UMI — 4-9 SEPTEMBER 2023 — PISA

Integral equation methods for acoustic scattering by fractals

Andrea Moiola

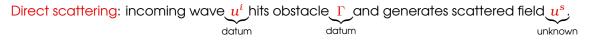
http://matematica.unipv.it/moiola/

A. Caetano (Aveiro), S.N. Chandler-Wilde (Reading), X. Claeys (LJLL), A. Gibbs (UCL), D.P. Hewett (UCL)

arXiv:2309.02184

Acoustic wave scattering

Time-harmonic acoustic waves: Helmholtz equation $\Delta u + k^2 u = 0$ in \mathbb{R}^n , $n \in \{2, 3\}$, with wavenumber k > 0.



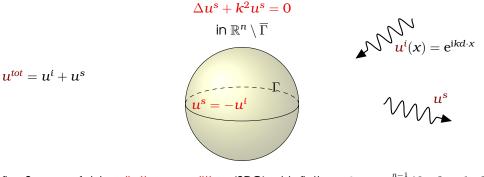
Consider Dirichlet (sound-soft) boundary conditions on a bounded Γ .

Acoustic wave scattering

Time-harmonic acoustic waves: Helmholtz equation $\Delta u + k^2 u = 0$ in \mathbb{R}^n , $n \in \{2,3\}$, with wavenumber k > 0.

Direct scattering: incoming wave \underline{u}^i hits obstacle $\underline{\Gamma}$ and generates scattered field \underline{u}^s .

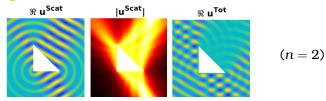
Consider Dirichlet (sound-soft) boundary conditions on a bounded Γ .



 u^s satisfies Sommerfeld radiation condition (SRC) at infinity: $\lim_{r=|x|\to\infty}r^{rac{n-1}{2}}(\partial_r u^s - \mathbf{i}ku^s) = 0$

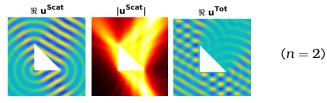
Classical problem e.g. when:

1 Γ is the boundary of a Lipschitz domain of \mathbb{R}^n

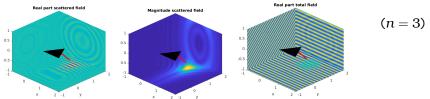


Classical problem e.g. when:

1 Γ is the boundary of a Lipschitz domain of \mathbb{R}^n

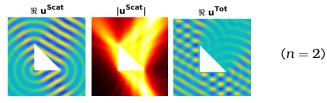


 Γ is Lipschitz subset of $\{x \in \mathbb{R}^n, x_n = 0\}$ (planar screen)

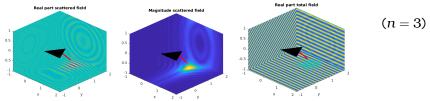


Classical problem e.g. when:

1 Γ is the boundary of a Lipschitz domain of \mathbb{R}^n



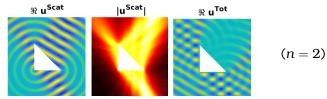
 Γ is Lipschitz subset of $\{x \in \mathbb{R}^n, x_n = 0\}$ (planar screen)



Neumann trace (jump, in case (2)) $\phi = [\partial_n u^s]$ on Γ is solution of single-layer BIE $S\phi = -\gamma u^i$, scattered field represented with layer potential $u^s = S\phi$. BIE approximated with BEM.

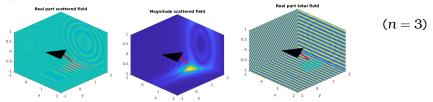
Classical problem e.g. when:

1 Γ is the boundary of a Lipschitz domain of \mathbb{R}^n



What happens when
$$\Gamma$$
 is much rougher than this, e.g. fractal?

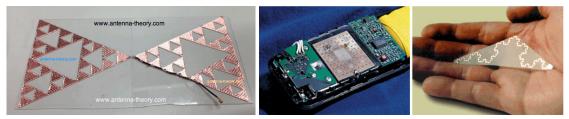
 Γ is Lipschitz subset of $\{x \in \mathbb{R}^n, x_n = 0\}$ (planar screen)



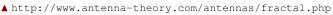
Neumann trace (jump, in case (2)) $\phi = [\partial_n u^s]$ on Γ is solution of single-layer BIE $S\phi = -\gamma u^i$, scattered field represented with layer potential $u^s = S\phi$. BIE approximated with BEM.

Waves and fractals: applications

Fractals model roughness at multiple scales, in natural and man-made objects:



Wideband fractal antennas



 Scattering by ice crystals in atmospheric physics (C. Westbrook)

> Fractal apertures in laser optics (J. Christian) ►

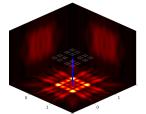
M.V. Berry 1979, "Diffractals": a new regime in wave physics

Scattering by fractals

Plenty of mathematical challenges:

- How to formulate well-posed BVPs? What is the right function space setting? How to write BVP as integral equation?
- ► How do prefractal solutions converge to fractal solutions?
- How can we accurately compute the scattered field?
- ► How to exploit self-similarity?

. . .



Tools developed here (hopefully!) relevant to (numerical) analysis of other IEs, ΨDOs , BVPs, numerical integration on rough, complicated, fractal sets.

Our main contributions

This talk:	AC, SCW, XC, AG, DH Integral equation me	l, AM, thods for acoustic scattering by f	arXiv:2309.02184 Fractals		
	BVPs, INTEGR	RAL EQUATIONS, FUNCTION SPACES			
 SCW, DH, Wavenum 	nber-explicit continuity & coe	ercivity est. in acoustic scattering by plan	IEOT, 2015 ar scr.		
► SCW, DH, AM, Sobolev spaces on non-Lipschitz subsets of ℝ ⁿ with application to BIEs on fractal scr.					
 SCW, DH, Well-pose 	d PDE and integral equatior	n formulations for scattering by fractal scr	SIAM J. Math. Anal., 2018 Sens,		
 AC, DH, A Density re 	,	Triebel-Lizorkin <mark>spaces</mark> on rough sets	JFA, 2021		
	AM, J.Besson,	NUMERICAL METHODS	Numer. Math., 2021		
► J.Bannister, AG, DH, M3AS, 2022 Acoustic scattering by impedance screens/cracks with fractal boundary					
 AG, DH, A Numerico 	Numer. Algorithms, 2022				
	AG, DH, AM, <mark>rff-measure BEM</mark> for acoustic	c scattering by fractal screens	arXiv:2212.06594, 2022		
 AG, DH, B Numericc 		grals on non-disjoint self-similar fractal sets	arXiv:2303.13141, 2023		

3 levels of generality for Γ

► Arbitrary compact $\Gamma \subset \mathbb{R}^n$: BVP, Newton potential & op., variational form THEOREM: BVP and IE well-posedness

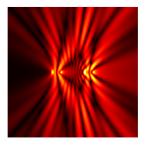
► *d*-sets:

"intrinsic" function spaces, trace operators integral operators, piecewise-constant Galerkin THEOREM: Galerkin convergence

► IFS attractors:

tree structure, wavelets, quadrature rule THEOREM: Galerkin convergence rates

+ Numerical results



BVP: $\Delta u^s + k^2 u^s = 0$ in $\Omega := \mathbb{R}^n \setminus \Gamma$, Sommerfeld r.c., $u^s + u^i \in W_0^{1,\text{loc}}(\Omega)$

BVP:
$$\Delta u^s + k^2 u^s = 0$$
 in $\Omega := \mathbb{R}^n \setminus \Gamma$, Sommerfeld r.c., $u^s + u^i \in W_0^{1,\text{loc}}(\Omega)$

Standard acoustic Newton potential:

$$\mathcal{A}\psi(x) := \int_{\mathbb{R}^n} \Phi(x,y)\psi(y)\mathrm{d}y, \qquad x \in \mathbb{R}^n, \qquad \Phi(x,y) := egin{cases} rac{\mathrm{i}}{4}H_0^{(1)}(k|x-y|) & n=2\ rac{\mathrm{e}^{\mathrm{i}k|x-y|}}{4\pi|x-y|} & n=3 \end{cases}$$

BVP:
$$\Delta u^s + k^2 u^s = 0$$
 in $\Omega := \mathbb{R}^n \setminus \Gamma$, Sommerfeld r.c., $u^s + u^i \in W_0^{1,\text{loc}}(\Omega)$

Standard acoustic Newton potential:

$$\mathcal{A}\psi(x) := \int_{\mathbb{R}^n} \Phi(x,y)\psi(y)\mathrm{d}y, \qquad x \in \mathbb{R}^n, \qquad \Phi(x,y) := egin{cases} rac{\mathrm{i}}{4}H_0^{(1)}(k|x-y|) & n=2\ rac{\mathrm{e}^{\mathrm{i}k|x-y|}}{4\pi|x-y|} & n=3 \end{cases}$$

$$\begin{split} H_{\Gamma}^{-1} &:= \{ v \in H^{-1}(\mathbb{R}^n) : \operatorname{supp} v \subset \Gamma \}, \\ \widetilde{H}^1(\Omega) &:= \overline{C_0^{\infty}(\Omega)}^{H^1(\mathbb{R}^n)} \end{split} \qquad P : H^1(\mathbb{R}^n) \to \widetilde{H}^1(\Omega)^{\perp} \text{ projection} \end{split}$$

BVP:
$$\Delta u^s + k^2 u^s = 0$$
 in $\Omega := \mathbb{R}^n \setminus \Gamma$, Sommerfeld r.c., $u^s + u^i \in W_0^{1,\text{loc}}(\Omega)$

Standard acoustic Newton potential:

$$\mathcal{A}\psi(x) := \int_{\mathbb{R}^n} \Phi(x,y)\psi(y)\mathrm{d}y, \qquad x \in \mathbb{R}^n, \qquad \Phi(x,y) := egin{cases} rac{\mathrm{i}}{4}H_0^{(1)}(k|x-y|) & n=2\ rac{\mathrm{i}}{4\pi|x-y|} & n=3 \end{cases}$$

Spaces:
$$\begin{split} & H_{\Gamma}^{-1} := \{ v \in H^{-1}(\mathbb{R}^n) : \operatorname{supp} v \subset \Gamma \}, \\ & \widetilde{H}^1(\Omega) := \overline{C_0^{\infty}(\Omega)}^{H^1(\mathbb{R}^n)} \end{split} \qquad P : H^1(\mathbb{R}^n) \to \widetilde{H}^1(\Omega)^{\perp} \text{ projection} \end{split}$$

 $\text{``Integral operator'':} \quad A := H_{\Gamma}^{-1} \to \widetilde{H}^1(\Omega)^{\perp}, \qquad A\phi := P(\sigma \mathcal{A}\phi), \qquad \sigma \in C_0^{\infty}(\mathbb{R}^n), \sigma|_{\Gamma + B_{\epsilon}} = 1$

BVP:
$$\Delta u^s + k^2 u^s = 0$$
 in $\Omega := \mathbb{R}^n \setminus \Gamma$, Sommerfeld r.c., $u^s + u^i \in W_0^{1,\text{loc}}(\Omega)$

Standard acoustic Newton potential:

$$\mathcal{A}\psi(x) := \int_{\mathbb{R}^n} \Phi(x,y)\psi(y)\mathrm{d}y, \qquad x \in \mathbb{R}^n, \qquad \Phi(x,y) := egin{cases} rac{\mathrm{i}}{4}H_0^{(1)}(k|x-y|) & n=2 \ rac{\mathrm{i}}{4\pi|x-y|} & n=3 \end{cases}$$

Spaces:

$$\begin{split} H_{\Gamma}^{-1} &:= \{ v \in H^{-1}(\mathbb{R}^n) : \text{supp } v \subset \Gamma \}, \\ \widetilde{H}^1(\Omega) &:= \overline{C_0^{\infty}(\Omega)}^{H^1(\mathbb{R}^n)} \end{split} \qquad P : H^1(\mathbb{R}^n) \to \widetilde{H}^1(\Omega)^{\perp} \text{ projection} \end{split}$$

 $\label{eq:alpha} \mbox{``Integral operator'':} \quad A:=H_{\Gamma}^{-1}\to \widetilde{H}^1(\Omega)^{\perp}, \qquad A\phi:=P(\sigma\mathcal{A}\phi), \qquad \sigma\in C_0^\infty(\mathbb{R}^n), \sigma|_{\Gamma+B_\epsilon}=1$

 $a(\phi,\psi) := \langle A\phi,\psi \rangle_{H^1(\mathbb{R}^n) \times H^{-1}(\mathbb{R}^n)}$ is continuous & compactly-perturb. coercive in $H^{-1}_{\Gamma} \times H^{-1}_{\Gamma}$

BVP:
$$\Delta u^s + k^2 u^s = 0$$
 in $\Omega := \mathbb{R}^n \setminus \Gamma$, Sommerfeld r.c., $u^s + u^i \in W_0^{1,\text{loc}}(\Omega)$

Standard acoustic Newton potential:

$$\mathcal{A}\psi(x):=\int_{\mathbb{R}^n}\Phi(x,y)\psi(y)\mathrm{d}y,\qquad x\in\mathbb{R}^n,\qquad \Phi(x,y):=egin{cases}rac{\mathrm{i}}{4}H_0^{(1)}(k|x-y|)&n=2\ rac{\mathrm{i}}{4\pi|x-y|}&n=3\end{cases}$$

Spaces:

$$\begin{split} H_{\Gamma}^{-1} &:= \{ v \in H^{-1}(\mathbb{R}^n) : \operatorname{supp} v \subset \Gamma \}, \\ \widetilde{H}^1(\Omega) &:= \overline{C_0^{\infty}(\Omega)}^{H^1(\mathbb{R}^n)} \end{split} \qquad P : H^1(\mathbb{R}^n) \to \widetilde{H}^1(\Omega)^{\perp} \text{ projection} \end{split}$$

 $\label{eq:alpha} \mbox{``Integral operator'':} \quad A:=H_{\Gamma}^{-1}\to \widetilde{H}^1(\Omega)^{\perp}, \qquad A\phi:=P(\sigma\mathcal{A}\phi), \qquad \sigma\in C_0^\infty(\mathbb{R}^n), \sigma|_{\Gamma+B_{\epsilon}}=1$

 $a(\phi,\psi) := \langle A\phi,\psi \rangle_{H^1(\mathbb{R}^n) \times H^{-1}(\mathbb{R}^n)}$ is continuous & compactly-perturb. coercive in $H_{\Gamma}^{-1} \times H_{\Gamma}^{-1}$

THEOREM. Except for possibly countably many k,

 $(\forall k > 0 \text{ if } \Omega \text{ connected})$

- $A := H_{\Gamma}^{-1} \to \widetilde{H}^{1}(\Omega)^{\perp}$ is invertible
- ▶ the BVP has unique solution $u^s \in H^{1, \mathrm{loc}}(\mathbb{R}^n)$
- ▶ $u^s = A\phi$ where $\phi \in H_{\Gamma}^{-1}$ is the unique solution of the IE $A\phi = g$ with $g := -P(\sigma u^i)$

Part I

IE and Galerkin on *d*-sets

Hausdorff measure and *d*-sets

Hausdorff measure and dimension of $E \subset \mathbb{R}^n$, $0 \le d \le n$:

$$\mathcal{H}^{d}(E) := \lim_{\delta \searrow 0} \inf_{\{U_i\}} \left\{ \sum_{i=1}^{\infty} (\operatorname{diam} U_i)^d : \bigcup_{i=1}^{\infty} U_i \supset E, \operatorname{diam} U_i < \delta \right\}, \quad \operatorname{dim}_{\mathrm{H}}(E) := \inf\{d : \mathcal{H}^d(E) = 0\}$$

Hausdorff measure and *d*-sets

Hausdorff measure and dimension of $E \subset \mathbb{R}^n$, $0 \le d \le n$:

$$\mathcal{H}^{d}(E) := \lim_{\delta \searrow 0} \inf_{\{U_{i}\}} \Big\{ \sum_{i=1}^{\infty} (\operatorname{diam} U_{i})^{d} : \bigcup_{i=1}^{\infty} U_{i} \supset E, \operatorname{diam} U_{i} < \delta \Big\}, \quad \operatorname{dim}_{\mathrm{H}}(E) := \inf\{d : \mathcal{H}^{d}(E) = 0\}$$

A compact set $\Gamma \subset \mathbb{R}^n$ is a *d*-set if

$$c_1 r^d \leq \mathcal{H}^d \big(\Gamma \cap B_r(x) \big) \leq c_2 r^d \qquad \forall x \in \Gamma, \ 0 < r < 1$$

"Uniformly locally *d*-dimensional sets".

FALCONER, TRIEBEL, JONSSON&WALLIN, ...

Hausdorff measure and *d*-sets

Hausdorff measure and dimension of $E \subset \mathbb{R}^n$, $0 \le d \le n$:

$$\mathcal{H}^{d}(E) := \lim_{\delta \searrow 0} \inf_{\{U_i\}} \Big\{ \sum_{i=1}^{\infty} (\operatorname{diam} U_i)^{d} : \bigcup_{i=1}^{\infty} U_i \supset E, \operatorname{diam} U_i < \delta \Big\}, \quad \operatorname{dim}_{\mathrm{H}}(E) := \inf\{d : \mathcal{H}^{d}(E) = 0\}$$

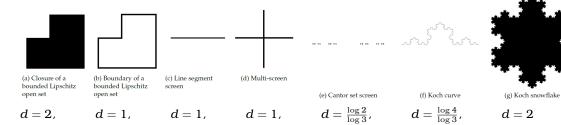
A compact set $\Gamma \subset \mathbb{R}^n$ is a *d*-set if

$$c_1 r^d \leq \mathcal{H}^dig(\Gamma \cap B_r(x)ig) \leq c_2 r^d \hspace{1cm} orall x \in \Gamma, \ 0 < r \leq 1$$

"Uniformly locally *d*-dimensional sets".

FALCONER, TRIEBEL, JONSSON&WALLIN, ...

Examples of *d*-sets in \mathbb{R}^2 :



On *d*-set Γ , define $\mathbb{L}_2(\Gamma)$ as the space of square-integrable function wrt measure $\mathcal{H}^d|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^t(\Gamma)$. $\mathbb{H}^t(\Gamma) \subset \mathbb{L}_2(\Gamma) \subset \mathbb{H}^{-t}(\Gamma) = \mathbb{H}^t(\Gamma)^*, t > 0$.

On *d*-set Γ , define $\mathbb{L}_2(\Gamma)$ as the space of square-integrable function wrt measure $\mathcal{H}^d|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^{t}(\Gamma)$. $\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma) = \mathbb{H}^{t}(\Gamma)^{*}, t > 0.$

Trace operator: $\operatorname{tr}_{\Gamma} \varphi = \varphi|_{\Gamma}$ for $\varphi \in C^{\infty}(\mathbb{R}^n)$. For $s > \frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma} : H^{s}(\mathbb{R}^{n}) \to \mathbb{L}_{2}(\Gamma)$ (continuous linear op. with dense image)

e.g. (TRIEBEL 1997)

On d-set Γ , define $\mathbb{L}_2(\Gamma)$ as the space of square-integrable function wrt measure $\mathcal{H}^d|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^t(\Gamma)$. $\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma) = \mathbb{H}^{t}(\Gamma)^{*}, t > 0.$

Trace operator: $\operatorname{tr}_{\Gamma} \varphi = \varphi|_{\Gamma}$ for $\varphi \in C^{\infty}(\mathbb{R}^n)$. For $s > \frac{n-d}{2}$, it extends to $tr_{\Gamma} : H^{s}(\mathbb{R}^{n}) \to \mathbb{L}_{2}(\Gamma)$ (continuous linear op. with dense image)

e.g. (TRIEBEL 1997)

 tr_{Γ} and its adjoint tr_{Γ}^{*} are unitary isomorphisms in:

(n-2 < d < n)

$\mathbb{H}^{1-\frac{n-d}{2}}(\Gamma)$	\subset	$\mathbb{L}_{2}(\Gamma)$	\subset	$\mathbb{H}^{-1+\frac{n-d}{2}}(\Gamma)$
tr_{Γ}				$\downarrow tr^*_{\Gamma}$
$\widetilde{H}^1(\mathbb{R}^n\setminus\Gamma)^\perp$				H_{Γ}^{-1}
\cap				\cap
$H^1(\mathbb{R}^n)$	\subset	$L_2(\mathbb{R}^n)$	\subset	$H^{-1}(\mathbb{R}^n)$

On d-set Γ , define $\mathbb{L}_2(\Gamma)$ as the space of square-integrable function wrt measure $\mathcal{H}^d|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^t(\Gamma)$. $\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma) = \mathbb{H}^{t}(\Gamma)^{*}, t > 0.$

Trace operator: $\operatorname{tr}_{\Gamma} \varphi = \varphi|_{\Gamma}$ for $\varphi \in C^{\infty}(\mathbb{R}^n)$. For $s > \frac{n-d}{2}$, it extends to $tr_{\Gamma} : H^{s}(\mathbb{R}^{n}) \to \mathbb{L}_{2}(\Gamma)$ (continuous linear op. with dense image)

 tr_{Γ} and its adjoint tr_{Γ}^{*} are unitary isomorphisms in:



(n-2 < d < n)

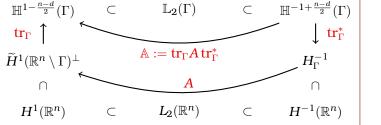
e.g. (TRIEBEL 1997)

 \mathbb{A} is a single-layer operator between $\mathbb{H}^t(\Gamma)$ spaces

On *d*-set Γ , define $\mathbb{L}_2(\Gamma)$ as the space of square-integrable function wrt measure $\mathcal{H}^d|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^t(\Gamma)$. $\mathbb{H}^t(\Gamma) \subset \mathbb{L}_2(\Gamma) \subset \mathbb{H}^{-t}(\Gamma) = \mathbb{H}^t(\Gamma)^*, t > 0$.

Trace operator: $\operatorname{tr}_{\Gamma} \varphi = \varphi|_{\Gamma}$ for $\varphi \in C^{\infty}(\mathbb{R}^n)$. For $s > \frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma} : H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ (continuous linear op. with dense image)

 tr_{Γ} and its adjoint tr_{Γ}^{*} are unitary isomorphisms in:



 $(n - 2 < d \le n)$

 \mathbbm{A} is a single-layer operator between $\mathbbm{H}^t(\Gamma)$ spaces

THEOREM. A is an integral operator in Hausdorff measure:

 $orall \Psi \in L_\infty(\Gamma), \qquad \mathbb{A}\Psi(oldsymbol{x}) = \int_\Gamma \Phi(oldsymbol{x},oldsymbol{y}) \Psi(oldsymbol{y}) \ \mathrm{d}\mathcal{H}^d(oldsymbol{y}) \qquad \mathcal{H}^d ext{-a.e.} \ oldsymbol{x} \in \Gamma$

Re-write IE and (coercive+compact) variational problem for $\phi \in \mathbb{H}^{-t_d}(\Gamma)$, $t_d := 1 - \frac{n-d}{2}$:

$$\mathbb{A}\widetilde{\phi} = \operatorname{tr}_{\Gamma} g \quad \Longleftrightarrow \quad \langle \mathbb{A}\widetilde{\phi}, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} = \langle \operatorname{tr}_{\Gamma} g, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} \quad \forall \widetilde{\psi} \in \mathbb{H}^{-t_d}(\Gamma)$$

Re-write IE and (coercive+compact) variational problem for $\tilde{\phi} \in \mathbb{H}^{-t_d}(\Gamma)$, $t_d := 1 - \frac{n-d}{2}$:

$$\mathbb{A}\widetilde{\phi} = \mathrm{tr}_{\Gamma} \boldsymbol{g} \quad \Longleftrightarrow \quad \langle \mathbb{A}\widetilde{\phi}, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} = \langle \mathrm{tr}_{\Gamma} \boldsymbol{g}, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} \quad \forall \widetilde{\psi} \in \mathbb{H}^{-t_d}(\Gamma)$$

What's the advantage?

We can apply Galerkin method with any *N*-dimensional $\mathbb{V}_N \subset \mathbb{L}_2(\Gamma) \overset{\text{dense}}{\subset} \mathbb{H}^{-t_d}(\Gamma)$.

Re-write IE and (coercive+compact) variational problem for $\tilde{\phi} \in \mathbb{H}^{-t_d}(\Gamma)$, $t_d := 1 - \frac{n-d}{2}$:

$$\mathbb{A}\widetilde{\phi} = \mathrm{tr}_{\Gamma} g \quad \Longleftrightarrow \quad \langle \mathbb{A}\widetilde{\phi}, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} = \langle \mathrm{tr}_{\Gamma} g, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} \quad \forall \widetilde{\psi} \in \mathbb{H}^{-t_d}(\Gamma)$$

What's the advantage?

We can apply Galerkin method with any *N*-dimensional $\mathbb{V}_N \subset \mathbb{L}_2(\Gamma) \overset{\text{dense}}{\subset} \mathbb{H}^{-t_d}(\Gamma)$.

E.g. \mathbb{V}_N as the space of piecewise-constant functions on a partition $\{T_j\}_{j=1}^N$ of Γ :

$$\underline{\underline{A}}\vec{c} = \vec{b}, \qquad A_{i,j} = \int_{T_i} \int_{T_j} \Phi(x,y) \ \mathrm{d}\mathcal{H}^d(x) \mathrm{d}\mathcal{H}^d(y), \qquad b_i = -\int_{T_i} g(x) \ \mathrm{d}\mathcal{H}^d(x)$$

Re-write IE and (coercive+compact) variational problem for $\tilde{\phi} \in \mathbb{H}^{-t_d}(\Gamma)$, $t_d := 1 - \frac{n-d}{2}$:

$$\mathbb{A}\widetilde{\phi} = \mathrm{tr}_{\Gamma} g \quad \Longleftrightarrow \quad \langle \mathbb{A}\widetilde{\phi}, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} = \langle \mathrm{tr}_{\Gamma} g, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} \quad \forall \widetilde{\psi} \in \mathbb{H}^{-t_d}(\Gamma)$$

What's the advantage? We can apply Galerkin method with any *N*-dimensional $\mathbb{V}_N \subset \mathbb{L}_2(\Gamma) \overset{\text{dense}}{\subset} \mathbb{H}^{-t_d}(\Gamma)$.

E.g. \mathbb{V}_N as the space of piecewise-constant functions on a partition $\{T_j\}_{j=1}^N$ of Γ :

$$\underline{\underline{A}}\vec{c} = \vec{b}, \qquad A_{i,j} = \int_{T_i} \int_{T_j} \Phi(x,y) \ \mathrm{d}\mathcal{H}^d(x) \mathrm{d}\mathcal{H}^d(y), \qquad b_i = -\int_{T_i} g(x) \ \mathrm{d}\mathcal{H}^d(x)$$

- Only need to compute (double, singular) integrals wrt Hausdorff measure
- ► Convergence: for $h_N := \max_{j=1,...,N} \operatorname{diam}(T_j) \to 0$, Galerkin is well-posed & $\widetilde{\phi}_N \to \widetilde{\phi}$

Re-write IE and (coercive+compact) variational problem for $\tilde{\phi} \in \mathbb{H}^{-t_d}(\Gamma)$, $t_d := 1 - \frac{n-d}{2}$:

$$\mathbb{A}\widetilde{\phi} = \mathrm{tr}_{\Gamma} g \quad \Longleftrightarrow \quad \langle \mathbb{A}\widetilde{\phi}, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} = \langle \mathrm{tr}_{\Gamma} g, \widetilde{\psi} \rangle_{\mathbb{H}^{t_d}(\Gamma) \times \mathbb{H}^{-t_d}(\Gamma)} \quad \forall \widetilde{\psi} \in \mathbb{H}^{-t_d}(\Gamma)$$

What's the advantage? We can apply Galerkin method with any *N*-dimensional $\mathbb{V}_N \subset \mathbb{L}_2(\Gamma) \overset{\text{dense}}{\subset} \mathbb{H}^{-t_d}(\Gamma)$.

E.g. \mathbb{V}_N as the space of piecewise-constant functions on a partition $\{T_j\}_{j=1}^N$ of Γ :

$$\underline{\underline{A}}\vec{c} = \vec{b}, \qquad A_{i,j} = \int_{T_i} \int_{T_j} \Phi(x,y) \ \mathrm{d}\mathcal{H}^d(x) \mathrm{d}\mathcal{H}^d(y), \qquad b_i = -\int_{T_i} g(x) \ \mathrm{d}\mathcal{H}^d(x)$$

- Only need to compute (double, singular) integrals wrt Hausdorff measure
- ► Convergence: for $h_N := \max_{j=1,...,N} \operatorname{diam}(T_j) \to 0$, Galerkin is well-posed & $\widetilde{\phi}_N \to \widetilde{\phi}$

If Γ is boundary of bdd Lipschitz domain, screen or multi-screen (CLAEYS, HIPTMAIR 2013), then this coincides with classical single-layer BIE and BEM. If Γ is planar *d*-set, it coincides with (AC, SCW, AG, DH, AM 2022).

Part II

IEM on IFS attractors

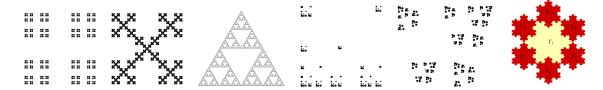
Iterated function systems (IFS)

IFS is a family of *M* contracting similarities:

(FALCONER, HUTCHINSON, TRIEBEL,...)

 $\mathbf{s}_m : \mathbb{R}^n \to \mathbb{R}^n, \qquad |\mathbf{s}_m(\mathbf{x}) - \mathbf{s}_m(\mathbf{y})| = \rho_m |\mathbf{x} - \mathbf{y}|, \qquad 0 < \rho_m < 1, \qquad m = 1, \dots, M.$

There exists a unique non-empty compact Γ with $\Gamma = s(\Gamma)$, where $s(E) := \bigcup_{m=1}^{M} s_m(E)$.



Iterated function systems (IFS)

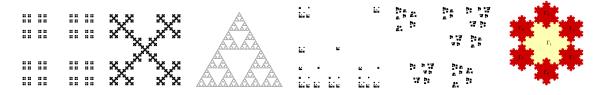
IFS is a family of *M* contracting similarities:

(FALCONER, HUTCHINSON, TRIEBEL,...)

$$\mathbf{s}_m : \mathbb{R}^n \to \mathbb{R}^n, \qquad |\mathbf{s}_m(\mathbf{x}) - \mathbf{s}_m(\mathbf{y})| = \rho_m |\mathbf{x} - \mathbf{y}|, \qquad 0 < \rho_m < 1, \qquad m = 1, \dots, M.$$

There exists a unique non-empty compact Γ with $\Gamma = s(\Gamma)$, where $s(E) := \bigcup_{m=1}^{M} s_m(E)$.

Assume open set condition (OSC): $\exists O \subset \mathbb{R}^n$ open, $s(O) \subset O$, $s_m(O) \cap s_{m'}(O) = \emptyset \ \forall m \neq m'$. Then Γ is *d*-set, $\sum_{m=1}^{M} \rho_m^d = 1$.



Iterated function systems (IFS)

IFS is a family of *M* contracting similarities:

(FALCONER, HUTCHINSON, TRIEBEL,...)

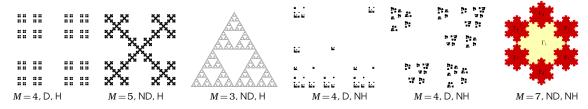
$$\mathbf{s}_m : \mathbb{R}^n \to \mathbb{R}^n, \qquad |\mathbf{s}_m(\mathbf{x}) - \mathbf{s}_m(\mathbf{y})| = \rho_m |\mathbf{x} - \mathbf{y}|, \qquad 0 < \rho_m < 1, \qquad m = 1, \dots, M.$$

There exists a unique non-empty compact Γ with $\Gamma = s(\Gamma)$, where $s(E) := \bigcup_{m=1}^{M} s_m(E)$.

Assume open set condition (OSC): $\exists O \subset \mathbb{R}^n$ open, $s(O) \subset O$, $s_m(O) \cap s_{m'}(O) = \emptyset \ \forall m \neq m'$. Then Γ is *d*-set, $\sum_{m=1}^{M} \rho_m^d = 1$.

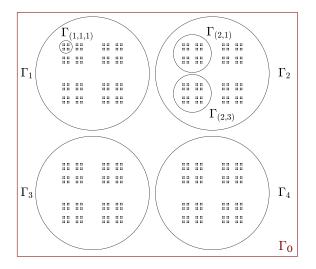
IFS is homogeneous if $\rho_m = \rho \ \forall m$ (then $d = \frac{\log M}{\log 1/\rho}$).

 Γ is disjoint if $\Gamma_m := s_m(\Gamma)$ are all disjoint. Disjoint implies OSC and d < n.

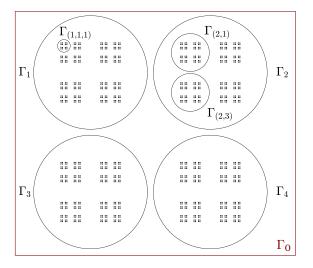


IFS tree structure and wavelets

Disjoint IFS attractor Γ have natural decompositions in elements $\Gamma_{\mathbf{m}} = s_{m_1} \circ \cdots \circ s_{m_\ell}(\Gamma)$, $\mathbf{m} = (m_1, \ldots, m_\ell) \in \{1, \ldots, M\}^\ell$, $\ell \in \mathbb{N}$, that are similar copies of Γ itself.



Disjoint IFS attractor Γ have natural decompositions in elements $\Gamma_{\mathbf{m}} = s_{m_1} \circ \cdots \circ s_{m_\ell}(\Gamma)$, $\mathbf{m} = (m_1, \ldots, m_\ell) \in \{1, \ldots, M\}^\ell$, $\ell \in \mathbb{N}$, that are similar copies of Γ itself.



Linear combinations of characteristic functions $\chi_{\mathbf{m}}$ of $\Gamma_{\mathbf{m}}$ give hierarchical orthonormal wavelet basis of $\mathbb{L}_2(\Gamma)$.

Collecting $\Gamma_{\mathbf{m}}$ s according to diameter, wavelet basis gives characterisation of $\mathbb{H}^t(\Gamma)$ and its norm. (JONSSON 1998)

We use span{ $\chi_{\mathbf{m}}$ } for a suitable partition with diam($\Gamma_{\mathbf{m}}$) $\leq h$ as Galerkin space \mathbb{V}_N

Piecewise-constant IEM convergence for disjoint IFS attractors

Using Fredholm, relation Galerkin space/wavelets, coefficient decay in $\mathbb{H}^t(\Gamma)$:

Theorem (AC, SCW, XC, AG, DH, AM 2023)

 Γ disjoint IFS attractor, $n-2 < d = \dim_{\mathrm{H}}(\Gamma) < n$. \mathbb{V}_N piecewise constants on self-similar partition $\{\Gamma_{\mathbf{m}}\}$ of Γ , diam $(\Gamma_{\mathbf{m}}) \leq h$. Assume IE solution $\phi \in H^s_{\Gamma}$ for some $-1 < s < -\frac{n-d}{2}$.

Then $\left\|\widetilde{\phi} - \widetilde{\phi}_N\right\|_{\mathbb{H}^{-1+\frac{n-d}{2}}(\Gamma)} = \|\phi - \phi_N\|_{H^{-1}_{\Gamma}} \le c \, h^{s+1} \|\phi\|_{H^s_{\Gamma}}$

Piecewise-constant IEM convergence for disjoint IFS attractors

Using Fredholm, relation Galerkin space/wavelets, coefficient decay in $\mathbb{H}^t(\Gamma)$:

Theorem (AC, SCW, XC, AG, DH, AM 2023)

 Γ disjoint IFS attractor, $n-2 < d = \dim_{\mathrm{H}}(\Gamma) < n$. \mathbb{V}_N piecewise constants on self-similar partition $\{\Gamma_{\mathbf{m}}\}$ of Γ , $\operatorname{diam}(\Gamma_{\mathbf{m}}) \leq h$. Assume IE solution $\phi \in H^s_{\Gamma}$ for some $-1 < s < -\frac{n-d}{2}$.

Then

$$\left\|\widetilde{\phi} - \widetilde{\phi}_N\right\|_{\mathbb{H}^{-1+\frac{n-d}{2}}(\Gamma)} = \left\|\phi - \phi_N\right\|_{H^{-1}_{\Gamma}} \le c \, h^{s+1} \|\phi\|_{H^s_{\Gamma}}$$

- ▶ h^{2s+2} super-convergence of linear functionals, e.g.: point value $u^s(x)$ and far-field
- ► No higher regularity (and rate) can be expected: $H_{\Gamma}^{-\frac{n-d}{2}} = \{0\}$
- For homogeneous IFS ($\rho_m = \rho$), if maximal regularity is achieved, rates are

$$M^{-\ell/2}$$
 for $n=2$, $(\rho M)^{-\ell/2}$ for $n=3$

with ℓ the "level" of the pw-constant space $(h = \rho^{\ell} \operatorname{diam}(\Gamma), N = M^{\ell})$

► For d = n - 1, we recover classical results for Lipschitz screens and boundaries For $\Gamma \subset \{x_n = 0\}$, we recover (AC, SCW, AG, DH, AM 2022)

Part III

Numerics

Numerical quadrature on IFS attractors

Galerkin integral equation method for general class of IFS implemented in julia https://github.com/AndrewGibbs/IFSintegrals

Linear system requires quadrature rule to approximate

$$A_{j,j'} = \int_{\Gamma_{\mathbf{m}(j)}} \int_{\Gamma_{\mathbf{m}(j')}} \Phi(x,y) \, \mathrm{d}\mathcal{H}^d(y) \mathrm{d}\mathcal{H}^d(x), \qquad b_j = -\int_{\Gamma_{\mathbf{m}(j)}} u^i(x) \, \mathrm{d}\mathcal{H}^d(x)$$

Numerical quadrature on IFS attractors

Galerkin integral equation method for general class of IFS implemented in julia https://github.com/AndrewGibbs/IFSintegrals

Linear system requires quadrature rule to approximate

$$A_{j,j'} = \int_{\Gamma_{\mathbf{m}(j)}} \int_{\Gamma_{\mathbf{m}(j')}} \Phi(x,y) \ \mathrm{d}\mathcal{H}^d(y) \mathrm{d}\mathcal{H}^d(x), \qquad b_j = -\int_{\Gamma_{\mathbf{m}(j)}} u^i(x) \ \mathrm{d}\mathcal{H}^d(x)$$

Recipe based on:

- decomposing $\Gamma_{\mathbf{m}}$ in similar sub-components, using IFS structure
- splitting Helmholtz kernel in Laplace + smoother terms
- exploiting Laplace kernel homogeneity and IFS self-similarity to reduce singular integral to a smooth one
- ► treating smooth integrands with composite barycentre rule, using IFS
- expressing all singular integrals in terms of a few "fundamental" ones

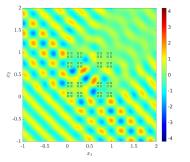
Convergence analysis of quadrature error and of fully discrete Galerkin system.

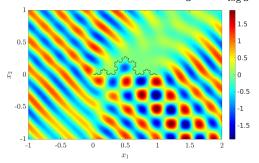
Disjoint case: (AG, DH, AM 2022).

Non-disjoint case: (AG, DH, B. MAJOR 2023).

n = 2

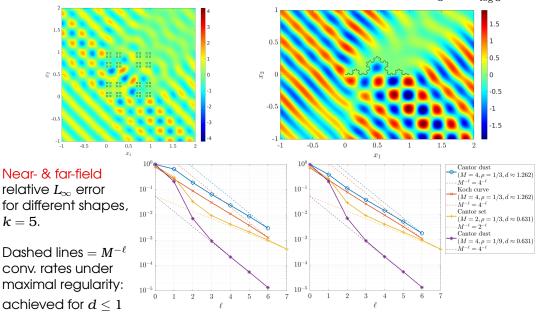
Total field for scattering by Cantor dust and Koch curve. $M = 4, \rho = \frac{1}{3}, d = \frac{\log 4}{\log 3}, k = 20.$



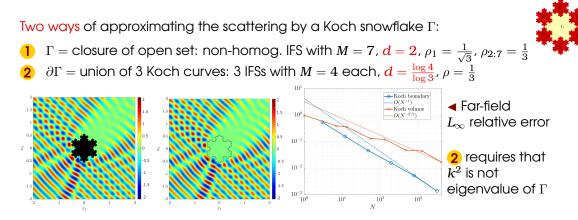


n = 2

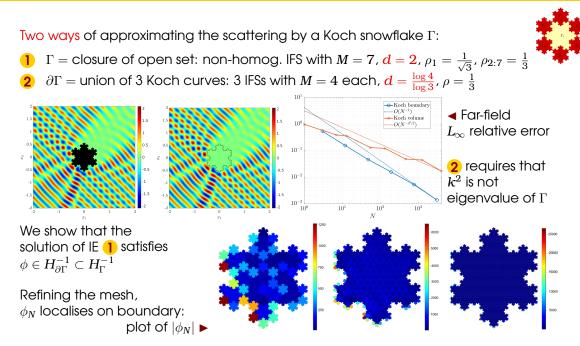
Total field for scattering by Cantor dust and Koch curve. $M = 4, \rho = \frac{1}{3}, d = \frac{\log 4}{\log 3}, k = 20.$

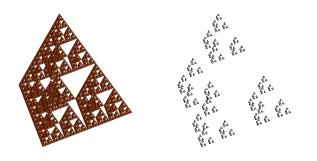


Koch snowflake



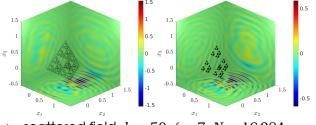
Koch snowflake



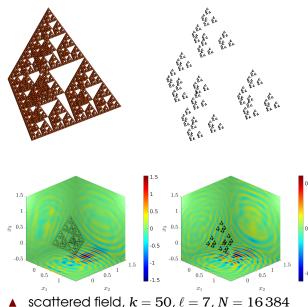


 \blacktriangleleft Sierpinski tetrahedron, M = 4.

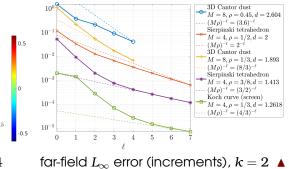
Left: $\rho = \frac{1}{2}$, d = 2, connected Right: $\rho = \frac{3}{8}$, $d = \frac{\log 4}{\log(8/3)}$, disjoint



▲ scattered field, k = 50, $\ell = 7$, N = 16384



• Sierpinski tetrahedron, M = 4. Left: $\rho = \frac{1}{2}$, d = 2, connected Right: $\rho = \frac{3}{8}$, $d = \frac{\log 4}{\log(8/3)}$, disjoint



Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ :

Γ compact:BVP is well-posed, equivalent to IEΓ d-set:IE in Hausdorff measure, convergence of piecewise-constant GalerkinΓ disjoint IFS:concrete recipe for Galerkin space & quadrature, convergence rates

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ :

Γ compact: BVP is well-posed, equivalent to IE
 Γ d-set: IE in Hausdorff measure, convergence of piecewise-constant Galerkin
 Γ disjoint IFS: concrete recipe for Galerkin space & quadrature, convergence rates

Open questions and ongoing work:

- Solution regularity theory ($\phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}$), singularity structure
- ▶ Non-disjoint attractors \triangle , d = n *
- Fast implementation, compression
- Maxwell equations? Other PDEs? (Laplace & reaction–diffusion already covered)
- Volume integral equation, penetrable materials
- ▶ IFSs with non-similar contractions, ...

A. CAETANO, S.N. CHANDLER-WILDE, X. CLAEYS, A. GIBBS, D.P. HEWETT, A. MOIOLA, Integral equation methods for acoustic scattering by fractals julia code: https://github.com/AndrewGibbs/IFSintegrals

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ :

Γ compact:BVP is well-posed, equivalent to IEΓ d-set:IE in Hausdorff measure, convergence of piecewise-constant GalerkinΓ disjoint IFS:concrete recipe for Galerkin space & quadrature, convergence rates

Open questions and ongoing work:

- Solution regularity theory ($\phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}$), singularity structure
- ▶ Non-disjoint attractors \triangle , d = n *
- Fast implementation, compression
- ► Maxwell equations? Other PDEs? (Laplace & reaction-diffusion already covered)
- Volume integral equation, penetrable materials
- ▶ IFSs with non-similar contractions, ...

Thank you!

A. CAETANO, S.N. CHANDLER-WILDE, X. CLAEYS, A. GIBBS, D.P. HEWETT, A. MOIOLA, Integral equation methods for acoustic scattering by fractals julia code: https://github.com/AndrewGibbs/IFSintegrals