any of them would be enough. On one hand, the Laplace single-layer S0 is easier to study
because it does not require special functions, while, on the other hand, the coercivity is easier to prove for
Sc than for S0 (in 2D).45

We study the properties of compactness and coercivity in the following, starting from the case of a
circular scatterer.

Remark 6.5: (Helmholtz=Laplace+low-order, once again). This decomposition of the Helmholtz operator
in a “Laplace part” and “whatever is left” should remind you the technique used in §4.2 for Helmholtz problems
on bounded domains. In that case, using the Gårding inequality, we have decomposed the Helmholtz sesquilinear
form (either A of (36) or AI of (38)) in a coercive part corresponding to an elliptic equation and a compact
perturbation term multiple of k2

∫
Ω
uw dx.

Remark 6.6: (Helmholtz vs coercive cases: BIE well-posedness and Galerkin method). The coercivity
of S0 implies that the single-layer BIE for the Laplace equation S0ψ = gD is always well-posed. Moreover, as we
are in a Lax–Milgram setting, every Galerkin-BEM discretisation of the variational problem ⟨S0ψ, ξ⟩Γ = ⟨gD, ξ⟩Γ
is well-posed, quasi-optimal and gives symmetric positive-definite matrices.

This is not true in the Helmholtz case. To ensure well-posedness of the Galerkin method, some conditions
on the discrete space are needed (roughly speaking, it must have sufficiently good approximation properties).
Under these conditions, we have a quasi-optimality estimate as in Céa lemma. We sketch this theory in §6.3.

44This is defined from the complex-analytic extension of H(1)
0 to complex argument, in such a way that K0 is a real-

valued, positive, monotonically decreasing function; see [DLMF, eq. 10.27.8]. It satisfies K0(t) ∼ − log t for t → 0 and
K0(t) ∼

√
π/2t e−t for t → ∞, [DLMF, eq. 10.25.3 and 10.30.3]. It is easy to see that it satisfies the “modified Bessel

equation” t2K′′
0 (t) + tK′

0(t) − t2K0(t) = 0 and from this that −∆xΦc(x,y) + c2Φc(x,y) = δy(x) where Φc(x,y) :=
1
2π
K0(c|x− y|) = i

4
H

(1)
0 (ic|x− y|).

45We write also the fundamental solutions of the Helmholtz, Laplace and reaction–diffusion PDEs in R3:

∆u+ k2u = 0 → Φk(x,y) =
eik|x−y|

4π|x− y|
, ∆u = 0 → Φ0(x,y) =

1

4π|x− y|
, −∆u+ c2u = 0 → Φc(x,y) =

e−c|x−y|

4π|x− y|

([Spence14, §9.1]). Differently from the 2D case, all three fundamental solutions can be written as special instances of Φc

with complex c (or Φk with complex k). In particular, in 3D the Laplace case is the limit for k ↘ 0 or c↘ 0 of the other two.

https://dlmf.nist.gov/10.27.E8
https://dlmf.nist.gov/10.25.3
https://dlmf.nist.gov/10.30.3
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6.1.3 Continuity, compactness and coercivity of single-layer BIOs on a circle

Let K be a BIO on the circle ∂BR with kernel κ : (0,∞) → C, i.e.

(Kv)(x) =

∫
∂BR

κ(|x− y|)v(y) ds(y), (88)

for v defined on Γ. The distance between two points on the circle can be computed using polar coordinates:

|x− y| = |Reiθx −Reiθy | = R|1− ei(θx−θy)| = R
√
2− 2 cos(θx − θy).

The action of the operator K on a function v can be written as the multiplication of the Fourier coefficients
of the argument v(x) =

∑
ℓ∈Z v̂ℓe

iℓθ by some coefficients Kℓ:

(Kv)(x) =

∫
∂BR

κ(|x− y|)v(y) ds(y) = R

∫ 2π

0

κ(R
√
2− 2 cos(θx − θ))

∑
ℓ∈Z

v̂ℓe
iℓθ dθ (α = θ − θx)

=
∑
ℓ∈Z

v̂ℓe
iℓθx R

∫ 2π

0

κ(R
√
2− 2 cosα)eiℓα dα︸ ︷︷ ︸
=:Kℓ

=
∑
ℓ∈Z

v̂ℓKℓ e
iℓθx .

If Kℓ = O(ℓa) for some a ∈ R then, from the definition (28) of the Sobolev spaces on the circular boundary,
K : Hs(∂BR) → Hs−a(∂BR) as a bounded operator. But, how to estimate the coefficients Kℓ?

The values Kℓ are the Fourier coefficients of the function α 7→ Rκ(R
√
2− 2 cosα) on (0, 2π). Parseval’s

theorem (
∫ 2π

0
|f(θ)|2 dθ = 2π

∑
ℓ∈Z |f̂ℓ|2) implies that the Fourier coefficients of an L2(0, 2π) function decay

as o(ℓ−1/2). As we have seen in §3.3 using that (eiℓθ)′ = iℓeiℓθ, if f ′ ∈ L2(0, 2π) then f̂ℓ = o(ℓ−3/2).

The function α 7→ R
√
2− 2 cosα is Lipschitz (you can verify that its derivative is ±

√
1+cosα

2 ). Thus,

if κ ∈ L2(0, 2R) then Kℓ = o(ℓ−1/2), if moreover κ′ ∈ L2(0, 2R) then Kℓ = o(ℓ−3/2). So, useful relations
between the properties of the kernel κ and the continuity of the operator K in the form (88) are

κ ∈ L2(0, 2R) ⇒ K : Hs(∂BR) → Hs+ 1
2 (∂BR), κ ∈ H1(0, 2R) ⇒ K : Hs(∂BR) → Hs+ 3

2 (∂BR).

(From the formulas above, the properties of κ(t) for t > 2R, the diameter of the circle, are irrelevant.)

What are the kernels of the Helmholtz and Laplace single-layer operators? We have

K = S ⇒ κ(t) =
i

4
H

(1)
0 (kt) ∈ L2(0, 2R),

K = S0 ⇒ κ(t) = − 1

2π
log

|t|
d

∈ L2(0, 2R),

K = S − S0 ⇒ κ(t) =
i

4
H

(1)
0 (kt) +

1

2π
log

|t|
d

∈ H1(0, 2R).

The first line gives S : Hs(∂BR) → Hs+ 1
2 (∂BR). This is not new: we already mentioned that S :

H− 1
2 (Γ) → H

1
2 (Γ) for all Lipschitz boundaries, which, for s = − 1

2 , is a stronger result. We have also seen
from the numerical computations in Figure 20 and Remark 5.2 that Kℓ ∼ ℓ−1, so we cannot expect any
stronger continuity property than this.

We now look at the difference between Helmholtz and Laplace single-layer operators S−S0 (on ∂BR).
From the asymptotic formula H

(1)
0 (z) = i 2π log z + 1 + i 2π (γ − 2) + O(z2) by, e.g., [DLMF, eq. 10.8.2]

with the Euler’s constant γ ≈ 0.57721 we have that κ is bounded and κ′ is bounded (with a jump at 0
because of the

√
2− 2 cosα term). So S − S0 : H− 1

2 (∂BR) → H1(∂BR). (In Figure 28 we demonstrate
numerically a stronger continuity property, i.e. that S − S0 : H− 1

2 (∂BR) → H
5
2 (∂BR).) Since the

inclusion ι : H1(∂BR) → H
1
2 (∂BR) is compact, then the difference between the two single-layers

S − S0 : H− 1
2 (∂BR) → H

1
2 (∂BR) is compact.46

Precisely the same holds with Sc in place of S0: this is because the corresponding kernels κ(t) =

− 1
2π log |t|

d and κ(t) = 1
2πK0(c|t|) have the same behaviour at t = 0.

46Recall that the property of compactness of an operator depends heavily on the norms of the function spaces chosen as
domain and codomain. E.g. the identity operator I : H1(Ω) → H1(Ω) is not compact for a bounded Lipschitz Ω, but when
we view it as I : H1(Ω) → L2(Ω) (and we call it embedding) then it is compact (Rellich theorem). The technique used in
this section is very standard: we show that an operator K maps in a space that is slightly smoother (here H1(∂BR)) than
the desired domain (here H

1
2 (∂BR)), then we compose the operator with the embedding (here ι : H1(∂BR) → H

1
2 (∂BR))

and if this embedding is compact the same holds for ι ◦ K. Recall that the composition of a continuous operator and a
compact one is compact; you can prove this from the definition.

https://dlmf.nist.gov/10.8.2
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Figure 28: A log–log plot of the Fourier coefficients Kℓ for the operator S − S0, difference between
Helmholtz and Laplace single-layer operators, on a circle. The coefficients decay as Kℓ ∼ ℓ−3, so the
operator appears to be continuous Hs(∂BR) → Hs+3(∂BR). In particular it is compact H− 1

2 (∂BR) →
H

1
2 (∂BR). Compare with the coefficients of S in Figure 20.

We can use the expansion in circular harmonics also to check the coercivity of an integral operator.
The sesquilinear form associated to K diagonalises in the Fourier basis (recall §3.3):

⟨Kv,w⟩∂BR
=

〈∑
ℓ∈Z

v̂ℓKℓe
iℓθx ,

∑
m∈Z

ŵℓe
imθx

〉
∂BR

= 2πR
∑
ℓ∈Z

v̂ℓKℓŵℓ.

If Kℓ ∈ R and Kℓ ≥ c(1+ ℓ2)s for all ℓ and some c > 0, s ∈ R 47, then |⟨Kv, v⟩∂BR
| ≥ 2πRc

∑
ℓ∈Z |v̂ℓ|2(1+

ℓ2)s = c ∥v∥2Hs(∂BR), i.e. K is coercive in Hs(∂BR).

Now look at the Laplace single-layer, i.e. K with κ(t) = − 1
2π log |t|

d . Since κ(R
√

2− 2 cos(t)) is real
and even-symmetric, its Fourier coefficients Kℓ are real.

Exercise 6.7: (Laplace single-layer Fourier coefficients). Compute numerically the coefficients Kℓ for the
Laplace single-layer S0 and verify that they satisfy Kℓ(1 + ℓ2)

1
2 > c. (For R = 1, c ≈ 1

2 .)

From this exercise it follows that the Laplace single-layer operator S0 is coercive in H− 1
2 (∂BR).

The same argument can be repeated for Sc.
We have verified, partly with numerical experiments, both items in Lemma 6.3 for the case Γ = S1.

6.1.4 Compactness of S − S0

We sketch the main ideas used to prove the compactness of (S − S0) : H
− 1

2 (Γ) → H
1
2 (Γ). Making them

precise and rigorous is not trivial.
The key result to prove compactness of BIOs is the following: an operator K : L2(Γ) → L2(Γ) in the

form (Kv)(x) =
∫
Γ
κ(|x− y|)v(y) ds(y) is compact if the kernel κ : [0,diamΓ] → C is a bounded function

(L∞).
From the asymptotic expansion of the Hankel function at the origin, as in §6.1.3, we see that the

kernel κ(t) = i
4H

(1)
0 (kt) + 1

2π log t
d of S − S0 is bounded (and continuous). The operator T defined by

Tv = (Sv − S0v)
′, where the derivative is the tangential derivative along Γ, also has a bounded (but

discontinuous) kernel, for the same reason. From this it follows that S−S0 : L2(Γ) → H1(Γ) is a compact
operator. However we want to lower the Sobolev exponents of both spaces by 1

2 .
From functional analysis ([McLean00, Thm. 2.17]) we know that if an operator K : H1 → H2 is

compact, then its adjoint K∗ : H∗
2 → H∗

1 (defined by (K∗φ)(ψ) = φ(Kψ) for φ ∈ H∗
2 and ψ ∈ H1) is also

compact.
Fubini’s theorem implies that the single-layer is self-adjoint (up to conjugation) in L2(Γ):

∫
Γ
(Sφ)ψ ds =∫

Γ
φ(Sψ) ds for all φ,ψ ∈ L2(Γ) (recall Exercise 5.3). The same holds for S0. Thus the adjoint of

47More generally, if the Kℓ are complex we can also take ℜ{σKℓ} > c(1+ ℓ2)s for some σ ∈ C, |σ| = 1. E.g., K is coercive
in L2(∂BR) (s = 0) if there exists a straight line in the complex plane C that separates the origin from all Kℓ.
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S − S0 : L2(Γ) → H1(Γ) is the extension of S − S0 itself to (S − S0)
∗ = S − S0 : H−1(Γ) → L2(Γ), where

H−1(Γ) is the dual of H1(Γ) as in §3.3.3, and is compact.
A technique called “operator interpolation” (see,

e.g., [SBH19, §9.8] or [McLean00, §B]) allows to de-
duce from the compactness of S − S0 in L2(Γ) →
H1(Γ) and in H−1(Γ) → L2(Γ) the boundedness and
the compactness in all intermediate spaces S − S0 :
Hs−1(Γ) → Hs(Γ) for 0 < s < 1, in particular the
compactness of S − S0 : H− 1

2 (Γ) → H
1
2 (Γ).

L2(Γ) H
1
2 (Γ) H1(Γ)

H−1(Γ) H− 1
2 (Γ) L2(Γ)

S − S0(S − S0)
∗

The same reasoning follows verbatim if we take Sc for c > 0 (87) in place of S0 (86): the key point
is the boundedness of the kernel of S − Sc and of v 7→ (Sv − Scv)

′. This follows from the fact that all
kernels considered have the same singularity at 0. A different proof of the compactness of S − Sc can be
obtained by adapting that in [SBH19, Thm. 14.12].

6.1.5 Coercivity of Sc

We sketch the proof of the coercivity of the reaction–diffusion single-layer operator Sc. The coercivity of
the Laplace single-layer operator S0 is slightly more complicated; we discuss it in Remark 6.8.

Most of the results derived and stated in the previous sections (traces, jumps, . . . ) for the Helmholtz
equation hold also for the reaction–diffusion equation, using Φc(x,y) =

1
2πK0(c|x − y|) as fundamental

solution.
Fix ψ ∈ H− 1

2 (Γ) and denote u = Scψ ∈ H1(Ω−,∆) × H1
loc(Ω+,∆), Sc being the reaction–diffusion

single-layer potential. Then −∆u + c2u = 0 in Ω− ∪ Ω+, [[γu]] = 0 and [[∂nu]] = −ψ, in analogy to (80).
From the properties of K0, both u and its radial derivative decay exponentially to 0 for |x| → ∞.

Integration by parts (Green’s first identity (30) with k = ic) on Ω− gives the identity

∥∇u∥2L2(Ω−) + c2 ∥u∥2L2(Ω−) =

∫
Ω−

(∇u · ∇u+ c2uu) dx =

∫
Γ

∂−n u γ
−uds.

Proceeding similarly to §5.3 and exploiting the decay of u and ∂u
∂r , the same holds in Ω+:

∥∇u∥2L2(Ω+) + c2 ∥u∥2L2(Ω+) = lim
R→∞

(
∥∇u∥2L2(Ω+∩BR) + c2 ∥u∥2L2(Ω+∩BR)

)
(89)

= lim
R→∞

∫
Ω+∩BR

(∇u · ∇u+ c2uu) dx

= lim
R→∞

(
−
∫
Γ

∂+n u γ
+uds+

∫
∂BR

∂nuuds︸ ︷︷ ︸
R→∞−−−−→0

+

∫
Ω+∩BR

(−∆u+ c2u︸ ︷︷ ︸
=0

)udx
)
= −

∫
Γ

∂+n u γ
+uds.

(Note that the H1(Ω+) norm would not be bounded if u = Sψ, with the Helmholtz single-layer potential,
because in this case u would have a slower decay at infinity.)

Taking the normal trace of vector fields, v 7→ v|Γ ·n, is continuous as an operator from H(div; Ω±) to
H− 1

2 (Γ) ([SBH19, Thm. 6.1], recall footnote 14):

∥v|Γ · n∥2
H− 1

2 (Γ)
≤ Ctr

(
∥v∥2L2(Ω±)2 + ∥divv∥2L2(Ω±)

)
(90)

∀v ∈ H(div; Ω±) :=
{
v ∈ L2(Ω±)

2; divv ∈ L2(Ω±)
}
.

Here Ctr > 0 only depends on Γ. Applying this to ∇u, whose divergence is in L2 because ∆u = c2u, allows
to control the Neumann traces with the L2 norms of the gradient and the Laplacian of u. Combining all
these results we have that, for all ψ ∈ H− 1

2 (Γ),

∥ψ∥2
H− 1

2 (Γ)
= ∥[[∂nu]]∥2

H− 1
2 (Γ)

ψ = −[[∂nu]]

≤ 2
( ∥∥∂−n u∥∥2H− 1

2 (Γ)
+
∥∥∂+n u∥∥2H− 1

2 (Γ)

)
triangle inequality

≤ 2Ctr

(
∥∇u∥2L2(Ω−)2 + ∥∆u∥2L2(Ω−) + ∥∇u∥2L2(Ω+)2 + ∥∆u∥2L2(Ω+)

) normal trace continuity
in H(div; Ω±) (90)

≤ 2Ctr max{1, c2}
∫
Ω−∪Ω+

(∇u · ∇u+ c2uu) dx ∆u = c2u
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= 2Ctr max{1, c2}
∫
Γ

(∂−n uγ
−u− ∂+n uγ

+u) ds Green’s 1st identity (89)

= 2Ctr max{1, c2}
∫
Γ

−[[∂nu]]γuds γ+u = γ−u

= 2Ctr max{1, c2}
∫
Γ

ψScψ ds [[∂nu]] = −ψ, γu = γScψ = Scψ

= 2Ctr max{1, c2}
∫
Γ

(Scψ)ψ ds Scψ = Scψ,

∫
Γ

ψScϕds =

∫
Γ

(Scψ)ϕds.

This is precisely the coercivity of Sc in H− 1
2 (Γ).

Remark 6.8: (Coercivity of S0 in 3D and 2D). The proof of the coercivity of the Laplace single-layer
operator S0 in R3 works exactly in the same way setting c = 0, noting that the algebraic decay of u for
|x| → ∞ is enough to ensure ∇u ∈ L2(Ω+)

3 (see [SBH19, §14.6–7])
In R2 the proof of the coercivity of S0 is more complicated; here we follow [Steinbach 2008, Thm. 6.22–

23]48 and [McLean00, Thm. 8.12–16]. The key difference is that the relation ∥∇u∥2L2(Ω+) = −
∫
Γ
∂+n u γ

+uds

for u = S0ψ only holds if ψ satisfies the 0-average condition ⟨ψ, 1⟩Γ = 0. This is due to the absence of decay
to zero of the fundamental solution Φ0 at infinity. Thus the reasoning above gives the coercivity of S0 in
H

− 1
2

∗ (Γ) := {ψ ∈ H− 1
2 (Γ) : ⟨ψ, 1⟩Γ = 0}.

To deal with the general case (ψ ∈ H− 1
2 (Γ) instead of ψ ∈ H

− 1
2

∗ (Γ)) we have to work a bit more.
Lax–Milgram and the coercivity for 0-average densities ensure that there exists a unique (non zero)

β∗ ∈ H
− 1

2
∗ (Γ) ⟨S0β∗, ξ∗⟩Γ = ⟨S01, ξ∗⟩Γ ∀ξ∗ ∈ H

− 1
2

∗ (Γ).

Define βeq := 1
|Γ| (1 − β∗) ∈ H− 1

2 (Γ). The two densities β∗, βeq only depend on Γ. Then βeq is real-valued,

⟨βeq, 1⟩Γ = 1, and ⟨S0βeq, ξ∗⟩Γ = 0 for all ξ∗ ∈ H
− 1

2
∗ (Γ), so S0βeq is constant on Γ. Recalling the definition

(86) of S0,

(S0βeq)(x) =
1

2π

∫
Γ

βeq(y)
(
log d− log |x− y|

)
ds(y)

=
1

2π
log d

∫
Γ

βeq(y) ds(y)−
1

2π

∫
Γ

βeq(y) log |x− y|ds(y)

=
1

2π
log d− 1

2π

∫
Γ

βeq(y) log |x− y|ds(y) ∀x ∈ Γ.

This is where we need the (so far unused) parameter d > 0: if d is sufficiently large then S0βeq > 0. It is
possible to show that d > diamΓ is enough to guarantee that S0βeq > 0.49 Then also

⟨S0βeq, βeq⟩Γ = S0βeq⟨1, βeq⟩Γ = S0βeq > 0.

We want to decompose a general ψ ∈ H− 1
2 (Γ) in a H− 1

2
∗ (Γ) component and a remainder: instead of taking a

constant remainder as one might expect, we take a remainder whose image under S0 is constant, i.e. a multiple
of βeq. For all ψ ∈ H− 1

2 (Γ) define

ψ∗ := ψ − ⟨ψ, 1⟩Γβeq ⇒ ⟨ψ∗, 1⟩Γ = ⟨ψ, 1⟩Γ
(
1− ⟨βeq, 1⟩Γ

)
= 0.

Now we use the decomposition ψ = ψ∗ + ⟨ψ, 1⟩Γβeq to show the positivity of the single-layer potential:

⟨S0ψ,ψ⟩Γ = ⟨S0(ψ∗ + ⟨ψ, 1⟩Γβeq), ψ∗ + ⟨ψ, 1⟩Γβeq⟩Γ

= ⟨S0ψ∗, ψ∗⟩Γ + 2⟨ψ, 1⟩Γ ⟨S0βeq, ψ∗⟩Γ︸ ︷︷ ︸
=0

+|⟨ψ, 1⟩Γ|2 ⟨S0βeq, βeq⟩Γ︸ ︷︷ ︸
>0

≥ C
(
∥ψ∗∥2

H− 1
2 (Γ)

+ |⟨ψ, 1⟩Γ|2
)
,

which gives coercivity when combined with the triangle inequality

∥ψ∥
H− 1

2 (Γ)
≤ ∥ψ∗∥

H− 1
2 (Γ)

+ |⟨ψ, 1⟩Γ| ∥βeq∥
H− 1

2 (Γ)
≤ C

(
∥ψ∗∥

H− 1
2 (Γ)

+ |⟨ψ, 1⟩Γ|
)
.

48[Steinbach, Numerical approximation methods for elliptic boundary value problems, Springer 2008]
49The value e

∫
Γ βeq(y) log |x−y| ds(y), which is independent of x ∈ Γ, is called “logarithmic capacity of Γ”, while βeq is the

“equilibrium density”. In 2D electrostatic, the electric charge on an insulated conductor Ω− distributes on the boundary Γ
proportionally to βeq, in such a way that the electrostatic potential S0βeq is constant on Γ and takes value S0βeq in Ω+.

https://doi.org/10.1007/978-0-387-68805-3
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Exercise 6.9: (Laplace single-layer parameter d). Using the BIO expansion in §6.1.3 show that for a circle
Γ = ∂BR, we have β∗ = 0, βeq = 1

2πR , S0βeq = 1
2πRS01 = 1

2π log d
R . Thus d > R is enough to prove the

coercivity of S0 on H− 1
2 (∂BR).

Hint: use that
∫ 2π

0
log

√
2− 2 cosα dα = 0 and the properties of the logarithm.

6.2 The BIE zoo
We have seen that the single-layer BIE fails for some values of k. We want to derive some other BIEs that
allow to compute the solution of the EDP/SSSP also for these values of k. We write a total of six BIEs;
their properties are summarised in Table 1.

First of all, it is instructive to recall how we found the BIE (58). We wrote the solution u of the EDP
(44) as a single-layer u = Sψ, then we took the Dirichlet trace γ+ of this representation, and from one of
the trace formulas (79) obtained the BIE Sψ = gD (recall that we need to impose the boundary condition
γ+u = gD). Also for the other BIEs the key steps are the same:

(i) choose a potential representation,

(ii) take a trace using (79).

6.2.1 Indirect double-layer BIE

If instead of a single-layer we assume that the EDP solution is a double-layer potential

u = Dψ, ψ ∈ H
1
2 (Γ),

taking the Dirichlet trace γ+ (79) we obtain(1
2
+D

)
ψ = gD in H

1
2 (Γ), ψ ∈ H

1
2 (Γ). (91)

This is another BIE for the same BVP. Here and in the following, 1
2 stands for the identity operator

multiplied by the number 1
2 , i.e. the equation is to be read 1

2ψ +Dψ = gD.
According to [Martin06, §5.9.1], (91) is the first BIE studied for Helmholtz exterior Dirichlet problems

by Kupradze in the 1930s.
Equation (91) can be discretised with collocation-BEM or Galerkin-BEM in the same way as §5.2. We

encounter a couple of difficulties. A first difference is that the singularity of D is stronger than that of S,
so the quadrature requires more care.

A second difference is that this BIE is posed in H
1
2 (Γ) instead of H− 1

2 (Γ). The functions of H
1
2 (Γ)

are in general not necessarily continuous, but if they are piecewise-polynomial then they must also be
continuous. This implies that the BEM discrete space VN cannot be made of piecewise-constant functions
(recall Exercise 3.6). The simplest choice is to take VN as the space of continuous piecewise-linear
functions on a mesh.

Is the BIE (91) well-posed? I.e. is the operator ( 12 +D) : H
1
2 (Γ) → H

1
2 (Γ) invertible? As proved in

[CGLS12, Thm. 2.25], this operator is Fredholm. To study the injectivity, once again we have to look at
some interior problem.

Exercise 6.10: (Injectivity of 1
2 +D). Show the following.

• If w is a Neumann eigenfunction in Ω− for Λ = k2, then its trace ψ = γ−w satisfies 1
2ψ +Dψ = 0.

Hint: use Green’s representation.

• If Λ = k2 is not a Neumann eigenvalue in Ω−, then 1
2 +D is injective.

Hint: take u = Dψ for ψ ∈ ker( 12 +D). Use the well-posedness of the EDP and both jump relations.

• Deduce that the BIE (91) is injective if and only if k2 is not a Neumann eigenfunction.

From this exercise it follows that the BIE (91) is well-posed except for a discrete set of frequencies.

Remark 6.11: (What is ψ?). If ψ is solution of (91), then u− = (Dψ)|Ω− is Helmholtz solution in Ω− with
Neumann trace ∂−n u− = ∂+n u. Differently from §5.6, this is not immediately related to the incoming field uInc.
However, if k2 is not a Neumann eigenvalue, u− is well-defined as a solution of an interior Neumann problem.
From the jump relation (80), ψ = [[γDψ]] = γ+u − γ−u− = gD − γ−u−. The solution of the BIE (91) is
the difference between the datum gD and the Dirichlet trace of the solution of an auxiliary interior Neumann
problem, whose boundary datum is the Neumann trace of u itself.
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6.2.2 Direct BIE

We have constructed two BIEs (58) and (91) by searching for EDP solutions in the form u = Sψ and
u = Dψ, respectively. Green’s representation formula (73) allows to represent any radiating solution u in
Ω+ as linear combination of both potentials applied to the traces of u itself:

u = −S∂+n u+Dγ+u.

When u is solution of the EDP, one of the traces is given: γ+u = gD. So we can choose as unknown the
other one: ψ = ∂+n u. How to obtain a BIE from this?

Taking the Dirichlet and the Neumann traces γ+ and ∂+n of Green’s representation and using the trace
formulas (79), we obtain

Sψ =
(
D − 1

2

)
gD in H

1
2 (Γ), (92)

(1
2
+D′

)
ψ = HgD in H− 1

2 (Γ). (93)

We reiterate that here the unknown stands for the Neumann datum and the underlying representation
formula is that coming from Green’s formula:

ψ = ∂+n u ∈ H− 1
2 (Γ), u = −Sψ +DgD in Ω+.

Some terminology. BIEs such as (92)–(93) whose unknown is the missing Cauchy datum are called
direct BIEs; BIEs such as (58) and (91) where the unknown is not directly linked to the EDP are called
indirect. In general, a linear BIE with BIO T and data f can be written as αψ + Tψ = f : if α = 0
then the BIE is called “of the first kind”, if α is a non-zero coefficient then it is called “of the second kind”.
Thus BIEs (58) and (92) are called BIEs of the first kind, as the unknown ψ only appears as argument
of a BIO, while (91) and (93) are called of the second kind as the unknown ψ also appears outside the
integral operator (α = 1

2 in both cases).
The first-kind direct BIE (92) has at the left-hand side the same operator S as the indirect BIE

(58) we know well. The right-hand side instead is slightly more complicated, as it involves the double-
layer operator. So (92) is well-posed exactly when (58) is, i.e. away from Dirichlet eigenvalues. The
matrix ACol/Gal of a BEM implementation for this formulation is identical to the matrix for the same
method applied to (58). The right-hand side vector FCol/Gal is slightly more complicated to code and more
expensive to compute as it requires the implementation of the double-layer operator.

The second-kind direct BIE (93) has at the left-hand side the adjoint of the operator present in the
indirect BIE (91). Theorem 1.28 of [CK1] implies that ( 12 + D′) is injective if and only if ( 12 + D)
is injective (this requires the Fredholm property of the operators). So (93) is well-posed away from
Neumann eigenvalues, exactly as (91). The implementation of a BEM discretisation of (93) also requires
an approximation of the hypersingular operator H (78) for the right-hand side.

Finally, the evaluation of uN in the volume through the Green’s representation formula is slightly more
complicated for the direct BIEs (92)–(93) than for the indirect ones ((58) and (91)), because it involves
both the single- and the double-layer potential (applied to the unknown and the datum, respectively).

6.2.3 Indirect combined-field integral equation: Brakhage–Werner equation

We have seen four different BIEs for the same EDP, and none of them is invertible for all positive values
of k, which is quite disappointing. However all is not lost: the formulations considered were deduced
from some special representations of u in terms of layer potentials, we need to choose some other such
representation.

We now choose, arbitrarily, to search for some u in the form

u = (D − iηS)ψ, ψ ∈ H
1
2 (Γ) (94)

where η > 0 is a parameter. Taking the Dirichlet trace, this is solution of the EDP if ψ is solution of(1
2
+D − iηS

)
ψ = gD in H

1
2 (Γ). (95)
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The operator A := ( 12 +D − iηS) : H
1
2 (Γ) → H

1
2 (Γ) is Fredholm.50 Is it injective?

Let Aψ = 0 for some ψ ∈ H
1
2 (Γ). Define u as in (94). Then u|Ω+

is solution of the EDP with gD = 0,
so u = 0 in Ω+ and γ+u = ∂+n u = 0. The jump relations (80) give

−γ−u = [[γu]] = [[γ(Dψ − iηSψ)]] = [[γDψ]] = ψ

−∂−n u = [[∂nu]] = [[∂n(Dψ − iηSψ)]] = [[−iη∂nSψ]] = iηψ
⇒ ∂−n u− iηγ−u = 0.

So u|Ω− is solution of a homogeneous impedance BVP (37) in Ω− with ϑ = η
k . From the well-posedness of

the impedance BVP (§4.2 and Proposition 4.12) u = 0 and from the jump relation again ψ = −γ−u = 0.
We conclude that the operator A is injective.

The BIE (95) is well-posed for all Γ, k > 0, η > 0 and gD ∈ H
1
2 (Γ).

We have finally found a BIE that is invertible for all wavenumbers! The BIE (95) is often called
Brakhage–Werner equation (even if it was introduce independently in three papers51 by Brakhage
and Werner, Leis and Panič, all in 1965).

Exercise 6.12: (Brakhage–Werner density). Let ψ be the solution of the Brakhage–Werner BIE (95) and
u = (D− iηS)ψ in Ω+ ∪Ω−. Use the trace formulas (79) to show that ∂−n u− iηγ−u = ∂+n u− iηγ+u (careful
with the signs!).

Deduce, using the jump relations, that the solution ψ of the BIE is the jump between the Dirichlet traces
of the EDP solution u|Ω+ and the solution u|Ω− of an impedance BVP in Ω− with data ∂+n u − iηγ+u and
impedance parameter ϑ = η

k . (The relation with an impedance BVP further confirms the well-posedness of the
BIE.)

6.2.4 Direct combined-field integral equation: Burton–Miller equation

Can we find a direct method that is well-posed for all values of k? We know that ψ = ∂+n u solves both
direct equations (92)–(93). We take a linear combination of the two equations:

(1
2
+D′ − iηS

)
ψ =

[
H − iη

(
D − 1

2

)]
gD in H− 1

2 (Γ). (96)

Again, here η > 0 is a parameter. This is called Burton–Miller52 or (direct) combined-field integral
equation (CFIE). This is a second-kind direct equation, so, as in §6.2.2, the density and the representation
formula are

ψ = ∂+n u ∈ H− 1
2 (Γ) and u = −S∂+n u+Dγ+u = −Sψ +DgD in Ω+.

The operator A′ := ( 12 +D′ − iηS) : H− 1
2 (Γ) → H− 1

2 (Γ) at the left-hand side differs from the operator A
of the Brakhage–Werner equation only in that D is substituted by D′.

To study the injectivity of A′, let A′ψ = 0 and u = −Sψ. Then ∂−n u− iηγ−u = −A′ψ = 0, so u = 0 in
Ω− by the well-posedness of the homogeneous interior impedance BVP. By the jump formula γ+u = γ−u,
u|Ω+

is solution of the homogeneous EDP, so it also vanish, and ψ = −[[∂nSψ]] = [[u]] = 0.
Similarly to the previous section, A′ is also Fredholm, thus the BIE (96) is well-posed .
Under some strong regularity and convexity assumptions on the scatterer Ω−, the operators A and A′

are coercive in L2(Γ), [CGLS12, §5.7, Thm. 5.25]: in these cases all Galerkin-BEM discretisations of the
formulations (95) and (96) are well-posed and quasi-optimal.

Remark 6.13: (Combined-field integral equation for scattering problems). Imagine that we want to solve
a scattering problem (45) with an incoming wave uInc defined over a neighbourhood of Ω− (for example a
plane wave).

50We have mentioned in §6.2.1, without proof, that 1
2
+D is Fredholm. The single-layer operator is continuous as a map

S : H
1
2 (Γ) → H1(Γ) ([CGLS12, Thm. 2.25], recall Remark 5.2 for the circle), thus, by composition with the embedding of

Sobolev spaces, it is compact as a map S : H
1
2 (Γ) → H

1
2 (Γ). Finally, A is a compact perturbation of a Fredholm operator,

so it is Fredholm as well.
51[Brakhage, Werner, Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung, 1965]

[Leis, Zur Dirichletschen Randwertaufgabe des Außenraumes der Schwingungsgleichung, 1965]
[Panič, On the solubility of exterior boundary-value problems for the wave equation and for a system of Maxwell eq.s, 1965]

52[Burton, Miller, The application of integral equation methods to the numerical solution of some exterior boundary-value
problems, PRSA 1971]

https://doi.org/10.1007/BF01220037
https://doi.org/10.1007/BF01119203
https://zbmath.org/0143.34302
https://doi.org/10.1098/rspa.1971.0097
https://doi.org/10.1098/rspa.1971.0097
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Green’s representation (65)–(68) applied to uScat in Ω+ and to uInc in Ω− gives

Dγ+uScat − S∂+n uScat = uScat, Dγ+uInc − S∂+n uInc = Dγ−uInc − S∂−n uInc = 0 in Ω+.

Summing these two equalities and using that γ+uTot = 0, we have

S(−∂+n uTot) = Dγ+uTot − S∂+n uTot = uScat = uTot − uInc in Ω+.

(We already knew this from §5.6 in the case where k2 is not a Dirichlet eigenvalue, now it is clear that this
assumption is not needed.) The exterior Dirichlet and Neumann traces of this identity give

−S∂+n uTot
(79)
= γ+S(−∂+n uTot) = γ+uTot − γ+uInc

(45)
= −γ+uInc,(1

2
−D′

)
∂+n u

Tot (79)
= ∂+n S(−∂+n uTot) = ∂+n u

Tot − ∂+n u
Inc ⇒

(1
2
+D′

)
∂+n u

Tot = ∂+n u
Inc.

As before, we linearly combine these two identities using a coupling parameter η > 0:(1
2
+D′ − iηS

)
ψ = ∂+n u

Inc − iη γ+uInc, ψ = ∂+n u
Tot. (97)

This is a variant of the Burton–Miller formulation (96): since the integral operator to be inverted is the same
(A′), the BIE is well-posed for all k > 0.

Equation (97) is simpler to implement than (96) because the right-hand side does not need any integral
operator. On the other hand, the right-hand side involves both traces γ+uInc and ∂+n u

Inc of the incoming
field, so this BIE cannot be used if only the Dirichlet trace gD = −γ+uInc is known.

Another important difference is that the unknown in (97) is ψ = ∂+n u
Tot, as opposed to ∂+n uScat in (96).

Thus the corresponding representation formula is simply uScat = −Sψ .
For more on the BIE (97), see [CGLS12, §2.10] and the reference in footnote 30.
A modification of this BIE that is continuous and coercive in L2(Γ) for any bounded star-shaped Lipschitz

domain has recently been discovered, see [CGLS12, §2.9].

Remark 6.14: (Choice of the parameter η). How to choose the coupling parameter η > 0 in (95) and (96)?
From the expression of A and A′, we can guess that η has the dimension of the inverse of a length: η multiplies
the operator S which acts as the inverse of a derivation (S : H− 1

2 (Γ) → H
1
2 (Γ)) and is added to the identity.

So plausible choices are η ∼ k or η ∼ 1
diam (Γ) . It turns out that η = k is also a good choice to reduce the

condition number of a BEM discretisation of either (95) or (96) for large values of k.

6.2.5 Further remarks on the BIEs and extensions

In these notes we have been focussing on exterior problems. However, BIEs can be used for BVPs posed
on bounded domains such as those in §4.2; see [CGLS12, §2, e.g. table 2.1].

Remark 6.15: (Variational formulations of II kind BIEs). In the first-kind equations (58) and (92) the
operator to be inverted is S, which mapsH− 1

2 (Γ) (the space where we look for the unknown) to its dualH
1
2 (Γ).

So testing the BIEs against elements of the same space is simple: the sesquilinear form AS(ψ, ξ) = ⟨Sψ, ξ⟩Γ
is well-defined for ψ, ξ ∈ H− 1

2 (Γ) and involves the extension ⟨·, ·⟩Γ of the L2(Γ) scalar product. This is why
in the implementation of the Galerkin-BEM matrix AGal we are allowed to use integrals over Γ (recall that we
chose piecewise-polynomial basis functions, which are in L2(Γ)).

For the second-kind integral equations we have to be more careful. E.g., in (96), the operator A′ maps
H− 1

2 (Γ) to itself. So, we cannot write ⟨A′ψ, ξ⟩Γ for ψ, ξ ∈ H− 1
2 (Γ) because it is not defined, but should use

the sesquilinear form (A′ψ, ξ)
H− 1

2 (Γ)
, where (·, ·)

H− 1
2 (Γ)

is the scalar product in H− 1
2 (Γ). Implementing a

BEM discretisation of this variational problem is hard, as it requires to evaluate the non-local H− 1
2 (Γ) scalar

product.53

On the other hand, if the EDP datum gD is at least in H1(Γ), which is the case for smooth incoming waves,
then the right-hand side [H − iη(D − 1

2 )]gD ∈ L2(Γ) so we can use the variational formulation

(A′ψ, ξ)L2(Γ) =

∫
Γ

(1
2
+D′ − iηS

)
ψ ξ ds =

∫
Γ

[
H − iη

(
D − 1

2

)]
gDξ ds ∀ξ ∈ L2(Γ),

53On a circular boundary Γ = S1, this would be easier as the scalar product is computed from the circular harmonics
expansion: (

∑
ℓ∈Z v̂ℓe

iℓθ,
∑

ℓ∈Z ŵℓe
iℓθ)

H
− 1

2 (S1)
= 2π

∑
ℓ∈Z v̂ℓŵℓ(1 + ℓ2)−

1
2 (recall definition (28)). Still, unless the Fourier

coefficients of all the functions involved are already known, this is more complicated than the simple integral appearing in
the ⟨·, ·⟩Γ duality.
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and look for ψ ∈ L2(Γ). This is well-posed because A′ is Fredholm also as a mapping A′ : L2(Γ) → L2(Γ),
[CGLS12, Thm. 2.27]. The Galerkin-BEM is then implemented with the same techniques of §5.2.

An alternative would be to use a Petrov–Galerkin approach: take test functions in a space different from
the trial space. For example one can seek ψ ∈ H− 1

2 (Γ) such that ⟨A′ψ, ξ⟩Γ = ⟨[H − iη(D − 1
2 )]gD, ξ⟩Γ for

all ξ ∈ H
1
2 (Γ). The Galerkin-BEM discretisation of this problem can use piecewise-constant trial functions

ψN and continuous piecewise-linear test functions ξN . The two discrete spaces have to be defined on different
compatible “dual” meshes.

All this applies also to the second-kind direct BIE (93).
On the other hand, the indirect BIEs (91) and (95) are posed in H

1
2 (Γ), so we can use the L2(Γ) scalar

product to write the variational form (
∫
Γ
Aψ ξ ds =

∫
Γ
gDξ ds for all ξ ∈ H

1
2 (Γ) for (95)) but we need to use

discrete functions that are continuous on Γ, e.g. piecewise-linear polynomials.

Remark 6.16: (Advantages of direct formulations). The BEM approximation of Burton–Miller equation
(96) is slightly more complicated and expensive than Brakhage–Werner (95), as the right-hand side involves two
BIOs. Similarly, the direct equations (92)&(93) require a more complicated right-hand side and representation
formula than (58)&(91). What is the advantage of a direct formulation against an indirect one?

In a direct formulation, if we have some information on the properties of the EDP solution u we can include
it in the design of the approximating space VN to improve its accuracy and efficiency. For instance, in some
situations, PDE theory and high-frequency asymptotics (recall the GTD mentioned in Remark 5.38) permit
to estimate the location and the strength of the singularities of ψ = ∂+n u

Scat, its oscillations, the different
behaviour in the shadow and the illuminated parts of Γ; see, e.g., Figure 2454. This knowledge allows to
construct discrete spaces VN that ensure high accuracy with small numbers of DOFs. This is the basic idea
underlying the “hybrid numerical-asymptotic” (HNA) methods that are the main concern of [CGLS12].

In an indirect method, the BIE solution ψ depends also on the trace of some interior problem (see Rem 6.11
and Ex. 6.12), so its efficient approximation would require also the knowledge of the corresponding eigenfunction,
which is not directly related to the physical scattering problem and might contain expensive-to-approximate
“unphysical” singularities.

Moreover, often the quantity of interest is not uScat or uTot in Ω+, but something dependent on ∂+n uScat,
such as the far-field pattern u∞ (46). This is easily and accurately computed with a direct method or with
(58), but not with (91) and (95).

BIE representation density unknown direct/ kind fails for
formula ψ = ψ in indirect

(58) Sψ = gD u = Sψ −∂+n uTot H− 1
2 (Γ) indirect I Dir. eig.

(91) ( 12 +D)ψ = gD u = Dψ Rem.6.11 H
1
2 (Γ) indirect II Neum. eig.

(92) Sψ = (D − 1
2 )gD u = DgD − Sψ ∂+n u H− 1

2 (Γ) direct I Dir. eig.

(93) ( 12 +D′)ψ = HgD u = DgD − Sψ ∂+n u H− 1
2 (Γ) direct II Neum. eig.

(95) ( 12 +D − iηS)ψ = gD u = (D − iηS)ψ Ex. 6.12 H
1
2 (Γ) indirect II never!

(96) ( 1
2+D

′−iηS)ψ

=[H−iη(D− 1
2 )]gD

u = DgD − Sψ ∂+n u H− 1
2 (Γ) direct II never!

(97) ( 1
2+D

′−iηS)ψ

=∂+
n u

Inc−iηγ+uInc uScat = −Sψ ∂+n u
Tot H− 1

2 (Γ) direct II never!

Table 1: Six (+1) BIEs for the EDP (44).
They are described in [CK1]: (58) (3.44), (91) (3.26), (92) (3.83), (93) (3.81), (95) (3.51), (96) (3.84).
The BIE (97) can be used only for the SSSP (45) as it requires both traces of uInc.

Remark 6.17: (BIO diagonalisation on the circle and BIE stability). Let Γ = S1, the unit circle. Then,
all the integral operators we have encountered diagonalise in the circular harmonic basis. This means that eiℓθ

is eigenfunction of S,K,K ′ and H for all ℓ ∈ Z. In particular the operators take the values

Seiℓθ =
iπ

2
Jℓ(k)H

(1)
ℓ (k)eiℓθ,

Deiℓθ = D′eiℓθ =
( iπk

2
Jℓ(k)H

(1)
ℓ

′(k) +
1

2

)
eiℓθ =

( iπk
2
Jℓ(k)

′H
(1)
ℓ (k)− 1

2

)
eiℓθ, ℓ ∈ Z, k > 0

54Figure 24 shows the density ψ for the indirect BIE (58). However we have seen in §5.6 that the solution of this BIE has
the physical interpretation ψ = −∂+n uTot, while this is not true for the solutions of the other indirect BIEs (91) and (95).
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Heiℓθ =
iπk2

2
J ′
ℓ(k)H

(1)
ℓ

′(k)eiℓθ.

This implies that the (spectral) Galerkin-BEM matrix with basis {eiℓθ}ℓ=−L,...,L, for any BIE on the unit circle,
gives a diagonal matrix.

This offers a very simple way to study the spurious resonances of the BIEs. We denote λT,ℓ the eigenvalue
of an operator T associated to eiℓθ, i.e. T eiℓθ = λT,ℓe

iℓθ. In Figure 29 we plot the values ∥(AGal)−1∥ =

infℓ∈{−L,...,L} |λT,ℓ|−1 for L = 30 as a function of the wavenumber k. Large values of this norm signal that
the linear system is close to singular, and that the corresponding BIE is not invertible for nearby values of
k. We observe these instabilities near the (square roots of the) Dirichlet eigenvalues for the operator T = S
(corresponding to the BIEs (58) and (92)) and near the Neumann eigenvalues for the operator T = 1

2 + D
(corresponding to the BIEs (91) and (93), since ‘taking the adjoint’ does not change the operator norm). On
the other hand, the operator T = A = 1

2 +D− ikS of the BIEs (95) and (96) is bounded uniformly. (Here we
have chosen η = k in accordance to Remark 6.14, while choosing η = max{k, 1} would stabilise the operator
also for k → 0, which is a Neumann eigenvalue.)

0 1 2 3 4 5 6 7 8 9 10

k

100

101

102

103

104

105

106

kSk!1

k 1
2 + Dk!1

k 1
2 + D ! ikSk!1

(Dir. eigenv.)1=2

(Neum. eigenv.)1=2

! = S1

Figure 29: The norm of the inverses of the operators of the BIEs of Table 1 for Γ = S1. The operator
norm is approximated by the norm of the inverse of the Galerkin-BEM matrix with basis (eiℓθ)ℓ=−30,...,30,
which is a diagonal matrix as described in Remark 6.17. The strong peaks in correspondence of the
square roots of the Dirichlet (⃝) and Neumann (∗) eigenvalues of the disc are the spurious resonances.
Only the combined-field operator A = 1

2 +D − ikS (yellow line) is stable for all wavenumbers.

Remark 6.18: (The CHIEF method). A different way to deal with spurious resonances and ensure the
solvability of the BEM linear system even when k2 is a Dirichlet eigenvalue of Ω− is the Combined Helmholtz
Integral Equation Formulation (CHIEF) proposed in 196855. We know from (83) that (Sψ)|Ω− = −uInc|Ω− ,
where ψ is the solution of the single-layer BIE (58). The CHIEF augments the BEM linear system Aψ = F

with a few more equations (SψN )(zj) = −uInc(zj) for some points zj ∈ Ω−, j = 1, . . . ,M . This gives an
overdetermined linear system that can be solved in the least-squares sense. At least some of the points zj need
to be away from the nodal lines of the eigenfunction corresponding to k2, which of course is not known, so
their choice is delicate (in particular for large frequencies).

Remark 6.19: (Exterior Neumann problem). So far we have only considered exterior Dirichlet problems.
All techniques and results can be extended to the exterior Neumann problem: find u ∈ H1

loc(Ω+) such that

∆u+ k2u = 0 in Ω+, ∂+n u = gN on Γ, u radiating, (98)

55[Schenck, Improved integral formulation for acoustic radiation problems, JASA 1968]

https://doi.org/10.1121/1.1911085
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where gN ∈ H− 1
2 (Γ) is a boundary datum. The corresponding sound-hard scattering problem is

∆uScat + k2uScat = 0 in Ω+, ∂+n (uScat + uInc) = 0 on Γ, uScat radiating,

which is a special case of (98) for gN = −∂+n uInc. The tools needed to construct BIEs for this problem are
the same already introduced: the four BIOs (S,D,D′, H), the two layer potentials (S,D) and their relations.
We can construct six BIEs, proceeding precisely as we have done for the Dirichlet case in the previous sections:
see the summary in Table 2. Coding a BEM for the exterior Neumann problem is slightly harder than for the
EDP (44) because there is no BIE involving only the single-layer operator S and many of the BIEs listed require
the hypersingular operator H. See also [Sayas06, §11].

Exercise 6.20: (BIEs for the exterior Neumann problem). Derive the six BIEs in Table 2 for the exterior
Neumann problem (98). Start from the representation formulas and use the trace relations (79).

[CK1] BIE representation density direct/ kind fails for
eq.# formula ψ = indirect
(3.29) (− 1

2 +D′)ψ = gN u = Sψ indirect II Dir. eig.
(3.47) Hψ = gN u = Dψ γ+uTot indirect I Neum. eig.
(3.82) (− 1

2 +D)ψ = SgN u = Dψ − SgN γ+u direct II Dir. eig.
(3.85) Hψ = ( 12 +D′)gN u = Dψ − SgN γ+u direct I Neum. eig.
(3.53) (− 1

2 +D′ + iηH)ψ = gN u = (S + iηD)ψ indirect II never

(3.86) (− 1
2+D+iηH)ψ

=(S+iη( 1
2+D

′))gN
u = Dψ − SgN γ+u direct II never

Table 2: Six BIEs for the exterior Neumann problem (98). The first column indicates the equation number
in [CK1]. Note the symmetry with the Dirichlet case in Table 1.

Exercise 6.21: (BIO diagonalisation on the circle). (i) Read carefully Remark 6.17 and reproduce Figure 29.
(ii) Repeat the same for the exterior Neumann problem described in Remark 6.19.

Exercise 6.22: (Exterior impedance problem). Consider the exterior impedance problem

∆u+ k2u = 0 in Ω+, ∂+n u+ ikϑ γ+u = gI on Γ, u radiating, (99)

for gI ∈ H− 1
2 (Γ) and ϑ ∈ L∞(Γ), ess inf ϑ > 0. (For the interior impedance BVP (37) on Ω− we used the

condition with opposite sign ∂−n u − ikϑγ−u = gI : the two choices are consistent because n, entering the
definition of ∂±n , points in Ω+ and out of Ω−.)
• Using Lemma 5.20, prove that (99) admits at most one solution.

• Show that u = Sψ, for ψ ∈ H− 1
2 (Γ) solution of the BIE ( 12 − D′ − ikϑS)ψ = −gI , is solution of (99).

Show that the operator of this BIE is injective if and only if k2 is not a Dirichlet eigenvalue in Ω−.

• Show that u = (S + iηD)ψ solves (99) if ψ is solution of the combined-field BIE(1 + kϑη

2
− iϑkS + ηϑkD −D′ − iηH

)
ψ = −gI .

Finally, show that the operator of this BIE is injective for all k > 0 and η > 0.
For help and more details, see [CK1, §3.7].

6.3 Error analysis of the Galerkin method applied to Gårding-
type problems

6.3.1 Abstract variational framework

We recall the general variational problem (32) and its Galerkin approximation (33):

find u ∈ H such that A(u,w) = F(w) ∀w ∈ H, (100)

find uN ∈ VN such that A(uN , wN ) = F(wN ) ∀wN ∈ VN , (101)
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where H is a Hilbert space, VN ⊂ H is a finite-dimensional subspace, A(·, ·) and F(·) are a sesquilinear
and a continuous antilinear functional on H.

If A(·, ·) is continuous and coercive in H, the stability and error analysis of the Galerkin method is
simple, thanks to Lax–Milgram theorem and Céa lemma. Unfortunately, the variational problems studied
in this course fall outside of this framework. The key result to extend Céa lemma to problems satisfying a
Gårding inequality is the following theorem. This is a modification of the classical “Aubin–Nitsche duality
trick” used also in finite element analysis; in the context of Helmholtz problems it is often called “Schatz
argument”56. Here we closely follow [Spence14, Thm. 5.21].

Theorem 6.23: (Galerkin method for Gårding inequality). LetH ⊂ V be Hilbert spaces and the inclusion
be compact. Let A(·, ·) be a continuous sesquilinear form on H that satisfies the Gårding inequality (34):

|A(v, w)| ≤ CA ∥v∥H ∥w∥H , ℜ
{
A(v, v)

}
≥ α ∥v∥2H − CV ∥v∥2V , ∀v, w ∈ H (α,CV , CA > 0).

Assume that the only u0 ∈ H such that A(u0, v) = 0 for all v ∈ H is u0 = 0 (so that the variational problem
(100) is well-posed for any right-hand side). Let F(·) be a continuous linear functional on H and u be the
solution of the variational problem (100).
Given f ∈ V , let zf ∈ H be the solution of the adjoint problem

A(v, zf ) = (v, f)V ∀v ∈ H, (102)

where (·, ·)V is the scalar product in V . Let VN be a finite-dimensional subspace of H and define

η(VN ) := sup
f∈V,f ̸=0

min
vN∈VN

∥zf − vN∥H
∥f∥V

. (103)

If η(VN ) satisfies the threshold condition

η(VN ) ≤ 1

CA

√
α

2CV
, (104)

then the Galerkin method (101) is well-posed and its solution uN satisfies the quasi-optimality bound

∥u− uN∥H ≤ 2CA

α
min
vN∈VN

∥u− vN∥H . (105)

The statement of this theorem is not simple and requires some explanation. Our goal is to prove that
the Galerkin method is well-posed and the quasi-optimality bound (105) holds. This ensures that the
Galerkin error ∥u− uN∥H is controlled by the best-approximation error, i.e. by the best error achievable
if we knew the exact solution u and we tried to approximate it with the discrete space VN . Quasi-
optimality holds for all finite-dimensional subspaces VN ⊂ H when we are in a Lax–Milgram setting, i.e.
when A(·, ·) is coercive. The bad news is that this is not true for all VN if A(·, ·) only satisfies a Gårding
inequality. The good news is that well-posedness and quasi-optimality hold if VN “has sufficiently good
approximation properties”. How do we measure the approximation properties of a discrete space? The
“adjoint approximability parameter” η(VN ) in (103) precisely quantifies how well VN approximates the
solution of the “adjoint problem” (102), whose datum f is an arbitrary element of the larger space V .
The smaller η(VN ), the better the approximation offered by VN . If the “threshold condition” (104) holds,
i.e. η(VN ) is smaller than a certain quantity that depends on A(·, ·), then we have what we want: the
well-posedness of the Galerkin method and its quasi-optimality.57

In brief, Theorem 6.23 states, in a precise quantitative way, the following:

if the discrete space is sufficiently fine, then the Galerkin method (applied to a well-posed
Gårding-type problem) is well-posed and quasi-optimal.

If we have a dense sequence of discrete spaces (VN )N∈N (i.e. such that limN→∞ infvN∈VN
∥v − vN∥H = 0

for all v ∈ H) then the theorem states that the Galerkin method eventually converges. Typically, for
56[Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comput. 1974]
57A (surprising) theorem by Gohberg and Fel’dman (1971) states that, given a continuous linear operator A : H → H,

this is sum of a coercive and a compact operator if and only if the Galerkin method for (Au, v)H = (f, v)H converges for
all sequences (HN )N∈N of nested finite-dimensional subspaces such that limN→∞ infuN∈HN

∥u− uN∥H = 0 for all u ∈ H.
In words: the Galerkin method converges for all dense subspace sequences iff the problem is a compact perturbation of a
coercive problem. In this section we are studying the implication “compactly-perturbed problem⇒Galerkin convergence”,
the converse means that we cannot expect this to hold in a much more general setting.

https://doi.org/10.2307/2005357
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constant-degree piecewise-polynomial FEM or BEM, this means that the method is guaranteed to be
well-posed and quasi-optimal if the mesh employed is sufficiently fine. In the next sections we analyse a
couple of examples coming from discretisations of the Helmholtz equation.

The phenomenon described by Theorem 6.23 is often observed numerically. When we approximate a
Laplace-type problem with a sequence of meshes we observe a reduction of the error starting from the
first mesh refinements. For a Helmholtz-type problem, mesh refinement does not give any improvement
in the solution until some threshold h0 on the mesh size h is reached; for h < h0 we observe convergence
of the error to zero.

Proof of Theorem 6.23. We follow [Spence14, Thm. 5.21].58
We first assume that the Galerkin method (101) admits a solution uN . We recall the Galerkin or-

thogonality A(u − uN , vN ) = 0 which holds for all vN ∈ VN . In the following bound we use the adjoint
problem (102) with source term f = u− uN and denote by wN ∈ VN the element minimising the ratio in
the definition (103) of the approximability parameter η(VN ). We first control the (weaker) V norm of the
Galerkin error, exploiting the adjoint problem:

∥u− uN∥2V = A(u− uN , zu−uN
) adjoint problem (102)

= A(u− uN , zu−uN
− wN ) Galerkin orthogonality

≤ CA ∥u− uN∥H ∥zu−uN
− wN∥H continuity of A(·, ·)

≤ CAη(VN ) ∥u− uN∥H ∥u− uN∥V definition of η(VN ) (103)

≤
√

α

2CV
∥u− uN∥H ∥u− uN∥V threshold condition (104).

Then also the (stronger) H norm of the error can be controlled:

α ∥u− uN∥2H ≤ ℜ{A(u− uN , u− uN )}+ CV ∥u− uN∥2V Gårding inequality (34)

= ℜ{A(u− uN , u− vN )}+ CV ∥u− uN∥2V Galerkin orthogonality, ∀vN ∈ VN

≤ CA ∥u− uN∥H ∥u− vN∥H + CV ∥u− uN∥2V continuity of A(·, ·)

≤ CA ∥u− uN∥H ∥u− vN∥H +
α

2
∥u− uN∥2H

where in the last step we used the previous bound (after simplifying a term and squaring). Moving
the last term to the left-hand side of the equation, and simplifying ∥u− uN∥H , we obtain the desired
quasi-optimality bound (105).

Taking vN = 0 in (105) and using the triangle inequality, we have the stability estimate ∥uN∥H ≤
(1 + 2CA

α ) ∥u∥H . By the injectivity assumption stipulated in the theorem, if F = 0 then u = 0 and, by
this stability bound, also uN = 0. This means that the solution of the Galerkin method (101) is at most
unique. Since the method is equivalent to a square N×N linear system, uniqueness implies well-posedness.
We conclude that uN exists, so the assumption made at the beginning of the proof is justified.

Remark 6.24: (Galerkin method for compactly perturbed problem). A related error analysis of the
Galerkin approximation of variational problems whose sesquilinear form is sum of a coercive and a compact one
is presented in [SBH19, §8.9]. This theory is simpler, does not use the adjoint problem, and it is slightly more
general: it does not require the Gårding inequality but only the Fredholm property. On the other hand, the
threshold condition (104) and the quasi-optimality bound (105) obtained this way are not explicit.

Exercise 6.25: (Parameter tuning). Show that if we assume η(VN ) ≤ 1
CA

√
α
bCV

for some b > 1 instead of

(104), then the quasi-optimality constant 2CA
α in (105) can be substituted by b

b−1
CA
α .

This means that, with this proof, we can win at most a factor
√
2 in the threshold on η(VN ) (i.e. allow a

slightly coarser discrete space), paying with a poorer quasi-optimality constant. Conversely (choosing b > 2)
one can reduce by a factor at most 2 the quasi-optimality constant, paying with a more restrictive threshold
condition. In brief: in Theorem 6.23 we arbitrarily chose the factor 2 that appears in (104) and (105), but
other choices do not give substantial improvements.

In the next two sections we sketch how to apply Theorem 6.23 to two exemplary problems: the FEM
for the interior Helmholtz problem, and the BEM for the exterior Dirichlet problem.59 Once we have the

58This proof should remind you the derivation of error estimates on the L2 norm of the error of classical finite elements
for elliptic problems.

59In the BEM case, we only consider the single-layer BIE (58), see [CGLS12, §6.1–3] for a survey of the corresponding
results for the CFIE operators of §6.2.3–6.2.4. In this case the injectivity assumption is satisfied for all k > 0. Studying the
k-dependence of CA/α and η for different geometries, meshes and polynomial degrees is an active area of research.
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quasi-optimality, to obtain error bounds with convergence rates we need to know the regularity of the
variational problem solution: we do this for the BEM in §6.3.4. We use several results from the theory of
Sobolev spaces, PDEs, BIOs and FEMs, without justifying their use in full details.

6.3.2 FEM error analysis for interior problems

To better understand Theorem 6.23 we apply it to the simplest problem we know in this setting: the
variational formulation (36) of the interior Helmholtz Dirichlet problem (35). Here Ω ⊂ R2 is a bounded
Lipschitz domain,

H = H1
0 (Ω), V = L2(Ω), A(u,w) =

∫
Ω

(∇u∇w − k2uw) dx.

It is convenient to use a dimensionally-homogeneous version of the H1(Ω) norm, weighted with the
wavenumber k:

∥v∥2H1
k(Ω) := |v|2H1(Ω) + k2 ∥v∥2L2(Ω) .

With this norm, the constants in the Gårding inequality and in the continuity of A(·, ·) are

α = 1, CV = 2k2, CA = 1.

For each f ∈ L2(Ω), the adjoint problem (102) consists in finding zf ∈ H1
0 (Ω) such that∫

Ω

(∇v∇zf − k2vzf ) dx =

∫
Ω

vf dx ∀v ∈ H1
0 (Ω),

where at the right-hand side we simply have the V = L2(Ω) scalar product. Taking the complex conjugate,
this is again (36), the variational formulation of the interior Helmholtz Dirichlet problem:

∆zf + k2zf = −f in Ω, γu = 0 on ∂Ω.

This is because the Helmholtz Dirichlet problem is self-adjoint: it coincides with its adjoint. We assume
that k2 is not a Dirichlet eigenvalue in Ω: this corresponds to the assumption made in the theorem that the
homogeneous problems admits only the trivial solution. Well-posedness comes with stability, also for the
adjoint problem: ∥zf∥H1

k(Ω) ≤ Cstab ∥f∥L2(Ω), for some Cstab > 0 depending on k and Ω but independent
of f (and which may be difficult to estimate).

Since zf ∈ H1
0 (Ω) and ∆zf = −f − k2zf ∈ L2(Ω), by elliptic regularity [Ihlenburg98, Prop. 2.24],

if Ω is a smooth or convex domain then zf ∈ H2(Ω) and ∥zf∥H2(Ω) ≤ CH2

∥∥f + k2zf
∥∥
L2(Ω)

≤ CH2(1 +

kCstab) ∥f∥L2(Ω) for some CH2 > 0 depending on Ω. Assume VN is the space of piecewise-linear fi-
nite elements on a quasi-uniform, shape-regular triangulation of Ω with mesh size h. Classical finite-
element approximation estimates (Bramble–Hilbert lemma, e.g. as in [Ihlenburg98, eq. (4.1.10)]) state
that infvN∈VN

∥v − vN∥H1
k(Ω) ≤ CBHh ∥v∥H2(Ω) for all v ∈ H2(Ω) and for some CBH that depends on Ω,

k and the “chunkiness” of the mesh elements60. Collecting all these bounds:

inf
vN∈VN

∥zf − vN∥H1
k(Ω) ≤ CBHh ∥zf∥H2(Ω) ≤ hCBHCH2(1 + kCstab) ∥f∥L2(Ω) ∀f ∈ L2(Ω).

We have obtained a bound on the adjoint approximability parameter defined in (103):

η(VN ) ≤ hCBHCH2(1 + kCstab).

Then the threshold condition (104) is satisfied if h ≤ h⋆, where

h⋆ :=
1

CACBHCH2(1 + kCstab)

√
α

2CV
≤ 1

2k CBHCH2(1 + kCstab)
. (106)

If the finite element mesh size h is smaller than this value, then the method is well-posed and the quasi-
optimality bound (105) holds:

∥u− uN∥H1
k(Ω) ≤ 2 min

vN∈VN

∥u− vN∥H1
k(Ω) .

This gives a recipe to choose a suitable mesh and predict what is the computational effort required for the
FEM to approximate the solution u of the Dirichlet problem (35) to a desired accuracy. The piecewise-
linear FEM eventually converges in H1(Ω) norm with the same linear convergence rate as for coercive
problems, but the onset of the convergence depends on k (see Remark 6.27 and Figure 30).

60More precisely, infvN∈VN
∥v − vN∥H1

k
(Ω) ≤ C′

BH(h+ h2k) |v|H2(Ω) for C′
BH independent of k.
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Exercise 6.26: (Galerkin method for the impedance problem). Repeat the argument of this section for
the FEM applied to the interior impedance problem (38). Which of the assumptions in Theorem 6.23 comes
for free?
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Figure 30: Error analysis of the finite element approximation of an interior impedance Helmholtz BVP.
We consider the simple 1D problem u′′+k2u = 0, u′(0)+iku(0) = 2ik, u′(1)− iku(1) = 0 on the interval
Ω = (0, 1) for k = 10, 100, 1000. We approximate u(x) = eikx with piecewise-linear finite elements on
uniform meshes with element size h and N = 1 + 1/h DOFs.
In blue we see the Galerkin relative error ∥u−uN∥•

∥u∥•
in L2(0, 1) (⃝ markers) and H1

k(0, 1) (□ markers)
norms plotted against h ∈ {2−1, 2−2, . . . , 2−18}. We compare against the L2(0, 1) (∗ markers) and
H1
k(0, 1) (+ markers) best approximation errors (computed by the orthogonal projection with the rele-

vant matrices). We observe three regimes:
(i) for 2π

k ≲ h (right) u is not approximated at all, the wave is not resolved by the discrete space;
(ii) for 2π

k3/2
≲ h ≲ 2π

k (centre) the best approximation error decays with optimal order, while the Ga-
lerkin error remains roughly constant;
(iii) for h ≲ 2π

k3/2
(left part of each plot) the Galerkin error decays with optimal rate.

The lower plots show the quasi-optimality ratio.
The presence of the regime (ii) (in which the Galerkin solution performs much worse than the best
approximation) and the growth of the quasi-optimality ratio for increasing values of k are signals of the
pollution effect. See Remark 6.27 and Exercise 6.28.

Remark 6.27: (k-dependence in the FEM). We observe that the mesh size threshold h⋆ decreases with
k → ∞: this means that higher frequencies require finer meshes (and larger linear systems: in 2D the number
of DOFs involved in a standard FEM discretisation is proportional to h−2). In Remark 5.9 we explained why
h ≲ k−1 is needed to maintain a given level of approximation for large k. Here instead we are not looking at
the approximability of the solution, but at the stability of the Galerkin scheme: the bound on h⋆ is needed to
ensure well-posedness and quasi-optimality.

Moreover, we observe that h⋆ grows more than linearly in k−1.61 So, while h = O(k−1) (N ≈ k2 DOFs)
is enough to ensure good approximation properties, we need finer meshes with h = O(k−a) (N ≈ k2a DOFs)
for some a > 1 to ensure stability, and thus FEM accuracy.

This is not an artefact of the proof but can be observed numerically and is a major problem in the numerical
analysis of high-frequency time-harmonic problems. This notorious phenomenon is called pollution effect; it
is described e.g. in [Ihlenburg98, §4.6]62. It affects all methods based on local approximations of the PDE; see
also [Runborg12, §3.2] for a simple analysis of this effect in the case of the finite difference method. High-order
methods (e.g. FEM with high-degree piecewise-polynomial discrete spaces) perform better under this respect.

61The bound suggests a quadratic growth h⋆ ≈ k−2, but h⋆ ≈ k−3/2 is typically enough [Ihlenburg98, eq. (4.7.41)]. Here
we are not taking into accounts that Cstab depends on k; this dependence is more easily studied for impedance problems
and simple geometries (Ω convex or star-shaped).

62See also [Babuska, Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave
numbers?, SiRev 2000].

https://doi.org/10.1137/S0036142994269186
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A great deal of research is devoted to the design of Galerkin schemes for time-harmonic problems that are
robust and accurate for large wavenumbers.

The BEM can overcome the pollution effect: the error committed by Brakhage–Werner and Burton–Miller
formulations, discretised with piecewise-polynomial spaces VN on quasi-uniform meshes, does not grow with
k → ∞ if h = O(k−1), when the scatterer Ω− is C∞ and “non-trapping” (e.g. convex or star-shaped)63.
So the number of DOFs needed to maintain a given accuracy for increasing k is N = O(k) (more generally,
O(kd−1) for Ω ⊂ Rd). This is another important advantage of the BEM against the FEM.

Exercise 6.28: (FEM numerical experiments). Use piecewise-linear finite elements on a quasi-uniform mesh
to approximate an interior Helmholtz BVP. Choose either a (well-posed) Dirichlet or an impedance problem, in
1D or in 2D.

Plot the norm of (i) the Galerkin error and (ii) the best-approximation error (e.g. computed with the L2(Ω)
projection) for decreasing mesh sizes h. Repeat the same plot for different values of k. Observe how the
best-approximation error starts to converge only for h ≈ k−1, while the Galerkin method needs even smaller h
to start converging. Study numerically the quasi-optimality constant in dependence of k.

You can try to reproduce the example in Figure 30.

6.3.3 BEM error analysis for the single-layer BIE

We want to apply Theorem 6.23 to the Galerkin-BEM discretisation (§5.2) of the single-layer BIE Sψ = gD,
(58). Our goal is to show that the piecewise-constant Galerkin-BEM is well-posed and quasi-optimal if
the mesh size h is sufficiently small. We recall the variational formulation (60):

find ψ ∈ H− 1
2 (Γ) such that A(ψ, ξ) := ⟨Sψ, ξ⟩Γ = ⟨gD, ξ⟩Γ =: F(ξ) ∀ξ ∈ H− 1

2 (Γ).

The space in which the variational problem is posed is H = H− 1
2 (Γ). The continuity constant of the

sesquilinear form A(·, ·) is CA = ∥S∥
H− 1

2 (Γ)→H
1
2 (Γ)

.
One of the ingredients needed in the analysis of §6.3.1 is the study of the approximation properties of

the discrete space VN . We summarise the convergence rates in h of the best-approximation error for the
piecewise-constant discrete space in fractional Sobolev norms.

Proposition 6.29: (Piecewise-constant approximation in fractional norms). Let Γ be the boundary of
a Lipschitz domain. For any h > 0, let TN = {K} be a mesh on Γ made of N arcs K of length |K| ≤ h,
and VN be the piecewise-constant space on TN as in §5.2. Define the L2(Γ)-orthogonal projection Π:

Π : L2(Γ) → VN ,

v 7→ argmin
vN∈VN

∥v − vN∥L2(Γ),
(Πv)|K =

1

|K|

∫
K

v(s) ds ∀v ∈ L2(Γ), K ∈ TN . (107)

Then, for all −1 ≤ s ≤ 0 ≤ t ≤ 1, there is CApp > 0 independent of h such that

∥v −Πv∥Hs(Γ) ≤ CApph
t−s∥v∥Ht(Γ) ∀v ∈ Ht(Γ). (108)

Proof. The bound (108) is trivial for s = t = 0, with CApp = 1. The result for s = 0, t = 1 follows
(with CApp = 1

π ) from the Poincaré–Wirtinger inequality for 0-average functions [Brezis11, p. 312 and
Problem 47]:

∥v −Πv∥2L2(Γ) =
∑
K∈TN

∥∥∥∥v − 1

|K|

∫
K

v ds

∥∥∥∥2
L2(K)

≤
∑
K∈TN

|K|2

π2
∥v′∥2L2(K) ≤

h2

π2
∥v∥2H1(Γ) ∀v ∈ H1(Γ),

where v′ denotes the tangential derivative of v. Then, operator interpolation theory gives a result for the
intermediate spaces, with an intermediate power of h:

∥v −Πv∥L2(Γ) ≤ CApph
t ∥v∥Ht(Γ) ∀v ∈ Ht(Γ), 0 < t < 1

(see [McLean00, Thm. B.2] with A0 = I − Π : L2(Γ) → L2(Γ) and A1 = I − Π : H1(Γ) → L2(Γ), θ = s,
and [McLean00, Thm. B.11] with s0 = 0, s1 = 1). Exploiting the orthogonality of the projection, recalling
the duality relation between H±s(Γ) from §3.3.3, we extend the result to negative norms:

∥v −Πv∥Hs(Γ) = sup
0̸=w∈H−s(Γ)

|⟨v −Πv, w⟩Γ|
∥w∥H−s(Γ)

= sup
0̸=w∈H−s(Γ)

|⟨v −Πv, w −Πw⟩Γ|
∥w∥H−s(Γ)

63[Galkowski, Spence, Does the Helmholtz boundary element method suffer from the pollution effect?, SiRev 2023]

https://doi.org/10.1137/22M1474199
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≤ sup
0̸=w∈H−s(Γ)

∥v −Πv∥L2(Γ) ∥w −Πw∥L2(Γ)

∥w∥H−s(Γ)

≤ CApph
−s ∥v −Πv∥L2(Γ) ∀v ∈ L2(Γ), −1 < s < 0.

Combining the two results we obtain (108) with a new value of CApp.64

We now verify that the framework of Theorem 6.23 is applicable. We have seen in §6.1 that the operator
S : H− 1

2 (Γ) → H
1
2 (Γ) is Fredholm but we haven’t proved a Gårding inequality yet. The Fredholm property

of S was proved from the decomposition S = Sc + (S − Sc) for c ≥ 0, where the first term is coercive and
the second compact. Recall from §6.1.2 that Sc is the single-layer operator for the reaction–diffusion or
the Laplace equation, for c > 0 or c = 0, respectively. In the following we choose c > 0 for simplicity. To
write a Gårding inequality for A(·, ·) we need a space V larger than H− 1

2 (Γ) (recall that H− 1
2 (Γ) is larger

than L2(Γ)). To identify this space V we need to study the mapping properties of S − Sc and write a
Gårding inequality.

We have seen numerically in §6.1.3 (in particular in Figure 28) that, on the circular boundary Γ = ∂BR,
S−Sc : Hs(Γ) → Hs+3(Γ) for all s ∈ R. We assume that Γ is sufficiently regular so that S−Sc : H−1(Γ) →
H1(Γ) is a continuous operator. We denote its operator norm by C1 := ∥S − Sc∥H−1(Γ)→H1(Γ), depending
only on k, c, Γ. Then the bound

|⟨(S − Sc)ψ, ξ⟩Γ| ≤ ∥(S − Sc)ψ∥H1(Γ) ∥ξ∥H−1(Γ) ≤ C1 ∥ψ∥H−1(Γ) ∥ξ∥H−1(Γ) ∀ψ, ξ ∈ H−1(Γ)

and the coercivity of Sc shown in §6.1.5 give the Gårding inequality: ∀ψ ∈ H− 1
2 (Γ),

ℜ
{
A(ψ,ψ)

}
= ℜ

{
⟨Sψ, ψ⟩Γ

}
= ℜ

{
⟨Scψ,ψ⟩Γ

}
+ ℜ

{
⟨(S − Sc)ψ,ψ⟩Γ

}
≥ αc ∥ψ∥2

H− 1
2 (Γ)

− C1 ∥ψ∥2H−1(Γ) ,

where αc := 1
2Ctr max{1,c2} and Ctr is the continuity constant of the normal trace operator in (90). This

Gårding inequality suggests to choose V = H−1(Γ).
The adjoint problem (102) is:

given f ∈ H−1(Γ), find zf ∈ H− 1
2 (Γ) such that A(ξ, zf ) = ⟨Sξ, zf ⟩Γ = (ξ, f)H−1(Γ) ∀ξ ∈ H− 1

2 (Γ).

Note the presence of the H−1(Γ) scalar product. From A(v, w) = A(w, v) (which can be verified by
the definitions of A(·, ·) and S) and (v, w)H−1(Γ) = (w, v)H−1(Γ), we can rewrite the adjoint equation
as A(zf , ξ) = (f, ξ)H−1(Γ). Dropping the complex conjugates, we obtain A(zf , ξ) = (f, ξ)H−1(Γ). Since
H−1(Γ) ∋ ξ 7→ (f, ξ)H−1(Γ) defines a continuous antilinear functional on H−1(Γ), it can be represented by
an element F ∈ H1(Γ) with ∥F∥H1(Γ) ≤ C∗ ∥f∥H−1(Γ) (i.e. (f, ξ)H−1(Γ) = ⟨F, ξ⟩Γ, recall §3.3.3). Thus the
adjoint problem is again the single-layer BIE Szf = F for a “smooth” datum F ∈ H1(Γ).

Assume that k2 is not a Dirichlet eigenvalue for Ω− (which we need to assume for the BIE to be
well-posed, as required by the theorem). Then S : H− 1

2 (Γ) → H
1
2 (Γ) is invertible, as explained in §6.1.1.

It is possible to show that the single-layer operator is invertible65 also as S : L2(Γ) → H1(Γ). This implies
a regularity result for the adjoint problem: zf ∈ L2(Γ).

The adjoint problem solution zf is an element of L2(Γ) which can be approximated by the piecewise-
constant space VN defined in §5.2. Indeed, Proposition 6.29 implies that vN = Πzf ∈ VN approximates
zf with the error bound66

∥zf − vN∥
H− 1

2 (Γ)
≤ CApph

1
2 ∥zf∥L2(Γ) ≤ CApph

1
2

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

∥F∥H1(Γ)

≤ C∗CApph
1
2

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

∥f∥H−1(Γ) .

Recall that h is the length of the longest mesh element. This bound corresponds to an estimate on the
approximability parameter η(VN ) of (103):

η(VN ) = sup
f∈H−1(Γ)

min
vN∈Vn

∥zf − vN∥
H− 1

2 (Γ)

∥f∥H−1(Γ)

≤ C∗CApph
1
2

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

.

64Recall that in §3.3.2 we mentioned that it is possible to define several different equivalent norms on Hs(Γ): if we choose
norms that give an “exact interpolation scale” we could get CApp = πs−t in (108). The Fourier-mode norm on the circle in
(28) is such an example. The values of all the bounding constants C• of the results in this and next section depend on the
specific Hs(Γ) norms chosen.

65We know S : L2(Γ) → H1(Γ) is injective for this choice of k. We have seen in §6.1.4 that S − S0 : L2(Γ) → H1(Γ) is
compact, as it corresponds to an integral operator with bounded kernel. It also holds that S0 : L2(Γ) → H1(Γ) is invertible.
Then Fredholm alternative Theorem 3.17 yields the invertibility of S in the desired spaces.

66In order to bound η(VN ), both in the FEM and in the BEM cases, we used three main ingredients: (i) the stability of
the adjoint problem, (ii) a regularity result for its solution, and (iii) an approximation result. In the FEM case, (i)–(ii)–
(iii) correspond to the terms Cstab, CH2 and CBH , respectively. In the BEM case, stability and regularity together give
C∗

∥∥S−1
∥∥
H1(Γ)→L2(Γ)

and the approximation term gives CApp.
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The threshold condition (104) η(VN ) ≤ 1
CA

√
α

2CV
is ensured if h ≤ h⋆ for

h⋆ :=
(
4max{1, c2}C2

∗C
2
AppCtr ∥S∥2

H− 1
2 (Γ)→H

1
2 (Γ)

∥S − Sc∥H−1(Γ)→H1(Γ)

∥∥S−1
∥∥2
H1(Γ)→L2(Γ)

)−1

. (109)

In this case the quasi-optimality estimate (105) follows: if h ≤ h⋆,

∥ψ − ψN∥
H− 1

2 (Γ)
≤ Cqo inf

vN∈VN

∥ψ − vN∥
H− 1

2 (Γ)
, Cqo := 4Ctr max{1, c2} ∥S∥

H− 1
2 (Γ)→H

1
2 (Γ)

. (110)

Both h⋆ and Cqo depend only on Γ, k and c (which can be chosen arbitrarily, e.g. c = 1).
Similarly to the FEM case in §6.3.2, we have proved that if h is sufficiently small, then the threshold

condition (104) is satisfied and the Galerkin-BEM is well-posed and quasi-optimal.
Table 3 summarises how the FEM and the BEM analysis considered in this section fit the framework

of Theorem 6.23. Recall that we are considering the simplest cases: piecewise-linear FEM for interior
Dirichlet problem (35), piecewise-constant Galerkin-BEM for the EDP (44) and the single-layer BIE (58).

Abstract framework FEM BEM
§6.3.1 §6.3.2 §6.3.3
Helmholtz problem interior Dirichlet exterior Dirichlet/single-layer BIE
Energy space H H1

0 (Ω) H− 1
2 (Γ)

Auxiliary space V L2(Ω) H−1(Γ)
Sesquilinear form A(·, ·)

∫
Ω
(∇u∇w − k2uw) dx ⟨Sψ, ξ⟩Γ

Gårding constant α 1 αc =
1

2Ctr max{1,c2}
Gårding constant CV 2k2 C1 = ∥S − Sc∥H−1(Γ)→H1(Γ)

Continuity constant CA 1 ∥S∥
H− 1

2 (Γ)→H
1
2 (Γ)

Discrete space VN piecewise-linears on Ω piecewise-constants on Γ
Threshold mesh size h⋆ (106) (109)
Quasi-optimality Cqo 2 4Ctr max{1, c2} ∥S∥

H− 1
2 (Γ)→H

1
2 (Γ)

Valid if k2 is not Dirichlet eigenvalue of Ω k2 is not Dirichlet eigenvalue of Ω−

Table 3: How the FEM and BEM considered fit the abstract stability framework of Theorem 6.23.

6.3.4 BIE solution regularity and BEM convergence rates

Given the quasi-optimality (110) and the best-approximation estimates (108), we can derive convergence
rates for the piecewise-constant BEM. However, convergence rates always depend on the regularity of the
solution to be approximated. So, we first want to know for which values of s ≥ − 1

2 the solution ψ of the
single-layer BIE Sψ = gD (58) belongs to Hs(Γ).

To this purpose, we assume that k2 is not a Dirichlet eigenvalue in Ω−, and that the EDP (44) under
consideration is actually an SSSP (45), i.e. gD = −γ+uInc for some incoming wave uInc.

By (84), ψ = −∂+n uTot. So we need to study the regularity of uTot and then apply the Neumann
trace. Since uTot is a solution of the homogeneous Helmholtz equation, uTot ∈ C∞(Ω+), by interior
elliptic regularity [McLean00, Thm. 4.16]. However, its smoothness on the boundary Γ depends on the
the regularity of Γ itself.

Assume that Ω− is a polygon. The possible sources of singularities in uTot are the corners of Ω−. We
first focus on a single corner.

α

Sα

Exercise 6.30: (Laplace solutions in a sector).
Define the non-convex sector Sα := {0 < θ < α : 0 < r < 1} for α ∈ (π, 2π).

For j ∈ N, show that ϕα,j(x) := rj
π
α sin(j παθ) ∈ C∞(Sα) solves the Laplace equation ∆ϕα,j =

0 in Sα. (Use the expression (21) of the Laplacian in polar coordinates.)
Use the separation of variables to show that all Laplace solutions u on Sα, with trace 0 on the

two segments, can be written as u(x) =
∑
j∈N ûjϕα,j(x) for some coefficients ûj ∈ C.

The corner functions defined in Exercise 6.30 are smooth in the interior of Sα and are singular at the
origin. In terms of Sobolev regularity, they satisfy uα,j ∈ H1+j π

α−ϵ(Sα) \H1+j π
α (Sα) for all ϵ > 0 (where

we use the fractional-order spaces of Remark 3.12)67. This means that the generic Laplace solutions that
67See Thm. 1.4.5.3 in [Grisvard, Elliptic problems in non-smooth domains, Pitman 1985].
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vanish on the two sides of the sector belongs to H1+ π
α−ϵ(Sα) \ H1+ π

α (Sα). For larger α, and sharper
re-entrant corners, the regularity is lower.

Considering the Helmholtz equation in a small domain is equivalent to considering small wavenumbers,
by a scalar change of variables. So we expect that, close to a corner, the Helmholtz equation behaves
similarly to the Laplace one. Indeed, repeating the argument of Exercise 6.30 for the Helmholtz equation,
we obtain that all the Helmholtz solutions on Sα that are zero on the two sides admit the expansion

u(x) =
∑
j∈N

ûjwα,j(x), where wα,j(x) := Jj π
α
(kr) sin

(
j
π

α
θ
)
. (111)

The wj,α are called “corner waves” or “fractional Fourier–Bessel function”; see Figure 31. Here we use
the Bessel function with non-integer index Jν , which extends holomorphically the usual Bessel functions
to arbitrary complex values of ν, [DLMF, eq. 10.2.2]. The field wα,j is a Helmholtz solutions because
Jν satisfies the Bessel equation (22) with ν in place of ℓ. For small positive arguments, Jν satisfies the
same asymptotics Jν(z) ∼ zν

Γ(ν+1)2ν for z ↘ 0 (24), [DLMF, eq. 10.7.3]. Thus wα,j(x) ≈ Cuα,j(x) close
to x = 0 for some constant C and are smooth in the rest of Sα. The corner waves inherit the regularity
of uα,j : wα,j ∈ H1+j π

α−ϵ(Sα) \H1+j π
α (Sα) for all ϵ > 0. The wα,j are bounded but their derivatives blow

up at the origin.

Figure 31: Corner waves wα,1 in sectors.

Given a polygonal Ω−, denote by αmax ∈ (π, 2π) the maximal external angle of all its corners (e.g.
αmax = 3

2π for a square, αmax = 7
4π for the isosceles rectangle triangle Ω− = {0 < x1 < x2 < 1}).

Expanding uTot as in (111) in sectors with small radii around each external angle of Ω−, and using its
smoothness elsewhere, we deduce that

uScat, uTot ∈ H
1+ π

αmax
−ϵ

loc (Ω+) ∀ϵ > 0,

and that in general they do not belong to H
1+ π

αmax

loc (Ω+). Then ∇uTot ∈ H
π

αmax
−ϵ

loc (Ω+) and γ+(∂u
Tot

∂xj
) ∈

H− 1
2+

π
αmax

−ϵ(Γ), j = 1, 2, by the trace theorem [McLean00, Thm. 3.37]. The product between an element
of Ht(Γ) with |t| < 1

2 and a piecewise-constant belongs to the same Ht(Γ). We apply this to ψ =

−∂+n uTot = −n1γ+(∂u
Tot

∂x1
) − n2γ

+(∂u
Tot

∂x2
), with n = (n1, n2), which is constant on each side of Γ, and

obtain the regularity of the BIE solution:

ψ ∈ H− 1
2+

π
αmax

−ϵ(Γ) ∀ϵ > 0. (112)

In particular, ψ ∈ L2(Γ).
The approximation result of Proposition 6.29 ensures that, for all piecewise-constant spaces VN as

above, infvN∈VN
∥ψ−vN∥

H− 1
2 (Γ)

≤ Ch
π

αmax (neglecting the arbitrarily small ϵ), for some C > 0 depending

on uTot but independent of h and TN . Combining with the quasi-optimality (110), we have the convergence
bound for the BEM

∥ψ − ψN∥
H− 1

2 (Γ)
≤ Ch

π
αmax ∀h ≤ h⋆.

https://dlmf.nist.gov/10.2.E2
https://dlmf.nist.gov/10.7.E3
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Since 1
2 <

π
αmax

< 1, the convergence rate is always at least 1/2.
However, this rate concerns the convergence of the BEM approximation ψN to the BIE density ψ

in H− 1
2 (Γ) norm. This is the relevant norm for the variational problem, but is neither practical nor

particularly useful to compute. Usually, what we are really interested in is not ψ, but the scattered field
uScat (or the far-field pattern u∞ (46)). It turns out that the scattered field computed with the BEM
converges with double velocity, compared to the BIE density ψ. This follows again from a duality argument,
which ensures the “superconvergence” of linear functionals J defined by testing against sufficiently smooth
distributions φ, [SS11, §4.2.5.1]. In the next lemma and corollary, we first prove this general result, then
we apply it to the point evaluation of uScat.

Lemma 6.31: (Superconvergence of smooth functionals). Let Ω− be a polygon with maximal external
angle αmax and assume k2 is not a Dirichlet eigenvalue. Given φ ∈ H

1
2 (Γ), define the linear functional

J : H− 1
2 (Γ) → C, J : ψ 7→ ⟨φ,ψ⟩Γ ∀ψ ∈ H− 1

2 (Γ). (113)

Assume that the solution ζ ∈ H− 1
2 (Γ) of the variational problem with datum φ

A(ζ, ξ) = ⟨φ, ξ⟩Γ ∀ξ ∈ H− 1
2 (Γ) (114)

belongs to H− 1
2+t(Γ) for some 0 < t ≤ 3

2 . Let ψ be the solution of the BIE (58) with regularity (112), and
ψN be its piecewise-constant Galerkin-BEM approximation in VN with sufficiently small h.
Then, for all ϵ > 0, there is C > 0, depending only on Γ and k, independent of h, TN , ψ, ζ and φ, such that

|J(ψ)− J(ψN )| ≤ C h
π

αmax
+t−ϵ ∥ψ∥− 1

2+
π

αmax
−ϵ ∥ζ∥− 1

2+t
.

Proof. We combine many of the tools introduced so far:

|J(ψ)− J(ψN )|
= |⟨φ,ψ − ψN ⟩Γ| by definition of J,

= |A(ζ, ψ − ψN )| by definition of ζ,

= |A(ψ − ψN , ζ)| by the symmetry properties of A and S,

= |A(ψ − ψN , ζ −Πζ)| by Galerkin orthogonality, ζ ∈ L2(Γ),with the projection Π in (107),

= |⟨S(ψ − ψN ), ζ −Πζ⟩Γ| by definition of A,
≤ ∥S∥

H− 1
2 (Γ)→H

1
2 (Γ)

∥ψ − ψN∥
H− 1

2 (Γ)
∥ζ −Πζ∥

H− 1
2 (Γ)

≤ Cqo ∥S∥
H− 1

2 (Γ)→H
1
2 (Γ)

∥ψ −Πψ∥
H− 1

2 (Γ)
∥ζ −Πζ∥

H− 1
2 (Γ)

by the BEM quasi-optimality (110),

≤ CqoC
2
App ∥S∥H− 1

2 (Γ)→H
1
2 (Γ)

h
π

αmax
+t−ϵ ∥ψ∥− 1

2+
π

αmax
−ϵ ∥ζ∥− 1

2+t
∀ϵ > 0, by the approximation (108).

Corollary 6.32: (Superconvergence of the near-field uScat). Let uScat be the solution of the SSSP (45)
for a polygonal scatterer Ω− with maximal external angle αmax, where k2 is not a Dirichlet eigenvalue.
Let uN = SψN (64) be the single-layer potential generated by the BEM solution ψN ∈ VN , for a mesh with
sufficiently small h.
Then, for any point x ∈ Ω+ and ϵ > 0, there is C > 0 independent of h and TN such that

|uScat(x)− uN (x)| ≤ C h2
π

αmax
−ϵ.

Proof. Define φ = γ+Φk(x, ·) ∈ H
1
2 (Γ), for Φk the Helmholtz fundamental solution (53). The corre-

sponding functional J in (113) is J(ξ) = ⟨γ+Φk(x, ·), ξ⟩Γ = (Sξ)(x), the single-layer potential applied to
ξ ∈ H− 1

2 (Γ) and evaluated in x. In particular, J(ψ) = uScat(x) and J(ψN ) = uN (x).
By Lemma 6.31, the assertion of the corollary follows if ζ, solution of (114), belongs to H− 1

2+
π

αmax
−ϵ(Γ)

for all ϵ > 0.
The variational problem (114) is an EDP (44) with boundary datum gD = φ = γ+Φk(x, ·), which is

the trace of a Helmholtz solution that is smooth in a neighbourhood of Ω−. So (114) is simply an SSSP
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with uInc = −Φ(x, ·), a point source centred at x. The regularity result (112) applies to its solution ζ and
we have precisely the smoothness ζ ∈ H− 1

2+t with t = π
αmax

− ϵ needed to obtain the assertion.

From Corollary 6.32 we deduce that
∥∥uScat − uN

∥∥
L2(D)

, for a domain D ⊂ Ω+, converges with the rate

h2
π

αmax . However, this holds only if D lies at a positive distance from the scatterer, as the constant C in
the corollary bound blows up when x approaches Γ. We observe the h-dependence of

∥∥uScat − uN
∥∥
L2(D)

for a simple example in Figure 32.

10-3 10-2 10-1 100

h

10-5

10-4

10-3

10-2

10-1

100

BEM convergence against MPSpack solution
Scatterer +! = (!0:5; 0:5)2, d = ( 1p

2
; !1p

2
), k = 20

L2((!1:5; 1:5)2 n B1) relative error

2.44

2.72

1.62

1.41

1.36

1.34

1.34

1.34

2.64

3.13

1.78

1.45

1.37

1.36

1.35

1.35

Collocation-BEM
Galerkin-BEM

h4=3

Figure 32: Convergence plot for the piecewise-constant collocation- and Galerkin-BEM applied to the
scattering of a plane wave by the square scatterer (−0.5, 0.5)2. The result obtained from MPSpack
available on the course webpage is used as reference solution uRef (recall the footnote 35). The plot
shows the relative error for the scattered field

∥∥uN − uRef
∥∥
L2(D)

/
∥∥uRef

∥∥
L2(D)

, where uN is the BEM
approximation (64) of uScat. The set D = is the square (−1.5, 1.5)2 after subtracting the unit
disc B1(0), to avoid near-singularities in the application of the representation formula. The numbers
printed inside the plot are the slopes of the corresponding segments. We observe that, after a pre-
asymptotic regime, the error converges with rate approximately h

4
3 (black dashed line), in agreement

with Corollary 6.32 and Exercise (6.34). Note also that the Galerkin method is slightly more accurate
than collocation.
Uniform meshes with 16, 32, . . . , 4096 elements are used. The integrals are approximated with Gauss–
Legendre quadrature applied to the formulas in §5.2.1. We used 5 Gauss quadrature nodes for each
integral in the off-diagonal entries of the matrix, the Galerkin right-hand side, and in the representation
formula, and 30 Gauss nodes for the diagonal terms of the matrix.

Exercise 6.33: (Far-field convergence rates). Show that the BEM approximation of the far-field u∞ (47)
converges in L2(S1) with the superconvergence rate h2

π
αmax . Use the far-field formula (85). What are φ and

ζ in the notation of Lemma 6.31?

Exercise 6.34: (Convergence rates in Matlab). Verify that the BEM code you have implemented in §5.2.2
achieves convergence rates in accordance with Corollary 6.32.

For instance, in Figure 32, a BEM code is tested against the MPSpack solution in the .mat file provided. In
this example the scatterer is a square, so αmax = 3

2π and we expect convergence in h with exponent 2 π
αmax

= 4
3 ,

which is what we observe in the plot.
It is not always simple to observe the rate predicted by the theory. This is an asymptotic rate in the limit

h → 0, while we inevitably work in the pre-asymptotic regime, i.e. with finite values of h. So error sources
other than the sharpest corner of Γ can be the dominating effects in the error plots. For instance, the sharpest
corner may lie in a shadow region, so its effect can be very weak. More often, at high frequencies many DOFs
are needed just to get a qualitatively correct solution, the effect of corner singularities is localised and kicks in
only with extremely fine meshes. In general we observe much neater convergence rates at very low frequencies.
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7 Time-harmonic waves in heterogeneous media

So far we have considered the constant-coefficient Helmholtz equation ∆u + k2u = 0, modelling time-
harmonic acoustic waves in homogeneous media: the properties of the material are the same everywhere.
When a wave propagates in a medium whose physical properties (ρ, c in acoustics, ϵ and µ in electromag-
netism, λ, µ and ρ in elastodynamics) vary in space, the wave profile and direction are modified: this is
refraction. For instance, the study of seismic-wave refraction is the main tool available to investigate the
structure of the Earth’s interior. In §7.1–7.2 we consider two general cases:
• Only few homogeneous materials are present, giving piecewise-constant material coefficients.

• The properties of the material vary smoothly in space, giving continuous material coefficients.
Of course there are relevant situations involving several heterogeneous materials, where the difficulties of
both problems are present. Both cases can be modelled using integral equations, but only the first one
with boundary integral equations.

7.1 Piecewise-constant parameters: transmission problems
We first consider “transmission problems”, i.e. waves propagating through a finite number of homogeneous
materials.

7.1.1 Transmission conditions

We describe the transmission conditions on the interface between two homogeneous materials for acoustic
and electromagnetic waves. Similar arguments can be made for other types of waves, see e.g. [BK00, §2.4]
and [CJ77, §20] for waves on strings with different densities, and [BK00, §4.7.1] for water waves (recall
Remark 1.28).

As in Remark 3.15, we call Ω1,Ω2 two open Lipschitz domains, Ω := (Ω1 ∪Ω2)
◦

their open union, Σ := (∂Ω1∩∂Ω2)\∂Ω the interface between them, n a unit normal
field on Σ, and γ, ∂n the Dirichlet and Neumann traces from the two domains to Σ.

Ω2 Ω1
Σ

Transmission conditions: acoustics. We first consider the case of an acoustic wave prop-
agating in two different homogeneous fluids, for instance water and air, occupying the regions Ω1 and
Ω2.

Each fluid has its own static density ρ1, ρ2 (which was called ρ0 in §1.1), and wave speed c1, c2. This
leads to two copies of the wave equation in each region: 1

c2j

∂2pj,≈
∂t2 −∆pj,≈ = 0 in Ωj , j = 1, 2. How are

these two equations coupled? On the interface Σ, the acoustic pressure from the two sides must coincide:
p1,≈ = p2,≈. Moreover, the normal component of the particle displacement for the fluids must agree at
all times, otherwise they would overlap or leave an empty gap. So also their time derivatives, the normal
components of the velocities, must coincide: n ·v1,≈ = n ·v2,≈. Recalling the linearised Euler equation (4),
this condition can be written in terms of the acoustic pressure as 1

ρ1
n · ∇p1,≈ = 1

ρ2
n · ∇p2,≈.

Assuming time-harmonic behaviour (10) (with pj,≈ for U), we obtain two copies of the Helmholtz
equation with different wavenumber, coupled by the Dirichlet traces and the Neumann traces weighted by
the fluid densities:

∆uj + k2juj = 0 in Ωj , j ∈ {1, 2}, kj :=
ω

cj
,

γu1 = γu2,
1

ρ1
∂nu1 =

1

ρ2
∂nu2 on Σ.

(115)

Let u be the field on Ω defined by u|Ωj = uj . If uj ∈ H1
loc(Ωj), the equality of the Dirichlet traces is

equivalent to the condition u ∈ H1
loc(Ω), by Remark 3.15. If ∇uj ∈ Hloc(div; Ωj), see Remark 7.1, the

second interface condition ensures that 1
ρ∇u ∈ Hloc(div; Ω). So (115) can be written as ∇·( 1ρ∇u)+

ω2

ρc2u = 0

with u ∈ H1
loc(Ω), in agreement with (11).

Of course, to have a well-defined BVP, together with (115) we also need boundary conditions on ∂Ω
or a radiation condition if Ω is unbounded: this is what we do in the next sections.

Transmission conditions: electromagnetism. To describe a similar problem for electro-
magnetic waves, we first describe some traces of vector fields.
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Remark 7.1: (Normal and tangential traces of vector fields). For a Lipschitz domain Ω ⊂ R3, we know
that H1(Ω) functions v admit Dirichlet traces γv (in H

1
2 (∂Ω), by the trace Theorem 3.10). For vector fields

v ∈ H1(Ω)
3 we define normal and tangential traces as

γNv := γv · n, γTv := γv − (γNv)n = (n× γv)× n on ∂Ω, (116)

where the scalar Dirichlet trace γ is applied componentwise. The normal trace is scalar, while the tangential
trace is a vector field. Also γv × n = γTv × n is tangential on ∂Ω, and is a 90-degree rotation of γTv. The
condition v ∈ H1(Ω)

3 is not necessary: the normal trace is well-defined on H(div; Ω), while the tangential
trace is well-defined on H(curl; Ω), where

H(div; Ω) := {v ∈ L2(Ω)3 : divv ∈ L2(Ω)}, H(curl; Ω) := {v ∈ L2(Ω)3 : curlv ∈ L2(Ω)
3};

see [SBH19, Thm. 6.1 and p. 415]. If Ω is split in two Lipschitz regions Ω1,Ω2 as above, then the relevant
traces on the interface Σ from the two sides must agree:

v ∈ H1(Ω) =⇒
(
γ(v|Ω1)

)
|Σ =

(
γ(v|Ω2)

)
|Σ,

v ∈ H(div; Ω) =⇒
(
γN (v|Ω1)

)
|Σ =

(
γN (v|Ω2)

)
|Σ,

v ∈ H(curl; Ω) =⇒
(
γT (v|Ω1)

)
|Σ =

(
γT (v|Ω2)

)
|Σ.

In words: for the gradient/divergence/curl of a piecewise-defined field to be well-defined and square-integrable,
the Dirichlet/normal/tangential traces on the interface taken from the two sides must agree.

In two-dimensions, analogous results hold after replacing the curl operator with its 2D scalar version
curl2D v := ∂v2

∂x1
− ∂v1

∂x2
.

Now consider a time-harmonic electromagnetic wave (13) crossing two homogeneous dielectric materials
with electric permittivity ϵ1, ϵ2 and magnetic permeability µ1, µ2, occupying the regions Ω1,Ω2 ⊂ R3. The
transmission conditions for the electric and the magnetic fields require them to have continuous tangential
trace (defined in (116)):

curlEj − iωµjHj = 0, curlHj + iωϵjEj = 0, in Ωj , j ∈ {1, 2},
γTE1 = γTE2, γTH1 = γTH2, on Σ.

(117)

Using that γN (curlv) = n ·γ(curlv) = divΣ(γTv×n) on Σ for all smooth fields v [Nédélec01, eq. (2.5.190–
197)], where divΣ is the tangential divergence on the (smooth) interface Σ, we obtain that

γN (ϵ1E1) = γN (ϵ2E2), γN (µ1H1) = γN (µ2H2), on Σ.

This means that the normal components of ϵE (the “displacement field” D) and µH (sometimes called
“magnetic flux density”, B) are continuous across material interfaces. So ϵE, µH ∈ H(div; Ω) once
ϵEj , µHj ∈ L2(Ωj)

3 (the divergences in Ωj vanish by (117) and div curl = 0). See [BK00, §6.7.1] for
a justification of the continuity of γTE, γTH, γN (ϵE), γN (µH) from Maxwell’s equations. Eliminating H
from (117) and passing to second-order equations, we get

curl curlEj − ω2µjϵjE = 0 in Ωj , j ∈ {1, 2},
γTE1 = γTE2, γN (ϵ1E1) = γN (ϵ2E2) on Σ.

The natural function spaces are E ∈ Hloc(curl; Ω) and ϵE ∈ Hloc(div; Ω).
In a TE-mode problem such as that described in Remark 4.33, the electric field takes the form E(x) =

(0, 0, u(x1, x2)). We can compute

iωµH =

(
∂u

∂x2
,− ∂u

∂x1
, 0

)
, ∂nu =

∂u

∂x1
n1 +

∂u

∂x2
n2 = iωµ(−H2n1 +H1n2) = iωµ(H× n)3.

Thus, with uj = u|Ωj
, we have 1

µ1
∂nu1 = iω(H × n)3 = 1

µ2
∂nu2 on Σ, as H × n is tangential on the

interface Σ. So u must satisfy

∆uj + k2juj = 0 in Ωj , j ∈ {1, 2}, kj := ω
√
µjϵj ,

γu1 = γu2,
1

µ1
∂nu1 =

1

µ2
∂nu2 on Σ.

(118)

Note that this is a 2-dimensional problem. Similarly, in a TM-mode the third component of the magnetic
field H satisfies the equations (118) with µj replaced by ϵj .
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Transmission conditions: Helmholtz equation. Comparing (115) and (118), a typical
homogeneous Helmholtz transmission problem requires

∆uj + k2juj = 0 in Ωj , j ∈ {1, 2},
γu1 = γu2, ∂nu1 = A∂nu2 on Σ.

(119)

Here the normal jump contrast parameter A > 0 can represent one of the ratios ρ1
ρ2

, µ1

µ2
, ϵ1
ϵ2

, or have a
different origin. Then, the two transmission conditions in (119) correspond to the continuity of pressure
and normal displacement, or the tangential continuity of electric and magnetic fields.

To write a defined scattering problem, the equations in (119) have to be complemented with boundary
or radiation conditions. In the following we consider the cases where: (i) each Ωi is half plane (§7.1.2),
(ii) one region is bounded and the other is its complement (§7.1.3).

Remark 7.2: (Refractive index and conventions). In (119) the ratio of the squared wavenumbers n :=
k22
k21

=
c21
c22

is the refractive index of the second material with respect to the first one. For electromagnetic
waves, n = ϵ2µ2

ϵ1µ1
. In this way, u satisfies ∆u+ k21nu = 0 in Ω2.

Here we are following the naming convention that is common in mathematics, see e.g. [CK2, p. 306],
[Martin06, p. 15]. In physics, particularly in electromagnetism and optics, the refractive index is usually the
square root of what we call n: nphysics =

√
nmaths =

k2
k1

= c1
c2

, e.g. [BK00, p. 195] and Wikipedia.

7.1.2 Transmission half plane

In §4.1 we described the reflection of a plane wave hitting an impenetrable straight line. We now consider
the case where the half line separates two regions with different material parameters, modelling a flat
interface between two different fluids. We set some notation:

Ω± := {x2 ≷ 0}, Γ := {x2 = 0}, n := (0,−1), k+, k−, A > 0,

uInc(x) = eik+x·d+

, d+ = (d+1 , d
+
2 ) = (cosφ+, sinφ+), −π < φ+ < 0, d+2 < 0.

We look for a field uTot that satisfies the Helmholtz equation in Ω± with wavenumber k± and the trans-
mission conditions:

∆uTot + k2+u
Tot = 0 in Ω+,

∆uTot + k2−u
Tot = 0 in Ω−,

γ+uTot = γ−uTot on Γ,

∂+n u
Tot = A∂−n u

Tot on Γ.

(120)

Here A > 0 is a parameter as in (119).

uInc uScat

n
uScat

Ω+

Γ

Ω−

We expect that uInc generates a reflected wave in Ω+ and a transmitted (refracted) wave in Ω−, and
that both are plane waves:

uTot(x) =

{
uInc(x) + uScat(x)

uScat(x)
=

{
eik+(d+1 x1+d

+
2 x2) + Reik+(d+1 x1−d+2 x2) x ∈ Ω+,

Teik−(d−1 x1+d
−
2 x2) x ∈ Ω−.

The transmission conditions on Γ imply that uScat(x1, 0) = eik−d
−
1 x1 is proportional to uInc(x1, 0) =

eik+d
+
1 x1 , thus d−1 = k+

k−
d+1 . Define d−2 such that |d−|2 = (d−1 )

2 + (d−2 )
2 = 1, to ensure uScat is Helmholtz

solution in Ω−. The two transmission conditions on Γ become

1 + R = T, (1− R)k+d
+
2 = TAk−d

−
2 ,

whose solution is

R =
k+d

+
2 −Ak−d

−
2

k+d
+
2 +Ak−d

−
2

, T =
2k+d

+
2

k+d
+
2 +Ak−d

−
2

.

The reflection coefficient R and the transmission coefficient T determine the phase and the amplitude of
uScat in Ω+ and Ω−, respectively.

If |d−1 | < 1, we choose the negative root d−2 = −
√

1− (d−1 )
2, so that uScat is a downward-propagating

plane wave in Ω− in direction d− = (cosφ−, sinφ−). We have found Snell’s law of refraction:

k+ cosφ+ = k− cosφ−.

https://en.wikipedia.org/wiki/Refractive_index
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The direction of propagation d− of the transmitted wave depends on the ratio k−
k+

between the wavenum-
bers. The reflected wave has amplitude smaller than the incoming one: |R| < 1.

If |d−1 | > 1, then d−2 is an imaginary number and uScat in Ω− is an evanescent plane wave (recall §2.2.1).

In this case we choose d−2 = −i
√
(d−1 )

2 − 1, to ensure that |uScat| → 0 for x2 → −∞. We have |R| = 1.

This is the case of total internal reflection and happens precisely when k+ > k− and k+
k−

| cosφ+| > 1,
i.e. when the wavenumber is higher in the first medium than in the second, and the incoming wave is
“grazing” (i.e. uInc hits Γ with a small angle). The incident angle φ+ = arccos k−k+ such that d−1 = ±1 is
called critical angle; see Figures 33–34. We can observe total internal reflection of light when looking a
flat water/air interface from the side of the water, e.g. in a calm swimming pool (this is because the light
is slower in water than in air, thus kwater =

ω
cwater

> ω
cair

= kair).

Ω+

Ω−

k+ < k−

φ+

φ−

Ω+

Ω−

k+ > k−, |φ+| > φcrit

Ω+

Ω−

k+ > k−, |φ+| < φcrit

Figure 33: Reflection and refraction directions of a plane wave hitting a penetrable half plane. If the
wavenumber k+ of the region Ω+ where the wave comes from is higher than the wavenumber k− in the
complement region Ω−, then the direction of the refracted wave is closer to the surface normal (left).
Instead, if k+ < k− two different situations may happen. If the incident wave angle φ+ is larger than
the critical angle φcrit = arccos k−k+ , then the refracted wave is a plane wave with direction closer to the
interface (centre). Instead, if φ+ < φcrit, the incoming plane wave is totally reflected; in Ω− there is an
evanescent wave (right).

We derived Snell’s law for a plane wave and a flat boundary. It can be written for more general waves
and non-straight interfaces, by considering the angles between the “rays” and the interface tangent plane.
In this case, Snell’s law is not enough to compute the exact solution of a Helmholtz transmission problem
but is helpful to construct an approximation, in particular at high frequencies.

The argument in this section can be easily extended to the three-dimensional case, and, with some
more work, to electromagnetic [BK00, §6.7.3] and elastic waves. Another classical extension is the case
where half space is occupied by a fluid and the other half by a solid, giving the Helmholtz and Navier
equations coupled by transmission conditions at the interface.

In acoustics, electromagnetism and optics, real materials have different refractive index k2−
k2+

at different
wave frequencies ω. So, when light rays with different colours cross material interfaces, they are deflected
by a different angles: this is why we see rainbows. This phenomenon is called dispersion.

Exercise 7.3: (Reflection and transmission). Verify all computations made in this section, in particular the
calculation of R and T.

Exercise 7.4: (Transmission half plane implementation and general waves). Compute numerically the
solution of the transmission problem described in this section and plot the solution. Test your code against
Figure 34. Study the dependence on the parameters k±, A, φ+.

Extend the code to the case of a downward-propagating Herglotz uInc, similarly to Remark 4.2.

Remark 7.5: (Impedance matching). If problem (120) models two fluids with densities ρ± and wave speed
c± in Ω±, then A = ρ+

ρ−
and k± = ω

c±
. Then the “effective impedances” are defined as Z± := ρ±c±

| sinφ±| . The

reflection and transmission coefficients are R = Z−−Z+

Z−+Z+
and T = 2Z−

Z−+Z+
.

The waves is completely transmitted from Ω+ to Ω− with R = 0 when Z− = Z+: this is called “impedance
matching”. In many physical settings, avoiding wave reflections important: to make planes or submarines
invisible to radar and sonar, on camera lenses, to transmit electrical signals from an antenna to a cable, to
transmit ultrasound into a human body during an echography. This is achieved by matching the impedances
of the media where the wave propagates, see [BK00, Heller13].
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Figure 34: Field uTot generated by a plane wave eik+d+·x with k+ = 30 and d+ = (cos π6 ,− sin π
6 ) hitting

a penetrable half space, as in §7.1.2. Top: k− = 60, A = 1. Bottom: k− = 24, A = 1. In the second
case we have total internal reflection: in the lower half plane uTot is an evanescent wave and |R| = 1.

Exercise 7.6: (Many-layer transmission). Extend the analysis to the case of L ≥ 3 layers, each with constant
wavenumber, separated by horizontal lines. In other words, assume that H1 < · · · < HL−1 are given numbers,
and the wavenumber k is constant on the half planes ΩL = {x2 > HL−1}, Ω1 = {x2 < H1} and on the L− 2
strips Ωℓ = {Hℓ−1 < x2 < Hℓ} for ℓ = 2, . . . , L − 1. Given a downward plane wave uInc in ΩL, one has
to compute one plane wave in Ω1 and in ΩL, and two plane waves (one upward and one downward) in each
finite-height strip.

Write a linear system whose solution gives the coefficients of all these waves.
Is the system always invertible?

Exercise 7.7: (Open waveguide). Fix three numbers k− > k+ > 0 and H > 0. Show that the equation

x2
(
1 + tan2(Hx)

)
= k2− − k2+

has a positive finite number of solutions x > 0. (The higher k2− − k2+, and the higher H, the more solutions
exist.) Call one of these solution k⋆. Observe that k2⋆ ≤ k2− − k2+. Define the following field in R2:

u⋆(x) :=


cos(k⋆H) ei

√
k2−−k2⋆ x1 e−

√
k2−−k2+−k2⋆ (x2−H) x2 > H,

ei
√
k2−−k2⋆ x1 cos(k⋆x2) −H ≤ x2 ≤ H,

cos(k⋆H) ei
√
k2−−k2⋆ x1 e

√
k2−−k2+−k2⋆ (x2+H) x2 < −H

Show that |u⋆| decays exponentially for |x2| → ∞, and that

∆u⋆ + k2+u⋆ = 0 |x2| > H,

∆u⋆ + k2−u⋆ = 0 |x2| < H,

u⋆ ∈ C1(R2).

Compute numerically u⋆ for some choices of the parameters. You can see two examples in Figure 35.

Exercise 7.7 and Figure 35 show that a wave can be “trapped” by a domain with wavenumber higher
than its neighbouring regions. In this case, the domain is the strip {|x2| < H}. This is related to total
internal reflection: a wave propagating along the strip hits the interface {|x2| = H} with angle smaller
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Figure 35: Two propagation modes in a waveguide. In the notation of Exercise 7.7, the waveguide is
{|x2| < 0.5}, the wavenumbers are k− = 20 in the waveguide and k+ = 10 in its complement.

than the critical angle, so it is totally reflected back into the strip. This is the basic working principle of
optical fibres [BK00, §6.8.2]. This structure is called waveguide and the solution u⋆ is a propagation
mode. At a given frequency ω, a waveguide can support only a finite number of different propagation
modes (corresponding to different values of k⋆). In particular, this is an “open waveguide” because the wave
is contained by the refraction index variations; “closed waveguide” are e.g. those described in Remark 1.22,
and satisfy impenetrable boundary conditions such as Dirichlet or Neumann on the sides of the strip.

The existence of propagation modes implies that the well-posedness analysis of transmission problems
similar to (120) with more than two regions is delicate.

7.1.3 Helmholtz transmission problem

Consider the geometric setting introduced in §4.3 to describe scattering problems: Ω− ⊂ R2 a bounded,
Lipschitz domain, Ω+ = R2\Ω−, Γ = ∂Ω−, n unit normal on Γ pointing into Ω+, γ± : H1

loc(Ω±) → H
1
2 (Γ),

∂±n : H1
loc(Ω±; ∆) → H− 1

2 (Γ). We assume that the regions Ω+ and Ω− are occupied by two homogeneous
fluids with different mechanical properties. Some physical examples are air bubbles in water and fog
droplets in air. Fix three positive parameters: ko, ki denoting the wavenumbers in Ω+ and Ω− respectively
(with the subscripts o/i for outer/inner), and the normal jump parameter A introduced in (119).

Assume that a wave uInc satisfying ∆uInc + k2ou
Inc = 0 in R2 hits the obstacle Ω−. This generates a

scattered wave uScat in Ω+ that solves ∆uScat + k2ou
Scat = 0 and is outgoing, as in the Dirichlet case of

§4.3.2. We denote the total field uTot = uInc + uScat in Ω+. However, another wave is generated inside
the obstacle Ω−: in this region we do not split it in two terms but we just consider the total field uTot,
which satisfies ∆uTot + k2i u

Tot = 0 in Ω−. Since uTot is the “physical field”, e.g. the acoustic pressure or a
component of the electric or magnetic field, it satisfies the transmission conditions (119): γ+uTot = γ−uTot
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and ∂+n uTot = A∂−n u
Tot on Γ. Collecting the conditions on uTot we obtain

∆uTot + k2ou
Tot = 0 in Ω+,

∆uTot + k2i u
Tot = 0 in Ω−,

γ+uTot − γ−uTot = 0 on Γ,

∂+n u
Tot −A∂−n u

Tot = 0 on Γ,

uTot − uInc is radiating.

(121)

This problem corresponds to (119), where one of the region is bounded and the other is its complement,
with in addition the Sommerfeld radiation condition on uTot−uInc to ensure the uniqueness of the solution.
However, in view of the use of boundary integral equations, it is convenient to use as unknown a field that
satisfies the radiation conditions. We set

u =

{
uScat = uTot − uInc on Ω+

uTot on Ω−.
(122)

In particular, u is radiating and satisfies the two copies of the Helmholtz equation in (121) exactly as
uTot. On the other hand, u is discontinuous across the interface Γ. Substituting (122) in (121), we obtain
a Helmholtz transmission problem (HTP, [Martin06, §1.3.3]) for u:

∆u+ k2ou = 0 in Ω+,

∆u+ k2i u = 0 in Ω−,

γ+u− γ−u = gD on Γ,

∂+n u−A∂−n u = gN on Γ,

u is radiating,

(123)

where the data are
gD = −γuInc and gN = −∂nuInc.

These are two copies of the Helmholtz equation, with different wavenumbers, coupled to one another by
imposing the values of the jumps of their Dirichlet and Neumann traces. The boundary data can also be
taken to be some general gD ∈ H

1
2 (Γ), gN ∈ H− 1

2 (Γ) (recall the relation between the SSSP (45) and the
EDP (44)). Problem (123) is well-posed, but the proof of this fact is not simple.

Figure 36: An example of Helmholtz transmission problem. Here Ω− is a non-convex polygon with 24
sides with diamΩ− = 1, ko = 20, n =

k2i
k2o

= 1
3 , uInc is a plane wave with d = (cos π3 , sin

π
3 ). The first

two plots show u, which is the total field in Ω− and the scattered field in Ω+ (note the discontinuities
on Γ). The last two plots show the total field.

Exercise 7.8: (Transmission problem for the disc). Consider the transmission problem (123) when Ω− is
the disc BR, and the source terms gD, gN are the traces of an incoming plane wave uInc.

Compute the solution u analytically by separation of variables, similarly to §4.3.1.
Plot the field for different values of ko > ki and ko < ki, see e.g. Figure 37.
In Ω+, u has the usual Fourier–Hankel expansion, while in Ω− it has to be expanded in a sum of smooth

Fourier–Bessel functions:

u(x) =


∑
ℓ∈Z

a+ℓ H
(1)
ℓ (kor)e

iℓθ in Ω+,∑
ℓ∈Z

a−ℓ Jℓ(kir)e
iℓθ in Ω−.
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The same-index coefficients a+ℓ and a−ℓ of the two expansions are coupled by the two jump conditions on Γ.
You need to compute the first derivatives of Bessel and Hankel functions, using e.g. [DLMF, eq. 10.6.1].

k!=k+ = 0:70711 k!=k+ = 1:4142

Figure 37: Helmholtz transmission problems for a disc. A plane wave with ko = 15 hits a penetrable
unit disc from the left. The refractive index in the disc is n =

k2i
k2o

= 1
2 (left) and n = 2 (right). We show

the real part of the total field uTot and some rays refracted according to Snell’s law. The light blue lines
are the reflected rays. We do not show the reflection of the refracted rays when they hit Γ from Ω−.
The little red segments are normal to the disc boundary. Note that for n = 1

2 some rays do not refract:
this is an example of total reflection.

Figure 38: Scattering of a plane wave by a penetrable square with n = 1
3 (left) and n = 3 (right).

Observing Figures 37 and 38, we see that if ki > ko (i.e. n > 1) the obstacle can focus the wave in a
region: this is how lenses work. Indeed, glass has higher refractive index than air. We can understand
this by tracing rays and applying Snell’s law when they cross Γ.

Exercise 7.9: (Transmission quasi-resonances). Compute and plot the solutions of the Helmholtz trans-
mission problems for the unit disc Ω− = B1, refractive index n = 100 (so ki = 10ko), and wavenumbers
ko = 1.77945199481921 and ko = 1.779451994815. Use the Fourier expansion developed in Exercise 7.8.

The two wavenumbers differ by a relative factor of about 2.4 · 10−12, but the solutions u are completely
different (see in particular the magnitude of u). Can you explain why?

7.1.4 BIEs for the Helmholtz transmission problem

The HTP (123) can be written as an integral equation. Since two wavenumbers are involved we need
to use two copies of each BIO: we write So, Si, Do, Di, D

′
o, D

′
i, Ho, Hi for the four BIOs with k = ko and

k = ki. We recall the Cauchy traces and the Calderón projectors of Exercise 5.33

γ±
C := (γ±, ∂±n ) : H1

loc(Ω±; ∆) → H, where H := H
1
2 (Γ)×H− 1

2 (Γ),

P±
o/i : H → H, P±

o/i :=
1

2
I ±

(
Do/i −So/i
Ho/i −D′

o/i

)
.

https://dlmf.nist.gov/10.6.E1
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The key property of Calderón projectors is (82): their kernels characterize the traces of outer and inner
Helmholtz solutions. In particular, for u solution of (123),

P+
i γ

−
Cu = P−

o γ
+
Cu = 0. (124)

Introduce M :=

(
1 0
0 A

)
∈ R2×2 and g :=

(
gD
gN

)
∈ H, so that the transmission condition in (123) reads

γ+
Cu−Mγ−

Cu = g.

Applying P−
o to this condition, (124) gives

−P−
o Mγ

−
Cu = P−

o (γ+
Cu−Mγ−

Cu) = P−
o g. (125)

Define the two operators BI, BII : H → H

BI := P−
o M −MP+

i =

(
−Do −Di ASo + Si
−Ho −AHi AD′

o +AD′
i

)
,

BII := P−
o M +MP+

i =M +

(
−Do +Di ASo − Si
−Ho +AHi AD′

o −AD′
i

)
.

Applying these two operators to γ−
Cu and using (124)–(125) we have

BIγ
−
Cu = −P−

o g, BIIγ
−
Cu = −P−

o g. (126)

These are two BIEs for the transmission problem (123). They are direct BIEs, because the unknown
is γ−

Cu, which is a trace of the HTP solution. The operators BI and BII are of the first and second
kind, respectively, as only the second has the M term summed to the layer potentials. These two BIEs
are called PMCHWT (Poggio–Miller–Chang–Harrington–Wu–Tsai) and Müller formulations, respectively.
Both operators BI, BII : H → H are bounded and invertible; BII is also a Fredholm operator68. Many
other BIEs are possible for the HTP (123), [Martin06, §6.2] 69.

If the data come from an incoming wave, i.e. g = −γCuInc, or equivalently gD = −γuInc and gN =
−∂nuInc, then P−

o g = g and the right-hand side of both BIEs in (126) further simplifies.
Once the BIE solution γ−

Cu is known, then γ+
Cu can be computed by the transmission condition, and

u can be computed in Ω± by Green’s representation formulas (73), using ko and ki appropriately.
An important difference between (126) and the BIEs for the exterior problems in §6.2 (including (58))

is that the unknown of (126) is composed of two scalar fields on Γ: γ−
Cu = (γ−u, ∂−n u) ∈ H. Since

H = H
1
2 (Γ)×H− 1

2 (Γ), a typical low-order BEM discretisation of (126) uses piecewise-constant functions
for the first variable and continuous piecewise-linear for the second one, or continuous piecewise-linear for
both.

Remark 7.10: (Variational form of the transmission BIEs). Recall that in §3.3.3 we introduced the
duality product ⟨v, w⟩Γ that extends the L2(Γ) scalar product

∫
Γ
vw ds to v ∈ H

1
2 (Γ), w ∈ H− 1

2 (Γ) or to
v ∈ H− 1

2 (Γ), w ∈ H
1
2 (Γ). For ψ = (ψ1, ψ2), ξ = (ξ1, ξ2) ∈ H = H

1
2 (Γ) × H− 1

2 (Γ), we define the duality
⟨ψ, ξ⟩H×H := ⟨ψ1, ξ2⟩+ ⟨ψ2, ξ1⟩, which extends the L2(Γ)

2 scalar product
∫
Γ
(ψ1ξ2 +ψ2ξ1) ds. Note that the

(possibly) singular distributions ψ2, ξ2 ∈ H− 1
2 (Γ) are paired with the more regular ones in ξ1, ψ1 ∈ H

1
2 (Γ).

The variational formulation of the first-kind BIE in (126) with g = −γCuInc consists in finding ψ =
(ψ1, ψ2) ∈ H such that

⟨BIψ, ξ⟩H×H = ⟨−Doψ1 −Diψ1 +ASoψ2 + Siψ2 , ξ2⟩Γ + ⟨−Hoψ1 −AHiψ1 +AD′
oψ2 +AD′

iψ2 , ξ1⟩Γ
= −⟨γuInc, ξ2⟩Γ − ⟨∂nuInc, ξ1⟩Γ = ⟨g, ξ⟩H×H ∀ξ = (ξ1, ξ2) ∈ H.

The similar formula for the second-kind BIE is ⟨BIIψ, ξ⟩H×H = ⟨g, ξ⟩H×H ∀ξ ∈ H, or equivalently

⟨ψ1 −Doψ1 +Diψ1 +ASoψ2 − Siψ2 , ξ2⟩Γ + ⟨−Hoψ1 +AHiψ1 +Aψ2 +AD′
oψ2 −AD′

iψ2 , ξ1⟩Γ
= −⟨γuInc, ξ2⟩Γ − ⟨∂nuInc, ξ1⟩Γ ∀ξ = (ξ1, ξ2) ∈ H.

68[Hiptmair, Moiola, Spence, Spurious quasi-resonances in boundary integral equations for the Helmholtz transmission
problem, SIAP 2022]

69[van’t Wout, Haqshenas, Gélat, Betcke, Saffari, Boundary integral formulations for acoustic modelling of high-contrast
media, CAMWA 2022; Benchmarking preconditioned boundary integral formulations for acoustics, IJNME 2021]

https://doi.org/10.1137/21M1447052
https://doi.org/10.1137/21M1447052
https://doi.org/10.1016/j.camwa.2021.11.021
https://doi.org/10.1016/j.camwa.2021.11.021
https://doi.org/10.1002/nme.6777
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We can pose both problems in the smoother space H1(Γ)×L2(Γ): this allows to avoid fractional-exponent
spaces and write duality products as integrals. We look for ψ = (ψ1, ψ2) in this space such that one of the
following holds:∫

Γ

[
(−Doψ1 −Diψ1 +ASoψ2 + Siψ2)ξ2 + (−Hoψ1 −AHiψ1 +AD′

oψ2 +AD′
iψ2)ξ1

]
ds

=

∫
Γ

[
− γuIncξ2 − ∂nu

Incξ1

]
ds ∀ξ = (ξ1, ξ2) ∈ H1(Γ)× L2(Γ),∫

Γ

[
(ψ1 −Doψ1 +Diψ1 +ASoψ2 − Siψ2)ξ2 + (−Hoψ1 +AHiψ1 +Aψ2 +AD′

oψ2 −AD′
iψ2)ξ1

]
ds

=

∫
Γ

[
− γuIncξ2 − ∂nu

Incξ1

]
ds ∀ξ = (ξ1, ξ2) ∈ H1(Γ)× L2(Γ).

The Galerkin approximation of the BIEs (126) with a discrete space VN ⊂ H1(Γ) × L2(Γ) relies on these
formulations.

7.2 Non-piecewise-constant materials
In §7.1 we have considered waves propagating in two different homogeneous media. This can be extended
to a finite number of materials. However, often the properties of the material where the wave propagates
change continuously. Examples are acoustic waves in the atmosphere, where air density and pressure vary
with height and temperature, or in the oceans, where water density depends on salinity, temperature and
depth70.

As mentioned in Remark 1.15, time-harmonic acoustic waves in heterogeneous media satisfy the
Bergmann equation [Martin06, eq. (1.27)]:

div

(
1

ρ0(x)
∇u(x)

)
+
k2n(x)

ρ0(x)
u(x) = 0, n(x) =

c20
c2(x)

. (127)

Here ρ0 is the fluid static density (i.e. when the fluid is not acoustically perturbed), c0 a constant reference
wave speed, c the local wave speed, k = ω

c0
the reference wavenumber, n the refractive index, and the

unknown u is the acoustic pressure.71
In the following we consider the Bergmann equation (127), and, for simplicity, we assume that ρ0 is

constant. The heterogeneity in the material, which determines refraction and scattering, is completely
described by the refractive index n. We assume that

n ∈ L∞(R2), n > 0, supp(n− 1) is compact.

The last condition means that the medium is homogeneous with n = 1 outside of a sufficiently large ball.
The datum is uInc, which is solution of the constant-coefficient Helmholtz equation ∆uInc + k2uInc = 0.
Then we seek uTot such that

∆uTot + k2nuTot = 0 in R2,

uTot − uInc is radiating.

This problem is studied in detail in [CK2, Ch. 8].72 Defining, as usual, uScat = uTot − uInc, this field
satisfies the Helmholtz equation with a source term and the Sommerfeld radiation condition:

∆uScat + k2nuScat = −f in R2, with f := k2(n− 1)uInc,

uScat is radiating.
(128)

Proceeding as in §4.4.2, a variational formulation of this problem is:

find uScat ∈ H1(BR) such that An(u
Scat, w) = Fn(w) ∀w ∈ H1(BR), where (129)

70[Jensen, Kuperman, Porter, Schmidt, Computational ocean acoustics, Springer 2011]
71Analogously, from (13), time-harmonic electromagnetic waves in media with variable electric permittivity ϵ, magnetic

permeability µ and conductivity σ, satisfy

curl
(
µ−1 curlE

)
− (ω2ϵ+ iωσ)E = 0, or, equivalently, curl

(
(ϵ− iσ/ω)−1 curlH

)
− ω2µH = 0.

72See also Chapter 7 of [Kirsch, An introduction to the mathematical theory of inverse problems, Springer 2021].

https://doi.org/10.1007/978-1-4419-8678-8
https://doi.org/10.1007/978-3-030-63343-1


Non-piecewise-constant materials |108| A. Moiola — February 24, 2025

An(u
Scat, w) :=

∫
BR

(∇uScat∇w − k2nuScatw) dx−
∫
∂BR

(DtNγuScat)(γw) ds,

Fn(w) :=
∫
BR

fw dx.
n ̸= 1

BR
uInc

Here BR is a ball of radius R > 0 centred at the origin such that supp(n− 1) ⊂ BR, and the DtN map is
defined in (50).

Exercise 7.11: (The variable-index problem is well-posed). Using §4.4.3, show the Gårding inequality

ℜ{An(w,w)} ≥ ∥w∥2L2(BR)2 − k2∥n∥L∞(R2)∥w∥2L2(BR) ∀w ∈ H1(BR).

Following §4.4, deduce that the problem (129) is well-posed.
We observe that the problem is well-posed also if n is complex with non-negative imaginary part, i.e. when

some part of the domain is occupied by absorbing materials; recall Exercise 1.14.

Exercise 7.12: (Relation with the transmission problem). Write the HTP (123), with A = 1, gD = −γuInc
and gN = −∂nuInc, in the form of problem (128).

7.2.1 The Lippmann–Schwinger equation

Recall the volume (or Newton) potential operator (71) (Vf)(y) =
∫
R2 Φk(x,y)f(x) dx, and that, for all

compactly supported f , Vf is radiating and (∆ + k2)Vf = −f .
Since ∆uScat + k2uScat = k2(1− n)uTot and uScat is radiating, we have

uScat = k2V
(
(n− 1)uTot

)
.

Expanding uTot = uInc + uScat, we obtain

uScat + k2V
(
(1− n)uScat

)
= k2V

(
(n− 1)uInc

)
. (130)

Summing uInc to both sides in one of these identities, we have

uTot + k2V
(
(1− n)uTot

)
= uInc. (131)

Equations (130) and (131) are two versions of the Lippmann–Schwinger equation; [CK2, eq. (8.13)],
[Martin06, §6.3.3]. In both (130) and (131) the argument of V is compactly supported, because n = 1
outside of a compact region.

The Lippmann–Schwinger equation is again an integral equation, but it is not a BIE, as it is not posed
on a boundary. It is an example of volume integral equation (VIE). Equations (130) and (131) are
weakly-singular, second-kind VIEs.

Exercise 7.13: (Far-field pattern for heterogeneous media). Recall the definition (46) of the far-field
pattern u∞ of a radiating Helmholtz solution u. Recall that it can be computed from formula (47) for any
Lipschitz boundary Γ such that u is a homogeneous Helmholtz solution in the region exterior to Γ.

Show that the far-field pattern of the solution uScat of problem (128) can be computed as

u∞(θ) =
ei

π
4

√
8πk

∫
Ω

k2
(
n(x)− 1

)
uTot(x)e−ikx·d dx d = (cos θ, sin θ).

See [CK2, eq. (8.28)] for the corresponding formula in 3D.

7.2.2 Numerical approximation of the Lippmann–Schwinger equation

Either version of the Lippmann–Schwinger equation can be approximated with a collocation or a Galerkin
scheme. Here we only consider the equation (131) for the total field. Let Ω ⊂ R2 be a bounded domain
that contains supp(n−1), for instance a rectangle. Let VN be a finite-dimensional subspace of L2(Ω) with
basis {φ1, . . . , φN}. Fix N points x1, . . . ,xN in Ω. Then the collocation method applied to (131) consists
in finding

ψN ∈ VN such that ψN (xj) + k2V
(
(1− n)ψN

)
(xj) = uInc(xj) ∀j = 1, . . . , N.
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As in §5.2, expanding ψN =
∑N
m=1 Ψmφm, the vector Ψ = (Ψ1, . . . ,ΨN ) ∈ CN solves the N × N linear

system AColΨ = FCol, where

ACol
j,m = φm(xj) + V

(
(1− n)φm

)
(xj) = φm(xj) +

∫
R2

Φk(xj ,y)
(
1− n(y)

)
φm(y) dy, FCol

j = uInc(xj).

The integral has to be computed only on the intersection between the support of (1− n) and that of φm.
If VN is chosen as the space of piecewise-constant functions on a mesh TN = {K1, . . . ,KN} that partitions
Ω, with the obvious basis (φm = 1 on Km and 0 elsewhere), then the collocation matrix reduces to

ACol
j,m = δj,m +

∫
Km

Φk(xj ,y)
(
1− n(y)

)
dy. (132)

As for the BEM, for stability purposes it is often preferable to take more collocation points than basis
functions, and solve the resulting overdetermined system in the least squares sense (oversampling).

To write a Galerkin discretisation of the Lippmann–Schwinger equation (131), we first write a varia-
tional formulation:

find uTot ∈ L2(Ω) such that ALS(u
Tot, w) = FLS(w) ∀w ∈ L2(Ω) where (133)

ALS(u,w) :=

∫
Ω

(
uw + k2V

(
(1− n)u

)
w
)
dx

=

∫
Ω

(
u(x)w(x) + k2

∫
Ω

Φk(x,y)
(
1− n(y)

)
u(y) dy w(x)

)
dx,

FLS(w) :=

∫
Ω

uIncw dx.

The Galerkin approximation of (133) consists in finding ψN ∈ VN such that ALS(ψN , ξN ) = FLS(ξN ) for
all ξN ∈ VN . In matrix form, the coefficient vector Ψ ∈ CN of ψN satisfies the linear system AGalΨ = FGal,
where

AGal
j,m =

∫
Ω

(
φm(x)φj(x) + k2

∫
Ω

Φk(x,y)
(
1− n(y)

)
φm(y) dy φj(x)

)
dx, FGal

j =

∫
Ω

uIncφj dx.

Choosing a piecewise-constant discrete space, with the same basis and notation above, this reduces to

AGal
j,m = |Kj |δj,m + k2

∫
Kj

∫
Km

Φk(x,y)
(
1− n(y)

)
dy dx, FGal

j =

∫
Kj

uInc dx. (134)

The collocation and the Galerkin methods for the VIEs lead to dense matrices. However, VIEs do not
enjoy the dimensional reduction of BIEs: to solve a 2D problem we need to discretise a 2D domain. So we
have disadvantages compared to both FEM and BEM. On the other hand, VIEs can be used for arbitrary
(non-piecewise-constant) heterogeneous materials, differently from BIEs and BEMs, and their solutions
automatically satisfy the radiation condition, differently from FEM.

Similarly to the BEM described in §5.2, a crucial part of the method consists in computing the weakly
singular integrals entering the matrices. For the Lippmann–Schwinger equation (131) in two dimensions,
collocation requires 2D integrals and Galerkin requires 4D integrals: the dimension is higher than for the
BEM. Techniques similar to those seen in §5.2.1 to deal with the singularities of the fundamental solution
apply also in this case.

Once one has computed an approximation ψN of uTot in Ω, then one can evaluate uTot or uScat in the
unbounded complement R2 \Ω using again (131), and recalling that V acts on a function supported in Ω.
So there is no need for another representation formula (such as (59) for (58)).

A different strategy to approximate (128) consists in coupling a finite element method on the bounded
region Ω and a method to approximate a BIE on ∂Ω, [CK2, §8.7].

In this section we have considered the Bergmann equation (127) with constant density ρ0, i.e. ∆u +
k2nu = 0. The Lippmann–Schwinger equation can be extended to the more general case div(a∇u)+k2nu =
0 for variable a, n. In this case we obtain integro-differential equations.73

VIEs for the scattering of electromagnetic waves by heterogeneous materials are considerably more
complicated than for acoustic waves. In particular, the volume potential operator relative to the Maxwell
equations has a stronger singularity than V. The approximation of curlµ−1 curlE−(ω2ϵ+iωσ)E = 0 with

73[Costabel, On the spectrum of volume integral operators in acoustic scattering, 2015]
[Martin, Acoustic scattering by inhomogeneous obstacles, SIAP 2003]

https://doi.org/10.1007/978-3-319-16727-5_11
https://www.jstor.org/stable/4096041
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a collocation method, piecewise-constant basis functions, a single-point quadrature rule for off-diagonal
matrix terms, and a special recipe for diagonal terms is called “discrete dipole approximation” (DDA)74,
and is very popular in optics, atmospheric sciences, and astrophysics.

Remark 7.14: (Born approximation and series). For any linear operator T on a Banach space, such that
its Neumann series

∑∞
j=0 T

j converges in the operator norm, we have

(I − T )

n∑
j=0

T j =

n∑
j=0

T j −
n∑
j=0

T j+1 = I − Tn+1 n→∞−−−−→ I =⇒ (I − T )−1 =

∞∑
j=0

T j .

The convergence of the Neumann series is guaranteed if ∥T∥ < 1, or more generally if
∑∞
j=0 ∥T j∥ <∞.

The VIE (131) can be written in operator form as

uTot −AuTot = uInc, where A : w 7→ −k2V((1− n)w).

Consider the sequence

u0 = uInc, uj = uInc +Auj−1 =

n∑
j=0

AjuInc j ∈ N.

If the Neumann series
∑∞
j=0A

j converges, then the sequence uj approximates the BIE solution uTot:

lim
j→∞

uj =

∞∑
j=0

AjuInc = (I −A)−1uInc = uTot.

This is called Born series. When only the 0th and the 1st terms are kept, this is the (first) Born approximation
or Rayleigh–Gans approximation: uTot ≈ uInc +AuInc. The Born series allows to approximate the total field
without solving a VIE, but simply by repeatedly applying the volume integral operator. At the discrete level, the
solution of a linear system is replaced by matrix-vector products. For the Born series to converge, the operator A
has to be small in norm: this is true for “weak scatterers” such that k2D2(n−1), with D = diam(supp(n−1)),
is sufficiently small (see eq. (7.31) in the book of footnote 72). In particular, the wave speed in the obstacle can
not be very different from outside. Iterative methods that approximate uTot under more general assumptions
and with faster convergence have been developed improving on the Born series.75

If the mesh elements are identical and regularly distributed, the matrix of the corresponding VIE
piecewise-constant discretisation has a special structure that allow low storage and efficient computations.
In Exercise 7.15 we describe a very simple example, and in Exercise 7.16 a more complex one.

Exercise 7.15: (Strip domain: Toeplitz matrix).
For h > 0 and N ∈ N, let Ω ⊂ R2 be the strip (0, Nh) × (0, h),
partitioned in the N square elements TN = {K1, . . . ,KN}, with
Km = (h(m− 1), hm)× (0, h) for m = 1, . . . , N :

K1 K2 K3 K4 K5 K6 K7 x1

x2

Let the refractive index n be constant in Ω and n ̸= 1 .
Show that the collocation or Galerkin matrix A in (132)–(134)

is a Toeplitz matrix: all entries on each diagonal parallel to the
main one are identical. In particular, only 2N − 1 complex values
are needed to store A ∈ CN×N . A Toeplitz linear system can be
solved efficiently with specialised algorithms.

Recall that Φk(x,y) only depends on the distance |x− y|.

A =

A6

A5

A4

A3

A2

A1

A0

A5

A4

A3

A2

A1

A0

A−1

A4

A3

A2

A1

A0

A−1

A−2

A3

A2

A1

A0

A−1

A−2

A−3

A2

A1

A0

A−1

A−2

A−3

A−4

A1

A0

A−1

A−2

A−3

A−4

A−5

A0

A−1

A−2

A−3

A−4

A−5

A−6

Exercise 7.16: (Regular 2D mesh: BTTB matrix). Let Ω be the rectangle (0, Lx) × (0, Ly), and TN its
partition in N = NxNy identical rectangular elements:

TN = {Kmx,my
: mx = 1, . . . , Nx, my = 1, . . . , Ny},

Kmx,my
= (xmx−1, xmx

)× (ymy−1, ymy
),

xm =
Lx
Nx

m m = 0, . . . , Nx, ym =
Ly
Ny

m m = 0, . . . , Ny.
0 Lx

0

Ly

xmx

ymy

Kmx,my

Ω

74[Yurkin, Hoekstra, The discrete dipole approximation: An overview and recent developments, JQSRT 2007]
75[Kleinman, Roach, van den Berg, Convergent Born series for large refractive indices, JOSA 1990]

https://doi.org/10.1016/j.jqsrt.2007.01.034
https://doi.org/10.1364/JOSAA.7.000890
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Order the elements first along the horizontal and then along the vertical direction: KNx(my−1)+mx
= Kmx,my ,

so we can write TN = {K1, . . . ,KN}. Consider the space VN of piecewise-constant functions on TN , with
mth basis element φm the characteristic function of Km.

To start with, assume that n is constant and different from 1 in Ω.
The (collocation or Galerkin) matrix A in (132)–(134) has a special block structure. It is composed of

Ny×Ny square blocks of size Nx×Nx: the block with row indices from Nx(my−1)+1 to Nxmy and column
indices from Nx(m

′
y − 1) + 1 to Nxm′

y corresponds to the interaction of the elements in the my-th and the
m′
y-th horizontal rows of the mesh. We name this block Bmy,m′

y
∈ CNx×Nx .

Show that A is a block-Toeplitz-with-Toeplitz-blocks (BTTB) matrix (or 2-level Toeplitz matrix). This
means that (i) each block Bmy,m′

y
is a Toeplitz matrix, and (ii) all blocks along the same diagonal, i.e. with

the same value of my −m′
y, are identical. See Figure 39 for an example of a small BTTB matrix.

To be able to work with the matrix A, it is enough to compute and store the first row and the first
column of the blocks in the first row and in the first column, for a total of (2Nx − 1)(2Ny − 1) ≤ 4N ≪ N2

different entries. This allows the efficient computation of matrix–vector products, and thus the implementation
of iterative solvers such as GMRES. Moreover, an N × N BTTB matrix can be embedded in a 2N × 2N
block-circulant-with-circulant-blocks matrix, whose product with a vector is a discrete convolution and can be
done with O(N logN) effort using the fast Fourier transform (FFT). See e.g. Sections 4.3–4.4 in the reference
of Footnote 74.

If the refractive index n is not constant in the rectangle Ω, it can be approximated by an elementwise-
constant function ñ. This leads to VIE matrices in the form A = I+TD, where I is the identity matrix, T a
BTTB matrix, D a diagonal scaling matrix depending on n with Dj,j = 1 − ñ|Kj (up to a scalar factor |Kj |
in the Galerkin case). This includes also the case where some elements of the rectangle Ω are not part of the
obstacle, so that n = 1 on these elements.

Similar ideas can be applied to other regular grids, e.g. made of triangles or hexagons, and even to higher-
order piecewise-polynomial spaces.
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Figure 39: Entries of a 24 × 24 block-Toeplitz-with-Toeplitz-blocks (BTTB) matrix corresponding to
a regular mesh with Nx = 6 elements in the horizontal direction and Ny = 4 in the vertical direction.
Equal numbers correspond to equal entries. There are (2Nx−1)(2Ny−1) = 77 different entries (shaded
squares).
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A Vector calculus formulas and notation

BR(x) := {y ∈ Rn : |y − x| < R}, BR := BR(0), S1 := {d ∈ R2 : |d| = 1},
polar coordinates: x = (x1, x2) = (r cos θ, r sin θ), r = |x| ≥ 0, 0 ≤ θ < 2π, dx1 dx2 = r dr dθ,

eiz = cos z + i sin z, cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
, ℜ = real part, ℑ = imaginary part,

v ×w := (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1), u× (v ×w) = v(u ·w)−w(u · v),

∇u :=
( ∂u
∂x1

, . . . ,
∂u

∂xn

)
, divv := ∇ · v :=

∂v1
∂x1

+ · · ·+ ∂vn
∂xn

,

∆u := ∇2u := div(∇u) =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n

if n=2
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
,

curlv := ∇× v :=
( ∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
,

curl∇u = 0, div curlv = 0,

curl curlv = ∇ divv −∆v

=
(

∂2v2
∂x1∂x2

+ ∂2v3
∂x1∂x3

− ∂2v1
∂x2

2
− ∂2v1

∂x2
3
, ∂2v1

∂x1∂x2
+ ∂2v3

∂x2∂x3
− ∂2v2

∂x2
1
− ∂2v2

∂x2
3
, ∂2v1

∂x1∂x3
+ ∂2v2

∂x2∂x3
− ∂2v3

∂x2
1
− ∂2v3

∂x2
2

)
.

B Bessel function formulas

All these formulas can be found in [DLMF, §10] and [CK2, §3.5]. Here r > 0 and ℓ ∈ Z.

r2f ′′(r) + rf ′(r) + (r2 − ℓ2)f(r) = 0 Bessel differential equation, f ∈ {Jℓ, Yℓ, H(1)
ℓ , H

(2)
ℓ },

Jℓ(r) =
(r
2

)ℓ ∞∑
j=0

(−1)j
( 14r

2)j

j!(ℓ+ j)!
ℓ ∈ N0,

J−ℓ = (−1)ℓJℓ, Y−ℓ = (−1)ℓYℓ, J ′
ℓ =

Jℓ−1 − Jℓ+1

2
, Y ′

ℓ =
Yℓ−1 − Yℓ+1

2
,

H
(1)
ℓ := Jℓ + iYℓ, H

(2)
ℓ := Jℓ − iYℓ = H

(1)
ℓ ,

∂

∂r
|H(1)

ℓ (r)| < 0,

eir cosα =
∑
ℓ∈Z

iℓJℓ(r)e
iℓα Jacobi–Anger formula, Jℓ(r)Y

′
ℓ (r)− Yℓ(r)J

′
ℓ(r) =

2

πr
Wronskian identity,

Jℓ(r) =

√
2

πr
cos
(
r − ℓπ

2
− π

4

)(
1 +Or→∞

(1
r

))
, Yℓ(r) =

√
2

πr
sin
(
r − ℓπ

2
− π

4

)(
1 +Or→∞

(1
r

))
,

Jℓ(r) ∼
1√
2π

(er
2

)ℓ
ℓ−ℓ−

1
2 , H

(1)
ℓ (r) ∼ −i

√
2

π

( 2

er

)ℓ
ℓℓ−

1
2 for ℓ→ ∞,

Jℓ(r) ∼
rℓ

ℓ! 2ℓ
ℓ ∈ N0, H

(1)
0 (r) ∼ 2i

π
log r, H

(1)
ℓ (r) ∼ − i

π
(ℓ− 1)!

2ℓ

rℓ
ℓ ∈ N for r ↘ 0.

Here a(x) ∼ b(x) for x→ X means that limx→X
a(x)
b(x) = 1.

C Acronyms

• BCs: boundary conditions.

• BEM: boundary element method.

• BIE: boundary integral equation.

• BIO: boundary integral operator.

• BVP: boundary value problem.

• CFIE: combined-field integral equation.

• DOFs: degrees of freedom.

• DtN: Dirichlet-to-Neumann map.

• EDP: exterior Dirichlet problem.

• FEM: finite element method.

• HTP: Helmholtz transmission problem.

• PDE: partial differential equation.

• PEC: perfect electric conductor.

• SSSP: sound-soft scattering problem.

• TE: transverse-electric.

• TEM: transverse-electric and magnetic.

• TM: transverse-magnetic.

• VIE: volume integral equation.

https://dlmf.nist.gov/10
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D Units of measurement

We summarise the SI units of measure of the physical quantities introduced in §1.

§1.1 Mass density ρ kg
m3

Pressure p Pa = N
m2 = kg

m·s2

Fluid velocity, wave speed v, c m
s

Acoustic velocity potential ϕ kg
m·s

Damping parameter γ 1
s

Acoustic intensity I kg
s3

Sound power W = kg·m2

s3

Sound pressure level SPL dB
Force density F N

m3 = kg
m2·s2

Impedance parameter ϑ 1
§1.2 Angular frequency ω rad

s

Time frequency f Hz = 1
s

Wavenumber k 1
m

Wavelength λ m

§1.3 Electric field E ,E V
m = kg·m

s3·A
Magnetic field H,H A

m

Electric permittivity ϵ s4·A2

kg·m3

Magnetic permeability µ N
A2 = kg·m

s2·A2

Conductivity σ s3·A2·rad
kg·m3

Current density J ,J A
m2

§1.4 Displacement U,u m
Lamé constants, Young modulus λ, µ,E Pa = kg

m·s2

Poisson ratio ν 1
Elastic potentials χ,ψ m2

Traction, stress and stiffness tensor T,σ,C Pa = kg
m·s2

Strain tensor ε 1
Somigliana potential g m3

s second
m metre
kg kilogram
A ampere
N newton

Pa pascal
W watt
Hz hertz
V volt

rad radian

Four of these (s, m, kg, A) are SI base units, the others are derived units. We also used the decibel (dB),
which is not a SI unit.

https://en.wikipedia.org/wiki/International_System_of_Units
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E Summary

In this course we studied the boundary element method (BEM) for the numerical approximation of sound-
soft scattering problems for the homogeneous Helmholtz equation in two dimensions.

The Helmholtz equation ∆u + k2u = 0 is relevant because it characterizes the space dependence
u(x) of time-harmonic solutions U(x, t) = ℜ{u(x)e−iωt} of the wave equation 1

c2
∂2U
∂t2 − ∆U = 0, where

k = ω/c > 0 is the wavenumber, ω the time frequency and c the wave speed (§1.2). The wave equation
models the propagation and the scattering of acoustic waves (§1.1). The Helmholtz equation arises also
in the modelling of electromagnetic (§1.3) and elastic (§1.4) waves.

The solutions of the Helmholtz equation that are separable in Cartesian coordinates are the plane
waves (§2.2), which are either propagative or evanescent (§2.2.1). The solutions that are separable in
polar coordinates are the circular waves, which are products of Bessel (Jℓ, Yℓ) and Hankel (H(1)

ℓ , H(2)
ℓ )

functions (§2.3) in the radial variable r (times k) and circular harmonics eiℓθ in the angular variable.
We can easily compute by hand the reflection of a plane wave hitting an infinite straight line equipped

with Dirichlet, Neumann, or impedance conditions (§4.1). In order to study the wave scattering by
bounded obstacles we need to deal with Lipschitz domains (§3.1), function spaces defined on them (§3.2)
and on their boundaries (§3.3) and Green’s identities (§3.4). With these tools we can formulate the
exterior Dirichlet problems, and in particular the sound-soft scattering problems (§4.3.2). The simplest
example is given by a circular scatterer (§4.3.1), for which we can write the solution explicitly. The
key condition “at infinity”, used to select the correct solution, is the Sommerfeld radiation condition
|∂ru− iku| = or→∞(r−1/2).

Using the fundamental solution Φk of the Helmholtz equation, we define the single-layer potential S
and the single-layer operator S. These allow to write the boundary integral equation (BIE) Sψ = gD and
the representation formula u = Sψ. Solving the BIE and applying the representation formula we obtain
the solution of the exterior Dirichlet problem (§5.1). The BIE can be discretised with a collocation-BEM
or a Galerkin-BEM (§5.2). The implementation of the BEM requires a careful use of quadrature formulas
(§5.2.1). Several variations and extensions of the BEM are possible (§5.2.2).

The analysis of the Helmholtz equation (either in the form of a BVP or a BIE) relies on Fredholm
theory and involves non-coercive variational problems that admit Gårding inequalities (§3.5). This allows
to study BVPs posed both in bounded domains (§4.2), which are closely related to Laplace eigenvalue
problems, and in exterior domains (§4.3). An important formula is Green’s representation, which allows
to write all (radiating) Helmholtz solutions in terms of their traces (§5.3). One can also define the double-
layer potential D and operator D (§5.4), the adjoint double-layer operator D′ and the hypersingular
operator H (§5.5). The two potentials and the four operators are related to one another by the Dirichlet
and Neumann trace operators (79), which determine the jump relations (80).

The well-posedness of the single-layer BIE (§6.1) follows from the injectivity and the Fredholm property
of S. The injectivity holds only when k2 is not a Laplace eigenvalue (§6.1.1). The Fredholm property
(§6.1.2) is obtained by decomposing S in the sum of a coercive part related to the reaction-diffusion
equation (§6.1.5) and a compact part corresponding to a bounded kernel function (§6.1.4).

Many other integral equations are possible for the same exterior Dirichlet problem (§6.2), some of
which are well-posed for all values of k (§6.2.3, §6.2.4).

Galerkin discretisations of non-coercive problems that satisfy a Gårding inequality are well-posed and
quasi-optimal if the discrete space is “sufficiently fine” (§6.3.1). This applies to both the finite element
method (§6.3.2) and the BEM (§6.3.3) approximations of Helmholtz problems. The proof of convergence
rates for the BEM requires studying the BIE solution regularity in fractional Sobolev norms (§6.3.4).

A wave is refracted when it propagates in a heterogeneous medium (§7). When two homogeneous
materials are in contact, transmission conditions must be imposed on their interface (§7.1.1). If the
interface is flat, we can compute exactly the reflection and the refraction of a plane wave, in agreement
with Snell’s law (§7.1.2). Instead, if the interface is bounded we have a Helmholtz transmission problem
(HTP) (§7.1.3), which can be written as a BIE (§7.1.4). A more general setting is when the medium
is truly heterogeneous, and its properties vary continuously (§7.2). This problem is modelled by the
Lippmann–Schwinger volume integral equation (VIE) (§7.2.1), which can be approximated with collocation
or Galerkin schemes (§7.2.2).
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F What else?

In these notes we have mostly considered exterior Dirichlet BVPs for the 2D Helmholtz equation. However
BIEs and BEMs have a much broader range of applicability. They may be used to model, analyse and ap-
proximate Helmholtz BVPs posed on bounded domains, and on domains with unbounded or non-Lipschitz
boundaries. BIEs can be used for much more general linear PDEs (of all kinds: elliptic, parabolic and hy-
perbolic) in any dimension, including systems of PDEs such as those of elasticity76 and electromagnetism
(e.g. [CK1, Ch. 4], [Nédélec01, §5.6]) described in §1.3–1.4. In computational electromagnetism, the BEM
is often called “method of moments” (MoM). The main requirement for implementing a BEM is that the
fundamental solution of the differential operator is known, either in exact or approximate form.

A BEM can be coupled with a FEM (or another volume-based method) for approximating problems
with different physical models in different subdomains. Typically, FEMs are used in small regions of high
geometric complexity, variable coefficients or non-linearities, and BEMs are used to deal with unbounded
regions where coefficients are constant.

The use of BEM in applications requires the solution of large dense linear systems. Often their solution
with direct methods (such as Gauss elimination) is too expensive and requires iterative (Krylov) methods
such as GMRES, usually with preconditioning, [SS11, Ch. 6]. For large systems, even assembling the
matrix may be unfeasible. Several techniques to compute matrix–vector multiplications, which are the key
steps in Krylov methods, without explicitly assembling the matrix have been developed. These techniques
exploit the structure of the BEM matrix and the properties of the fundamental solution. Important
realisations of this idea are the fast multipole method (FMM) by Greengard and Rokhlin [Martin06,
§6.14], the panel clustering [SS11, Ch. 7], and the hierarchical matrices (H-matrices) by Hackbusch.

Several open-source BEM codes addressing the Helmholtz equation are available online:
• Bempp is a high-performance Galerkin-BEM code with a Python interface. https://bempp.com/

• Bembel is a C++ isogeometric Galerkin BEM library. https://temf.github.io/bembel/

• DeltaBEM is a Matlab suite for 2D BEM on smooth curves, focused on frequency-domain and time-
domain wave problems. https://github.com/team-pancho/deltaBEM

• Gypsilab is a Matlab toolbox for fast Galerkin BEM and FEM computations, including acoustics.
https://github.com/matthieuaussal/gypsilab

• IGABEM2D is a Matlab library implementing adaptive isogeometric BEM in 2D.
https://zenodo.org/records/6282998

Another important numerical method for the discretisation of BIEs is the Nyström method, which can
converge extremely fast for smooth scatterers; see e.g. [CK2, §3.6] for the application to 2D Brakhage–
Werner equation or [Sayas15, pp. 33 and 36] for the Laplace case.

Besides integral equations, volume-based discretisations of the Helmholtz equation are very popular.
Important examples are hp-finite element77 and discontinuous Galerkin (DG)78 methods, also with non-
polynomial basis functions79 (such as plane waves or Fourier–Bessel functions). A considerable portion
of current research on these methods studies their wavenumber dependence and the design of schemes
that scale well for large k. The solution of the linear systems associated to these methods is particularly
challenging because of the indefiniteness of the variational form used and the propagative nature of the so-
lution80; the domain decomposition (DD)81 method is a commonly used technique to solve or precondition
these large linear systems.

A considerable amount of research is currently devoted to the modelling and the mathematical anal-
ysis of wave propagation problems, and to the design and the analysis of numerical methods for their
approximation. To get an idea of the most active research topics, take a look at the books of abstract of
recent conferences82.

76[Darbas, Le Louër, Well-conditioned boundary integral formulations for high-frequency elastic scattering problems in
three dimensions, MMAS 2014]

77[Melenk, Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz eq., SiNum 2011]
78[Melenk, Parsania, Sauter, General DG-methods for highly indefinite Helmholtz problems, JSC 2013]
79[Hiptmair, Moiola, Perugia, A survey of Trefftz methods for the Helmholtz equation, LNCSE 2016]
80[Ernst, Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, LNCSE 2010]

[Gander, Zhang, A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source
transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SiRev 2019]

81[Graham, Spence, Vainikko, Recent results on domain decomposition preconditioning for the high-frequency Helmholtz
equation using absorption, GSMA 2017], [Bootland, Dolean, Jolivet, Tournier, A comparison of coarse spaces for Helmholtz
problems in the high frequency regime, CAMWA 2021]

82Berlin, 2024: https://doi.org/10.17617/3.MBE4AA
Karlsruhe, 2025: https://conference25.waves.kit.edu/wp-content/uploads/2025/02/BoA.pdf

https://bempp.com/
https://temf.github.io/bembel/
https://github.com/team-pancho/deltaBEM
https://github.com/matthieuaussal/gypsilab
https://zenodo.org/records/6282998
https://doi.org/10.1002/mma.3179
https://doi.org/10.1002/mma.3179
https://doi.org/10.1137/090776202
https://doi.org/10.1007/s10915-013-9726-8
http://dx.doi.org/10.1007/978-3-319-41640-3_8
https://doi.org/10.1007/978-3-642-22061-6_10
https://doi.org/10.1137/16M109781X
https://doi.org/10.1137/16M109781X
https://doi.org/10.1007/978-3-319-28832-1_1
https://doi.org/10.1007/978-3-319-28832-1_1
https://doi.org/10.1016/j.camwa.2021.07.011
https://doi.org/10.1016/j.camwa.2021.07.011
https://doi.org/10.17617/3.MBE4AA
https://conference25.waves.kit.edu/wp-content/uploads/2025/02/BoA.pdf
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References on wave phenomena. [CJ77] is classical book that describes clearly and succinctly many
kinds of wave phenomena, developing both physical intuition and mathematical formalism; [BK00] is simi-
lar in spirit but more advanced and up to date. [Heller13] is a very clear and instructive non-mathematical
book to gain an intuitive understanding of acoustic phenomena. [Martin06] describes analytical and numer-
ical methods for the scattering of different kinds of time-harmonic waves by multiple obstacles, including
BIEs for the Helmholtz equation; it also has a rich bibliography and many historical comments.

References on the Helmholtz equation. [Ihlenburg98] describes in detail the Helmholtz BVPs
and their discretisation with the finite element method. Several Helmholtz (and Maxwell) BVPs and the
corresponding boundary integral equations (BIEs) are analysed in mathematically rigorous way in [CK1,
§3], [CK2, §1–3], [Nédélec01, §2–3]. [Spence14] is a survey of several variational formulations for Helmholtz
and Laplace BVPs, the corresponding BIEs and the numerical methods for their discretisation; it is an
accessible introduction to Helmholtz problems and the related literature. The lecture notes [Runborg12]
consider analytical and numerical methods for interior and scattering Helmholtz BVPs, with a special
focus on high-frequency problems.

References on PDEs. The book [SBH19] is an excellent PDE textbook: it is written with applications
to numerical methods in mind and it includes a detailed analysis of the Helmholtz equation. [McLean00]
is a book on elliptic PDEs and integral equations; in particular, Chapter 1 summarises the (pre)history
of BIEs, Chapter 3 is a very clear and rich introduction to Sobolev spaces, and Chapter 9 focuses on the
Helmholtz equation. [Brezis11] is a classical reference on functional analysis with application to PDEs.

References on the BEM. The lecture notes [Sayas15] and [Sayas06] are good introductions to BIEs
for Laplace and Helmholtz equations, respectively, and their discretisations with the boundary element
method (BEM). [Costabel87] is a brief and clear introduction to the BEM for several PDEs. [SS11] is a
comprehensive and mathematically-oriented textbook on the BEM for elliptic PDEs, including Helmholtz.
Section 2 of [CGLS12] is devoted to the BIE formulation of 2D Dirichlet–Helmholtz problems (precisely
those we mostly focus on in these notes); the rest of the article analyses in detail a special class of BEM
for the same problems.

[DLMF] is the main online resource for special functions and related topics. It is the “successor” of the
famous book by Abramowitz and Stegun.
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Single-layer, 51

Resonant wavenumber and frequency, 31
Rough surface, 29
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Schwartz functions, S(Rn), 24
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Silver–Müller radiation condition, 43
Singularity-extraction, 56
Snell’s law of refraction, 100
Sobolev embedding, 22, 28
Somigliana potential g, 11

Sommerfeld radiation condition, 39
Sound power, 3
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Space
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Lebesgue
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Of test functions D(Ω), 21
Sobolev
H(div; Ω), 79
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loc(Ω), H
1
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T-matrix method, 45
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Theorem
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Green’s boundary representation, 64
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Lax–Milgram, 26
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Rellich embedding, 27
Rellich’s lemma, 49

Threshold condition, 88
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Total field uTot, 37
Total internal reflection, 101
Trace

Cauchy γC , 69, 105
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Neumann ∂n, 24
Normal, 79
Of the integral potentials, 67

Traction operator T, 11
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