Boundary element methods for scattering by fractal screens

Andrea Moiola

http://matematica.unipv.it/moiola/

UNIVERSITÀ DI PAVIA
Department of Mathematics
"Felice Casorati"

Joint work with
S.N. Chandler-Wilde (Reading), D.P. Hewett (UCL)
A. Caetano (Aveiro)

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.
Scattering: incoming wave u^{i} hits obstacle Γ and generates field u.

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.
Scattering: incoming wave u^{i} hits obstacle Γ and generates field u.
Γ bounded subset of $\Gamma_{\infty}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{n}=0\right\} \cong \mathbb{R}^{n-1}, n=2,3$

u satisfies Sommerfeld radiation condition (SRC) at infinity (i.e. $\partial_{r} u-i k u=o\left(r^{(1-n) / 2}\right)$ uniformly as $\left.r=|\mathbf{x}| \rightarrow \infty\right)$.

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}},|\mathbf{d}|=1$.

$$
u^{t o t}=u+u^{i}
$$

Classical problem when Γ is open and Lipschitz.

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}},|\mathbf{d}|=1$.

$$
u^{t o t}=u+u^{i}
$$

Classical problem when Γ is open and Lipschitz.
What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Γ ?

Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)
Scattering by ice crystals in atmospheric physics e.g. C. Westbrook

Fractal apertures in laser optics e.g. J. Christian

Scattering by fractal screens

Lots of mathematical challenges:

- How to formulate well-posed BVPs?
(What is the right function space setting? How to impose BCs?)
- How do prefractal solutions converge to fractal solutions?
- How can we accurately compute the scattered field?
- ...

Note: several tools developed here might be used in the (numerical) analysis of different IEs \& BVPs involving complicated domains.

Outline

- Sobolev spaces on rough sets
- BVPs and BIEs
- open screens
- compact screens

- Prefractal to fractal convergence
- BEM and convergence
- Examples \& numerics
- Cantor dust: dependence on Hausdorff dimension
- Sierpinski triangle: dependence on frequency
- Snowflakes: inner and outer approximations

Sobolev spaces on rough subsets of \mathbb{R}^{n-1}

We need fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $s \in \mathbb{R}$ let

$$
H^{s}\left(\mathbb{R}^{n-1}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n-1}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n-1}\right)}^{2}:=\int_{\mathbb{R}^{n-1}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\}
$$

Sobolev spaces on rough subsets of \mathbb{R}^{n-1}

We need fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $s \in \mathbb{R}$ let $H^{s}\left(\mathbb{R}^{n-1}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n-1}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n-1}\right)}^{2}:=\int_{\mathbb{R}^{n-1}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\}$
For $\Gamma \subset \mathbb{R}^{n-1}$ open and $F \subset \mathbb{R}^{n-1}$ closed define
(McLEAN)

$$
\begin{array}{rlrl}
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\left(\mathbb{R}^{n-1}\right)\right\} & & \text { restriction } \\
\widetilde{H}^{s}(\Gamma) & :=\bar{C}_{0}^{\infty}(\Gamma) & H^{s}\left(\mathbb{R}^{n-1}\right) & \\
\text { closure } \\
H_{F}^{s} & :=\left\{u \in H^{s}\left(\mathbb{R}^{n-1}\right): \operatorname{supp} u \subset F\right\} & & \text { support }
\end{array}
$$

Sobolev spaces on rough subsets of \mathbb{R}^{n-1}

We need fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $s \in \mathbb{R}$ let

$$
H^{s}\left(\mathbb{R}^{n-1}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n-1}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n-1}\right)}^{2}:=\int_{\mathbb{R}^{n-1}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\}
$$

For $\Gamma \subset \mathbb{R}^{n-1}$ open and $F \subset \mathbb{R}^{n-1}$ closed define
(McLEAN)

$$
\begin{aligned}
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\left(\mathbb{R}^{n-1}\right)\right\} & & \text { restriction } \\
\widetilde{H}^{s}(\Gamma) & :=\overline{C_{0}^{\infty}(\Gamma)} H^{s}\left(\mathbb{R}^{n-1}\right) & & \text { closure } \\
H_{F}^{s} & :=\left\{u \in H^{s}\left(\mathbb{R}^{n-1}\right): \operatorname{supp} u \subset F\right\} & & \text { support }
\end{aligned}
$$

When Γ is Lipschitz it holds that

- $\widetilde{H}^{s}(\Gamma)=\left(H^{-s}(\Gamma)\right)^{*}$ with equal norms
- $s \in \mathbb{N} \Rightarrow\|u\|_{H^{s}(\Gamma)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Gamma}\left|\partial^{\alpha} u\right|^{2}$
- $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \quad\left(\cong H_{00}^{s}(\Gamma), s \geq 0\right)$
- $H_{\partial \Gamma}^{ \pm 1 / 2}=\{0\}$
- $\left\{H^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ and $\left\{\widetilde{H}^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ are interpolation scales.

Sobolev spaces on rough subsets of \mathbb{R}^{n-1}

We need fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $s \in \mathbb{R}$ let $H^{s}\left(\mathbb{R}^{n-1}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n-1}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n-1}\right)}^{2}:=\int_{\mathbb{R}^{n-1}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\}$
For $\Gamma \subset \mathbb{R}^{n-1}$ open and $F \subset \mathbb{R}^{n-1}$ closed define
(McLEAN)

$$
\begin{aligned}
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\left(\mathbb{R}^{n-1}\right)\right\} & & \text { restriction } \\
\widetilde{H}^{s}(\Gamma) & :=\overline{C_{0}^{\infty}(\Gamma)}{ }^{H^{s}\left(\mathbb{R}^{n-1}\right)} & & \text { closure } \\
H_{F}^{s} & :=\left\{u \in H^{s}\left(\mathbb{R}^{n-1}\right): \operatorname{supp} u \subset F\right\} & & \text { support }
\end{aligned}
$$

When Γ is Lipschitz it holds that

- $\tilde{H}^{s}(\Gamma)=\left(H^{-s}(\Gamma)\right)^{*}$ with equal norms
- $s \in \mathbb{N} \Rightarrow\|u\|_{H^{s}(\Gamma)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Gamma}\left|\partial^{\alpha} u\right|^{2}$
- $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \quad\left(\cong H_{00}^{s}(\Gamma), s \geq 0\right)$
- $H_{\partial \Gamma}^{ \pm 1 / 2}=\{0\}$
- $\left\{H^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ and $\left\{\widetilde{H}^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ are interpolation scales.

For general open Γ

- \checkmark
- \times

LIPSCHITZ
IS
LUXURY!

BVPs for open and compact screens

$\mathrm{BVP}^{\text {op }}(\Gamma)$ for open screens
Let $\Gamma \subset \Gamma_{\infty}$ be bounded \& open. Given $g \in H^{1 / 2}(\Gamma)$
(for instance, $\boldsymbol{g}=-\left.\left(\gamma^{ \pm} u^{i}\right)\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W^{1, \text { loc }}(D)$ satisfying

$$
\begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } D \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g
\end{aligned}
$$

Sommerfeld RC.
$\gamma^{ \pm}=$traces : $W^{1}\left(\mathbb{R}_{ \pm}^{n}\right) \rightarrow H^{1 / 2}\left(\Gamma_{\infty}\right)$

BVPs for open and compact screens

$\mathrm{BVP}^{\text {op }}(\Gamma)$ for open screens

 Let $\Gamma \subset \Gamma_{\infty}$ be bounded \& open. Given $g \in H^{1 / 2}(\Gamma)$(for instance, $\boldsymbol{g}=-\left.\left(\gamma^{ \pm} u^{i}\right)\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W^{1, \text { loc }}(D)$ satisfying

$$
\begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } D, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g
\end{aligned}
$$

Sommerfeld RC.

$\gamma^{ \pm}=$traces : $W^{1}\left(\mathbb{R}_{ \pm}^{n}\right) \rightarrow H^{1 / 2}\left(\Gamma_{\infty}\right)$

BVP $\mathrm{D}^{\text {co }}(\Gamma)$ for compact scr.

Let $\Gamma \subset \Gamma_{\infty}$ be compact.
Given $g \in \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp}$

$$
\left(\mathrm{e} . \mathrm{g}_{\ldots}, g=-P_{\Gamma} u^{i}\right),
$$

find $u \in C^{2}(D) \cap W^{1, \text { loc }}(D)$
satisfying

$$
\begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } D \\
P_{\Gamma} \gamma^{ \pm} u & =g
\end{aligned}
$$

Sommerfeld RC.

Orthogonal projection

$$
P_{\Gamma}: H^{1 / 2}\left(\Gamma_{\infty}\right) \rightarrow \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp} .
$$

BVPs for open and compact screens

$\mathrm{BVP}^{\text {op }}(\Gamma)$ for open screens

 Let $\Gamma \subset \Gamma_{\infty}$ be bounded \& open. Given $g \in H^{1 / 2}(\Gamma)$(for instance, $\boldsymbol{g}=-\left.\left(\gamma^{ \pm} u^{i}\right)\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W^{1, \text { loc }}(D)$ satisfying

$$
\begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } D, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g
\end{aligned}
$$

Sommerfeld RC.

$\gamma^{ \pm}=$traces : $W^{1}\left(\mathbb{R}_{ \pm}^{n}\right) \rightarrow H^{1 / 2}\left(\Gamma_{\infty}\right)$

BVP D ${ }^{\text {co }}(\Gamma)$ for compact scr.

 Let $\Gamma \subset \Gamma_{\infty}$ be compact. Given $g \in \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp}$$$
\left(e . g_{.}, g=-P_{\Gamma} u^{i}\right)
$$

find $u \in C^{2}(D) \cap W^{1, \text { loc }}(D)$ satisfying

$$
\begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } D, \\
P_{\Gamma} \gamma^{ \pm} u & =g
\end{aligned}
$$

Sommerfeld RC.

Orthogonal projection

$$
P_{\Gamma}: H^{1 / 2}\left(\Gamma_{\infty}\right) \rightarrow \tilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp} .
$$

Well-posedness \& boundary integral equations

Theorem (CW, H, M 2019)
If $\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$ then problem $\mathrm{D}^{o p}(\Gamma)$ has a unique solution u.

Theorem (CW, H, M 2019)

Problem ${ }^{c o}(\Gamma)$
has a unique solution u.

Well-posedness \& boundary integral equations

Theorem (CW, H, M 2019)

If $\tilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$ then problem
$D^{o p}(\Gamma)$ has a unique solution u.

Theorem (CW, H, M 2019)

Problem $\mathrm{D}^{c o}(\Gamma)$
has a unique solution u.
u satisfies the representation formula $u(\mathbf{x})=-\mathcal{S}_{\Gamma} \phi(\mathbf{x}), \mathbf{x} \in D$, where $\phi=\left[\partial_{\mathbf{n}} u\right]:=\partial_{\mathbf{n}}^{+} u-\partial_{\mathbf{n}}^{-} u$ is the unique solution of $\mathrm{BIE} S_{\Gamma} \phi=-g$.
$\mathcal{S}_{\Gamma}=$ single-layer potential,
$S_{\Gamma}=$ single layer operator: cont. \& coercive in $H^{-1 / 2}\left(\mathbb{R}^{n-1}\right)$ norm.
$\mathcal{S}_{\Gamma} \psi(\mathbf{x}):=\int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \psi(\mathbf{x}) \mathrm{d} s(\mathbf{y})$
$\mathcal{S}_{\Gamma}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow C^{2}(D) \cap W^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$
$S_{\Gamma} \psi=\left.\left(\gamma^{ \pm} \mathcal{S}_{\Gamma} \psi\right)\right|_{\Gamma}$
$S_{\Gamma}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma)$
$\mathcal{S}_{\Gamma}: H_{\Gamma}^{-1 / 2} \rightarrow C^{2}(D) \cap W^{1, \operatorname{loc}\left(\mathbb{R}^{n}\right)}$
$S_{\Gamma}=P_{\Gamma} \gamma^{ \pm} \mathcal{S}_{\Gamma}$
$S_{\Gamma}: H_{\Gamma}^{-1 / 2} \rightarrow \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp}$
Φ is the Helmholtz fundamental solution $\left(\Phi(\mathbf{x}, \mathbf{y})=\frac{e^{i k|x-\mathbf{y}|}}{4 \pi|\mathbf{x}-\mathbf{y}|}\right.$ for $\left.n=3\right)$

When is $\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$?

The previous theorems extend classical results for Lipschitz domains (Stephan \& Wendland 1984, Stephan 1987).

When is $\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2} ?$

The previous theorems extend classical results for Lipschitz domains (Stephan \& Wendland 1984, Stephan 1987).

Sufficient conditions for $\tilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$ are that $|\partial \Gamma|=0$ and either

- Γ is C^{0} (e.g. Lipschitz);
- Γ is C^{0} except at a set of countably many points $P \subset \partial \Gamma$ such that P has only finitely many limit points;
- Γ is "thick", in the sense of Triebel.

$\left(\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2} \Longleftrightarrow C_{0}^{\infty}(\Gamma) \subset^{\text {dense }}\left\{v \in H^{-1 / 2}\left(\mathbb{R}^{n-1}\right): \operatorname{supp} v \subset \bar{\Gamma}\right\}\right)$

When is $\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2} ?$

The previous theorems extend classical results for Lipschitz domains (Stephan \& Wendland 1984, Stephan 1987).

Sufficient conditions for $\tilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$ are that $|\partial \Gamma|=0$ and either

- Γ is C^{0} (e.g. Lipschitz);
- Γ is C^{0} except at a set of countably many points $P \subset \partial \Gamma$ such that P has only finitely many limit points;
- Γ is "thick", in the sense of Triebel.

$\left(\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2} \Longleftrightarrow C_{0}^{\infty}(\Gamma) \subset^{\text {dense }}\left\{v \in H^{-1 / 2}\left(\mathbb{R}^{n-1}\right): \operatorname{supp} v \subset \bar{\Gamma}\right\}\right)$
Cases with $\widetilde{H}^{-1 / 2}(\Gamma) \neq H_{\bar{\Gamma}}^{-1 / 2}$ constructed using characterisation: If $s \in \mathbb{R}, \operatorname{int}(\bar{\Gamma})$ is C^{0} then $\quad \widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} \Longleftrightarrow H_{\mathrm{int}(\bar{\Gamma}) \backslash \Gamma}^{-s}=\{0\}$.

Prefractal to fractal convergence of BVPs

BIEs can be written as continuous \& coercive variational problems posed in subspaces of $H^{-1 / 2}\left(\Gamma_{\infty}\right)$: either $\tilde{H}^{-1 / 2}(\Gamma)$ or $H_{\Gamma}^{-1 / 2}$.

Let Γ_{j} be a sequence of "prefractals" approximating "fractal" Γ. Denote ϕ_{j} and ϕ the corresponding BIE solutions.

Prefractal to fractal convergence of BVPs

BIEs can be written as continuous \& coercive variational problems posed in subspaces of $H^{-1 / 2}\left(\Gamma_{\infty}\right)$: either $\tilde{H}^{-1 / 2}(\Gamma)$ or $H_{\Gamma}^{-1 / 2}$.

Let Γ_{j} be a sequence of "prefractals" approximating "fractal" Γ. Denote ϕ_{j} and ϕ the corresponding BIE solutions.

If Mosco convergence $V_{j} \xrightarrow{\mathcal{M}} V$ holds,
then $\phi_{j} \rightarrow \phi$ in $H^{-1 / 2}\left(\Gamma_{\infty}\right)$ and $\mathcal{S}_{\Gamma_{*}} \phi_{j} \rightarrow \mathcal{S}_{\Gamma_{*}} \phi$ in $W^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$,
where $V_{j}=\left\{\begin{array}{ll}\widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right) & \Gamma_{j} \text { open } \\ H_{\Gamma_{j}}^{-1 / 2} & \Gamma_{j} \text { comp. }\end{array} \quad V= \begin{cases}\widetilde{H}^{-1 / 2}(\Gamma) & \Gamma \text { open } \\ H_{\Gamma}^{-1 / 2} & \Gamma \text { comp } .\end{cases}\right.$

Prefractal to fractal convergence of BVPs

BIEs can be written as continuous \& coercive variational problems posed in subspaces of $H^{-1 / 2}\left(\Gamma_{\infty}\right)$: either $\widetilde{H}^{-1 / 2}(\Gamma)$ or $H_{\Gamma}^{-1 / 2}$.

Let Γ_{j} be a sequence of "prefractals" approximating "fractal" Γ. Denote ϕ_{j} and ϕ the corresponding BIE solutions.

If Mosco convergence $V_{j} \xrightarrow{\mathcal{M}} V$ holds,
then $\phi_{j} \rightarrow \phi$ in $H^{-1 / 2}\left(\Gamma_{\infty}\right)$ and $\mathcal{S}_{\Gamma_{*}} \phi_{j} \rightarrow \mathcal{S}_{\Gamma_{*}} \phi$ in $W^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$,
where $V_{j}=\left\{\begin{array}{ll}\widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right) & \Gamma_{j} \text { open } \\ H_{\Gamma_{j}}^{-1 / 2} & \Gamma_{j} \text { comp. }\end{array} \quad V= \begin{cases}\widetilde{H}^{-1 / 2}(\Gamma) & \Gamma \text { open } \\ H_{\Gamma}^{-1 / 2} & \Gamma \text { comp } .\end{cases}\right.$
Definition of Mosco convergence (1969): $\quad H \supset W_{j} \xrightarrow{\mathcal{M}} W \subset H$ if

- $\forall v \in W, j \in \mathbb{N}, \exists v_{j} \in W_{j}$ s.t. $v_{j} \rightarrow v \quad$ (strong approximability)
- $\forall\left(j_{m}\right)$ subseq. of $\mathbb{N}, v_{j_{m}} \in W_{j_{m}}, v_{j_{m}} \rightharpoonup v$, then $v \in W \quad$ (weak closure)

Prefractal to fractal convergence of BVPs

BIEs can be written as continuous \& coercive variational problems posed in subspaces of $H^{-1 / 2}\left(\Gamma_{\infty}\right)$: either $\widetilde{H}^{-1 / 2}(\Gamma)$ or $H_{\Gamma}^{-1 / 2}$.

Let Γ_{j} be a sequence of "prefractals" approximating "fractal" Γ. Denote ϕ_{j} and ϕ the corresponding BIE solutions.

If Mosco convergence $V_{j} \xrightarrow{\mathcal{M}} V$ holds,
then $\phi_{j} \rightarrow \phi$ in $H^{-1 / 2}\left(\Gamma_{\infty}\right)$ and $\mathcal{S}_{\Gamma_{*}} \phi_{j} \rightarrow \mathcal{S}_{\Gamma_{*}} \phi$ in $W^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$,
where $V_{j}=\left\{\begin{array}{ll}\widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right) & \Gamma_{j} \text { open } \\ H_{\Gamma_{j}}^{-1 / 2} & \Gamma_{j} \text { comp. }\end{array} \quad V= \begin{cases}\tilde{H}^{-1 / 2}(\Gamma) & \Gamma \text { open } \\ H_{\Gamma}^{-1 / 2} & \Gamma \text { comp } .\end{cases}\right.$
Definition of Mosco convergence (1969):
$H \supset W_{j} \xrightarrow{\mathcal{M}} W \subset H$ if

- $\forall v \in W, j \in \mathbb{N}, \exists v_{j} \in W_{j}$ s.t. $v_{j} \rightarrow v$
(strong approximability)
- $\forall\left(j_{m}\right)$ subseq. of $\mathbb{N}, v_{j_{m}} \in W_{j_{m}}, v_{j_{m}} \rightharpoonup v$, then $v \in W \quad$ (weak closure)
(1) open $\Gamma_{j} \subset \Gamma_{j+1}$

(2) compact $\Gamma_{j} \supset \Gamma_{j+1}$

AAAEA
(3) non-nested $\Gamma_{j \not \partial}^{\nmid} \Gamma_{j+1}$

Part II

The boundary element method

The boundary element method (BEM)

Partition prefractal Γ_{j} with mesh $M_{j}=\left\{T_{j, 1}, \ldots, T_{T_{j}, N_{j}}\right\}, h_{j}:=$ mesh size. Denote by $V_{j}^{h} \subset H^{-1 / 2}\left(\Gamma_{\infty}\right)$ the space of piecewise constants on M_{j}.

The boundary element method (BEM)

Partition prefractal Γ_{j} with mesh $M_{j}=\left\{T_{j, 1}, \ldots, T_{T_{j}, N_{j}}\right\}, h_{j}:=$ mesh size. Denote by $V_{j}^{h} \subset H^{-1 / 2}\left(\Gamma_{\infty}\right)$ the space of piecewise constants on M_{j}. Galerkin BEM: solve restriction of (variational form of) BIE to V_{j}^{h} :

$$
\begin{aligned}
& \text { find } \phi_{j}^{h} \in V_{j}^{h} \text { s.t. } \\
& \forall \psi^{h} \in V_{j}^{h}
\end{aligned} \int_{\Gamma_{j}} \int_{\Gamma_{j}} \Phi(\mathbf{x}, \mathbf{y}) \phi_{j}^{h}(\mathbf{x}) \overline{\psi^{h}(\mathbf{y})} \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}=-\int_{\Gamma_{j}} g(\mathbf{y}) \overline{\psi^{h}(\mathbf{y})} \mathrm{d} \mathbf{y}
$$

ϕ_{j}^{h} approximates ϕ on $\Gamma_{j}, \quad \mathcal{S}_{\Gamma_{j}} \phi_{j}^{h}$ approximates u in D.

The boundary element method (BEM)

Partition prefractal Γ_{j} with mesh $M_{j}=\left\{T_{j, 1}, \ldots, T_{T_{j}, N_{j}}\right\}, h_{j}:=$ mesh size. Denote by $V_{j}^{h} \subset H^{-1 / 2}\left(\Gamma_{\infty}\right)$ the space of piecewise constants on M_{j}. Galerkin BEM: solve restriction of (variational form of) BIE to V_{j}^{h} :

$$
\begin{aligned}
& \text { find } \phi_{j}^{h} \in V_{j}^{h} \text { s.t. } \\
& \forall \psi^{h} \in V_{j}^{h}
\end{aligned} \int_{\Gamma_{j}} \int_{\Gamma_{j}} \Phi(\mathbf{x}, \mathbf{y}) \phi_{j}^{h}(\mathbf{x}) \overline{\psi^{h}(\mathbf{y})} \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}=-\int_{\Gamma_{j}} g(\mathbf{y}) \overline{\psi^{h}(\mathbf{y})} \mathrm{d} \mathbf{y}
$$

ϕ_{j}^{h} approximates ϕ on $\Gamma_{j}, \quad \mathcal{S}_{\Gamma_{j}} \phi_{j}^{h}$ approximates u in D.
We want to ensure that BEM solution on Γ_{j} converges to BIE solution on Γ.

The boundary element method (BEM)

Partition prefractal Γ_{j} with mesh $M_{j}=\left\{T_{j, 1}, \ldots, T_{T_{j}, N_{j}}\right\}, h_{j}:=$ mesh size. Denote by $V_{j}^{h} \subset H^{-1 / 2}\left(\Gamma_{\infty}\right)$ the space of piecewise constants on M_{j}. Galerkin BEM: solve restriction of (variational form of) BIE to V_{j}^{h} :

$$
\begin{aligned}
& \text { find } \phi_{j}^{h} \in V_{j}^{h} \text { s.t. } \\
& \forall \psi^{h} \in V_{j}^{h}
\end{aligned} \int_{\Gamma_{j}} \int_{\Gamma_{j}} \Phi(\mathbf{x}, \mathbf{y}) \phi_{j}^{h}(\mathbf{x}) \overline{\psi^{h}(\mathbf{y})} \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}=-\int_{\Gamma_{j}} g(\mathbf{y}) \overline{\psi^{h}(\mathbf{y})} \mathrm{d} \mathbf{y}
$$

ϕ_{j}^{h} approximates ϕ on $\Gamma_{j}, \quad \mathcal{S}_{\Gamma_{j}} \phi_{j}^{h}$ approximates u in D.
We want to ensure that BEM solution on Γ_{j} converges to BIE solution on Γ.

If $V_{j}^{h} \xrightarrow{\mathcal{M}} V$,
(with either $V=\widetilde{H}^{-1 / 2}(\Gamma)$ or $V=H_{\Gamma}^{-1 / 2}$)
then BEM solution $\phi_{j}^{h} \rightarrow \phi$ in $H^{-1 / 2}\left(\Gamma_{\infty}\right)$ and $\mathcal{S}_{\Gamma_{*}} \phi_{j}^{h} \rightarrow u$ in $W^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$
Mosco convergence extends Céa argument: Galerkin convergence for discrete spaces not contained in limit space.
Might be useful in very different settings!
Non-conforming FEM?

BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and $\left|\partial T_{j, l}\right|=0$. (Allow multi-component elements!)
How to choose $\left(h_{j}\right)_{j=0}^{\infty}$ so that $V_{j}^{h} \xrightarrow{\mathcal{M}} V$?

BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and $\left|\partial T_{j, l}\right|=0$.
(Allow multi-component elements!)
How to choose $\left(h_{j}\right)_{j=0}^{\infty}$ so that $V_{j}^{h} \xrightarrow{\mathcal{M}} V$?
Theorem (CW, H, M 2019)
Let Γ, Γ_{j} be bounded open, $\Gamma_{j} \subset \Gamma_{j+1}, \Gamma=\bigcup_{j=0}^{\infty} \Gamma_{j}$.
Then BEM convergence holds if $h_{j} \rightarrow 0$ as $j \rightarrow \infty$.

BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and $\left|\partial T_{j, l}\right|=0$.
(Allow multi-component elements!)
How to choose $\left(h_{j}\right)_{j=0}^{\infty}$ so that $V_{j}^{h} \xrightarrow{\mathcal{M}} V$?
Theorem (CW, H, M 2019)
Let Γ, Γ_{j} be bounded open, $\Gamma_{j} \subset \Gamma_{j+1}, \Gamma=\bigcup_{j=0}^{\infty} \Gamma_{j}$.
Then BEM convergence holds if $h_{j} \rightarrow 0$ as $j \rightarrow \infty$.
Proof: For $V_{j}^{h} \xrightarrow{\mathcal{M}} V=\widetilde{H}^{-1 / 2}(\Gamma)=\overline{C_{0}^{\infty}(\Gamma)}$ we have to show
(i) strong approximability and (ii) weak closedness.

For (i), let $v \in C_{0}^{\infty}(\Gamma)$. Then $\exists j_{*}(v)$ s.t. $v \in C_{0}^{\infty}\left(\Gamma_{j}\right)$ for $j \geq j_{*}(v)$ and

$$
\left\|\Pi_{L^{2}, V_{j}^{h}} v-v\right\|_{\widetilde{H}^{-1 / 2}(\Gamma)} \leq\left(h_{j} / \pi\right)^{1 / 2}\|v\|_{L^{2}\left(\Gamma_{j}\right)}
$$

For (ii), $V_{j}^{h} \subset \widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right) \xrightarrow{\mathcal{M}} \widetilde{H}^{-1 / 2}(\Gamma)$.
Extends to some non-nested $\Gamma_{j \not \partial}^{\nless} \Gamma_{j+1}$, e.g.

BEM convergence: compact screen

When Γ is compact with empty interior and $\operatorname{dim}_{H} \Gamma>1$ this argument fails because $C_{0}^{\infty}\left(\Gamma^{\circ}\right)=\{0\}$ is not dense in $V=H_{\Gamma}^{-1 / 2} \neq\{0\}$.

AAAABA

BEM convergence: compact screen

When Γ is compact with empty interior and $\operatorname{dim}_{H} \Gamma>1$ this argument fails because
$\Delta \Delta$ A A A A A A A A A $C_{0}^{\infty}\left(\Gamma^{\circ}\right)=\{0\}$ is not dense in $V=H_{\Gamma}^{-1 / 2} \neq\{0\}$.

To obtain a smooth approximation we mollify: this enlarges the support.
Currently only results for "thickened prefractals".

BEM convergence: compact screen

When Γ is compact with empty interior and $\operatorname{dim}_{H} \Gamma>1$ this argument fails because $C_{0}^{\infty}\left(\Gamma^{\circ}\right)=\{0\}$ is not dense in $V=H_{\Gamma}^{-1 / 2} \neq\{0\}$.

To obtain a smooth approximation we mollify: this enlarges the support.
Currently only results for "thickened prefractals".

Theorem (CW, H, M 2019)

 Let Γ compact \& Γ_{j} open satisfy $\Gamma \subset \Gamma\left(\epsilon_{j}\right) \subset \Gamma_{j} \subset \Gamma\left(\eta_{j}\right), 0<\epsilon_{j}<\eta_{j} \rightarrow 0$. Then BEM convergence holds if $h_{j}=o\left(\epsilon_{j}\right)$ as $j \rightarrow \infty$. If H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$ for $t \in(-1 / 2,0)$ then $h_{j}=o\left(\epsilon_{j}^{-2 t}\right)$ suffices.If Γ is d-set (e.g. IFS attractor), $h_{j}=o\left(\epsilon_{j}^{\mu}\right), \mu>n-1-\operatorname{dim}_{H} \Gamma$ is enough.

BEM convergence: compact screen

When Γ is compact with empty interior and $\operatorname{dim}_{H} \Gamma>1$ this argument fails because $C_{0}^{\infty}\left(\Gamma^{\circ}\right)=\{0\}$ is not dense in $V=H_{\Gamma}^{-1 / 2} \neq\{0\}$.

To obtain a smooth approximation we mollify: this enlarges the support.
Currently only results for "thickened prefractals".

Theorem (CW, H, M 2019)

 Let Γ compact \& Γ_{j} open satisfy $\Gamma \subset \Gamma\left(\epsilon_{j}\right) \subset \Gamma_{j} \subset \Gamma\left(\eta_{j}\right), 0<\epsilon_{j}<\eta_{j} \rightarrow 0$. Then BEM convergence holds if $h_{j}=o\left(\epsilon_{j}\right)$ as $j \rightarrow \infty$. If H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$ for $t \in(-1 / 2,0)$ then $h_{j}=o\left(\epsilon_{j}^{-2 t}\right)$ suffices. If Γ is d-set (e.g. IFS attractor), $h_{j}=o\left(\epsilon_{j}^{\mu}\right), \mu>n-1-\operatorname{dim}_{H} \Gamma$ is enough. Proof of (i) (strong approx.): Let $v \in H_{\Gamma}^{t}$ and set $v_{j}:=\left(\psi_{\varepsilon_{j} / 2} * v\right)$, then$$
\left\|\Pi_{L^{2}, V_{j}^{h}} v_{j}-v_{j}\right\|_{\widetilde{H}^{-1 / 2}(\Gamma)} \leq\left(h_{j} / \pi\right)^{1 / 2}\left\|v_{j}\right\|_{L^{2}\left(\Gamma_{j}\right)} \leq\left(h_{j} / \pi\right)^{1 / 2}\left(\varepsilon_{j} / 2\right)^{t}\|v\|_{H_{\Gamma}^{t}}
$$

Attractors of iterated function systems

Let $s_{1}, \ldots, s_{m}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be contracting similarities, $s(U):=\bigcup_{m=1}^{\nu} s_{m}(U)$, for $U \subset \mathbb{R}^{n-1}$,
$\Gamma=s(\Gamma)$ the unique attractor (the fractal).

(Open set condition.)
Assume $O \neq \emptyset$ is open, convex, $s(O) \subset O$ and $s_{m}(O) \cap s_{m^{\prime}}(O)=\emptyset$. Define open prefractal sequence: $\Gamma_{0}:=O, \Gamma_{j+1}:=s\left(\Gamma_{j}\right)$

Attractors of iterated function systems

Let $s_{1}, \ldots, s_{m}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be contracting similarities, $s(U):=\bigcup_{m=1}^{\nu} s_{m}(U)$, for $U \subset \mathbb{R}^{n-1}$,
$\Gamma=s(\Gamma)$ the unique attractor (the fractal).

(Open set condition.)
Assume $O \neq \emptyset$ is open, convex, $s(O) \subset O$ and $s_{m}(O) \cap s_{m^{\prime}}(O)=\emptyset$. Define open prefractal sequence: $\Gamma_{0}:=O, \Gamma_{j+1}:=s\left(\Gamma_{j}\right)$

Let $M_{0}=\left\{T_{0,1}, \ldots, T_{0, N_{0}}\right\}$ be any convex mesh on Γ_{0}, then define a convex mesh on Γ_{j} as

$$
M_{j}:=\left\{s_{m_{1}} \circ \cdots \circ s_{m_{j}}\left(T_{0, l}\right): 1 \leq m_{j^{\prime}} \leq \nu \text { for } j^{\prime}=1, \ldots, j \text { and } 1 \leq l \leq N_{0}\right\} .
$$

Then Γ is a d-set, BVP convergence and BEM convergence hold.
The prefractals Γ_{j} are not the natural ones, but thickened. Also extends to "pre-convex" meshes.

Part III

Examples and numerics

Cantor dust

Cantor dust is Cartesian product of 2 copies of Cantor set with parameter $0<\alpha<1 / 2$. Prefractals $\Gamma_{0}, \ldots, \Gamma_{4}$:

Cantor dust

Cantor dust is Cartesian product of 2 copies of Cantor set with parameter $0<\alpha<1 / 2$. Prefractals $\Gamma_{0}, \ldots, \Gamma_{4}$:

- Γ "audible" $(\phi \neq 0) \Longleftrightarrow \alpha>\frac{1}{4} \Longleftrightarrow \operatorname{dim}_{H}(\Gamma)>1$.

$$
\left(\phi \neq 0 \Longleftrightarrow \operatorname{dim}_{\mathrm{H}}(\Gamma)>1 \text { holds for all } d \text {-sets! }\right)
$$

- $H_{\Gamma_{j}}^{-1 / 2} \xrightarrow{\mathcal{M}} H_{\Gamma}^{-1 / 2}$, prefractal solutions ϕ_{j} converge to ϕ.
- BEM on thickened prefractals converge, 1 DOF / prefractal component is enough.
Actually BEM converges with even less than 1 DOF/component: m_{j} components/element on Γ_{j} for $1 \leq m_{j}<4^{\left(\frac{\log 4}{\log 1 / \alpha}-1\right) j}$.

Cantor dust: field plots

Prefractal level $j=6, \quad N_{j}=4^{6}=4096$ DOFs, $\quad k=50, \quad \alpha=1 / 3$.
Magnitude far field $\mathbf{z > 0}$

Cantor dust: field plots

Prefractal level $j=6, \quad N_{j}=4^{6}=4096$ DOFs, $\quad k=50, \quad \alpha=1 / 3$.

$4 L^{2}$ norms of far-field, $\alpha \in(0.025,0.475)$, prefractal levels $j=0, \ldots, 6$.

Solution norms for $\alpha=\frac{1}{3}$ จ wavenumber $k \in[0.1,100]$.

Cantor dust, solution norms

Norm of \bigcirc Neumann jumps (BIE solution), \square near-field, $*$ far-field:

Norms of the solution on the prefractals converge:

- to positive constant values for $\alpha=1 / 3$ (left),
- to 0 for $\alpha=1 / 10$ (right).

Sierpinski triangle

$H_{\Gamma_{j}}^{-1 / 2} \xrightarrow{\mathcal{M}} H_{\Gamma}^{-1 / 2}$, prefractal solutions ϕ_{j} converge to ϕ. BEM on thickened prefractals converges if $h_{j}=o\left(\left(\frac{3}{4}-\epsilon\right)^{j}\right)$.

Prefractal level $j=8$,

$$
N_{j}=3^{8}=6561 \text { DOFs }
$$

$$
k=40
$$

Sierpinski triangle, solution norms

$\underset{\text { Right plot } \& \text { far-field: }}{\text { Ric }} \square=\frac{\left\|\mathcal{S}_{\Gamma_{j}} \phi_{j}-\mathcal{S}_{\Gamma_{8}} \phi_{8}\right\|_{L^{2}(B O X)}}{\left\|\mathcal{S}_{\Gamma_{8}} \phi_{8}\right\|_{L^{2}(B O X)}}, \quad *=\frac{\left\|u_{j, \infty}-u_{8, \infty}\right\|_{L^{2}\left(\mathbb{S}^{2}\right)}}{\left\|u_{8, \infty}\right\|_{L^{2}\left(\mathbb{S}^{2}\right)}}$.

Prefractal level 3 is where density maxima are located and all wavelength-size prefractal features are resolved: big error reduction!

Koch snowflake

We can approximate Γ from inside and outside with polygons $\Gamma_{j}^{ \pm}$:

$$
\Gamma_{1}^{-} \subset \Gamma_{2}^{-} \subset \Gamma_{3}^{-} \subset \cdots \subset \bigcup_{j \in \mathbb{N}} \Gamma_{j}^{-}=\Gamma \subset \bar{\Gamma}=\bigcap_{j \in \mathbb{N}} \Gamma_{j}^{+} \subset \cdots \subset \Gamma_{3}^{+} \subset \Gamma_{2}^{+} \subset \Gamma_{1}^{+} \text {. }
$$

For a scattering BVP, since Γ is "thick", $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2}$ and both sequences $u_{j}^{ \pm}$converge to the same limit.
(CAETANO + H + M, 2018)

Real part of fields on inner and outer prefractals

$k=61, \mathbf{d}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\top}, 3576$ to 10344 DOFs.
Now I compare $\phi_{j}^{h,-}$ against $\phi_{j-1}^{h,+}$ and $\phi_{j}^{h,+}$.

Inner and outer snowflake approximations

Other shapes

\triangleleft Sierpinski carpet.

Real part scattered field

\triangle "Square snowflake", limit of non-monotonic prefractals.

Apertures

Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

$n=1$, Cantor set $\alpha=1 / 3$, prefractal level 12: field through 0-measure holes!

Apertures

Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

$n=1$, Cantor set $\alpha=1 / 3$, prefractal level 12: field through 0-measure holes!

Koch snowflake-shaped aperture \triangle

Bibliography

- SNCW, DPH, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, IEOT, 2015.
- SNCW, DPH, AM, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples, Mathematika, 2015.
- DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, An. and Appl., 2017.
- SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^{n} with application to BIEs on fractal screens,

IEOT, 2017.

- DPH, AM, A note on properties of the restriction operator on Sobolev spaces, JAA 2017.
- SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 2018.
- A. Caetano, DPH, AM, Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets
- SNCW, DPH, AM,

Boundary element methods for acoustic scattering by fractal screens

Open questions

\checkmark Impedance (Robin) bc's: see Dave Hewett's talk!

- Regularity theory for the fractal solution
- Rates of convergence
- Approximation on fractals
- Fast BEM implementation
- What about curved screens?

More general rough scatterers?

- What about the Maxwell case? Other PDEs?
(Laplace, reaction-diffusion already covered.)

Open questions

\checkmark Impedance (Robin) bc's: see Dave Hewett's talk!

- Regularity theory for the fractal solution
- Rates of convergence
- Approximation on fractals
- Fast BEM implementation
- What about curved screens?

More general rough scatterers?

- What about the Maxwell case? Other PDEs?
(Laplace, reaction-diffusion already covered.)

Thank you!

