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Acoustic wave scattering by a planar screen
Time-harmonic (sinusoidal in time) acoustic waves are modelled by
the Helmholtz equation ∆u + k2u = 0 with wavenumber k > 0.

Scattering: incoming wave u i hits obstacle Γ and generates field u.

Γ bounded subset of Γ∞ := {x ∈ Rn : xn = 0} ∼= Rn−1, n = 2,3

u = −u i
Γ

x1

x2

x3 D := Rn \ {Γ× {0}}
∆u + k2u = 0

u i(x) = eikd·x

u satisfies Sommerfeld radiation condition (SRC) at infinity
(i.e. ∂ru − iku = o

(
r(1−n)/2

)
uniformly as r = |x| → ∞).

Classical problem when Γ is open and Lipschitz.

What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Γ?
2
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Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Scattering by ice crystals
in atmospheric physics
e.g. C. Westbrook

Fractal apertures in laser optics
e.g. J. Christian
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Scattering by fractal screens

· · ·

Lots of mathematical challenges:
I How to formulate well-posed BVPs?

(What is the right function space setting? How to impose BCs?)
I How do prefractal solutions converge to fractal solutions?
I How can we accurately compute the scattered field?
I . . .

Note: several tools developed here might be used in the (numerical)
analysis of different IEs & BVPs involving complicated domains.
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BVPs & BIEs: long story short...
We write Helmholtz BVPs for bounded open and compact screens Γ.

These are equivalent to boundary integral equations (BIEs),
which can be written as continuous&coercive variational problems

find φ ∈ V s.t. A(φ, ψ) = F(ψ) ∀ψ ∈ V

(φ = [∂nu] Neumann jump on Γ) posed in subspaces of H−1/2(Γ∞):

V = H̃−1/2(Γ) := C∞0 (Γ)
H−1/2(Rn−1)

Γ open,

V = H−1/2
Γ := {u ∈ H−1/2(Rn−1) : supp u ⊂ Γ} Γ compact.

(H̃s(Γ) = Hs
Γ

if Γ is C0, or thick..., many cases but ∃counterexamples)

How to approximate φ ∈ H̃−1/2(Γ)

H−1/2
Γ

numerically if Γ is rough/fractal?

E.g. Γ hard to mesh, interior is empty, prefractals are not nested...?

5



BVPs & BIEs: long story short...
We write Helmholtz BVPs for bounded open and compact screens Γ.

These are equivalent to boundary integral equations (BIEs),
which can be written as continuous&coercive variational problems

find φ ∈ V s.t. A(φ, ψ) = F(ψ) ∀ψ ∈ V

(φ = [∂nu] Neumann jump on Γ) posed in subspaces of H−1/2(Γ∞):

V = H̃−1/2(Γ) := C∞0 (Γ)
H−1/2(Rn−1)

Γ open,

V = H−1/2
Γ := {u ∈ H−1/2(Rn−1) : supp u ⊂ Γ} Γ compact.

(H̃s(Γ) = Hs
Γ

if Γ is C0, or thick..., many cases but ∃counterexamples)

How to approximate φ ∈ H̃−1/2(Γ)

H−1/2
Γ

numerically if Γ is rough/fractal?

E.g. Γ hard to mesh, interior is empty, prefractals are not nested...?

5



BVPs & BIEs: long story short...
We write Helmholtz BVPs for bounded open and compact screens Γ.

These are equivalent to boundary integral equations (BIEs),
which can be written as continuous&coercive variational problems

find φ ∈ V s.t. A(φ, ψ) = F(ψ) ∀ψ ∈ V

(φ = [∂nu] Neumann jump on Γ) posed in subspaces of H−1/2(Γ∞):

V = H̃−1/2(Γ) := C∞0 (Γ)
H−1/2(Rn−1)

Γ open,

V = H−1/2
Γ := {u ∈ H−1/2(Rn−1) : supp u ⊂ Γ} Γ compact.

(H̃s(Γ) = Hs
Γ

if Γ is C0, or thick..., many cases but ∃counterexamples)

How to approximate φ ∈ H̃−1/2(Γ)

H−1/2
Γ

numerically if Γ is rough/fractal?

E.g. Γ hard to mesh, interior is empty, prefractals are not nested...?

5



Mosco convergence

Key tool is Mosco convergence for closed subspaces of Hilbert H :

Mosco convergence (1969): H ⊃ Vj
M−−→ V ⊂ H if

I ∀v ∈ V , j ∈ N,∃vj ∈ Vj s.t. vj→v (strong approximability)
I ∀(jm) subseq. of N, vjm ∈ Vjm , vjm⇀v, then v ∈ V (weak closure)

Theorem

If H ⊃ Vj
M−−→ V ⊂ H and sesquilinear form A is continuous&coercive

on H , F ∈ H∗, then the sequence φj of solutions of

find φj ∈ Vj s.t. A(φj, ψj) = F(ψj) ∀ψj ∈ Vj

converges (in the norm of H) to the solution of

find φ ∈ V s.t. A(φ, ψ) = F(ψ) ∀ψ ∈ V .

We extend this to compactly-perturbed problems.
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Mosco convergence in action

If Vj =

{
H̃−1/2(Γj) Γj open
H−1/2

Γj
Γj comp.

V =

{
H̃−1/2(Γ) Γ open
H−1/2

Γ Γ comp.
then

Vj
M−−→ V implies convergence of prefractal BIE solution to fractal sol:

φj → φ in H−1/2(Γ∞) and uj = SΓ∗φj → u = SΓ∗φ in W 1,loc(Rn). E.g.:

1 open Γj ⊂ Γj+1 2 compact Γj ⊃ Γj+1 3 non-nested Γj
6⊂
6⊃Γj+1

Partition prefractal Γj with mesh Mj= {Tj,1, . . . ,Tj,Nj}, hj :=mesh size.
Denote by V h

j ⊂ H−1/2(Γ∞) the space of piecewise constants on Mj.

Then V h
j
M−−→ V implies convergence of Galerkin-BEM solution to φ.

How to choose Mj to ensure convergence?

Main requirement for Mosco convergence:

φh
j φj φ

hj → 0 j →∞

?

strong approximability: ∀v ∈ V ∃vh
j ∈ V h

j s.t. vh
j

H−1/2(Rn−1)−−−−−−−−→ v.
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BEM convergence: open screen

Approximation lemma for “pre-convex” meshes
Let Π : L2(Ω)→ V h be the orthogonal proj. on pw-constants. Then

‖u−Πu‖H̃s(Ω) ≤ (h/π)t−s‖u‖H t(Ω), ∀u ∈ H t(Ω), −1 ≤ s ≤ 0 ≤ t ≤ 1.

Since C∞0 (Γ) ⊂ H̃−1/2(Γ) is dense, this gives convergence for the case
of open screen & nested prefractals:

Theorem
Let Γ, Γj be bounded open, Γj ⊂ Γj+1, Γ =

⋃∞
j=0 Γj.

Then BEM convergence holds if hj → 0 as j →∞.

Also holds for some non-nested (“sandwiched”) Γj
6⊂
6⊃Γj+1, e.g.
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BEM convergence: compact screen

When Γ is compact with empty interior and
dimHΓ > 1 this argument fails because
C∞0 (Γ◦)={0} is not dense in V =H−1/2

Γ 6={0}.

To obtain a smooth approximation we mollify:
this enlarges the support.
Currently only results for “thickened prefractals”.

Theorem
Let Γ compact & Γj open satisfy Γ ⊂ Γ(εj) ⊂ Γj ⊂ Γ(ηj), 0 < εj < ηj → 0.
Then BEM convergence holds if hj = o(εj) as j →∞.
If H t

Γ is dense in H−1/2
Γ for t ∈ (−1/2,0) then hj = o(ε−2t

j ) suffices.

If Γ is d-set (e.g. IFS attractor), hj = o(εµj ), µ > n − 1− dimHΓ is enough.
Proof of (i) (strong approx.): Let v ∈ H t

Γ and set vj := (ψεj/2 ∗ v), then

‖ΠL2,V h
j
vj − vj‖H̃−1/2(Γ) ≤ (hj/π)

1/2 ‖vj‖L2(Γj) ≤ (hj/π)
1/2

(εj/2)
t ‖v‖H t

Γ
.
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Open problem: orders of convergence

We cannot prove orders of convergence, yet.
Three obstacles / open questions:

I What is the Hs regularity of the BIE solution φ ∈ H̃−1/2(Γ)/H−1/2
Γ ?

Conjecture: for Γ a d-set with Hausdorff dimension
n − 2 < d < n − 1, u ∈ H t

Γ for t < (d − n + 1)/2 ∈ (−1/2,0).

I How to ensure quasi-optimality for Mosco convergence?

(Trivial only for open–nested case )

I How to extend approximation lemma to

‖u −Πu‖H̃s(Ω) ≤ (h/π)t−s‖u‖H t(Ω), ∀u ∈ H t(Ω), −1/2 ≤ s < t < 0?

Any suggestion is welcome!
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Part II

Examples and numerics



Cantor dust

Cantor dust is Cartesian product of 2 copies of Cantor set with
parameter 0 < α < 1/2. Prefractals Γ0, . . . ,Γ4:

1 α

I Γ “audible” (φ 6= 0) ⇐⇒ α > 1
4 ⇐⇒ dimH(Γ) > 1.

(φ 6= 0 ⇐⇒ dimH(Γ) > 1 holds for all d-sets!)

I H−1/2
Γj

M−−→ H−1/2
Γ , prefractal solutions φj converge to φ.

I BEM on thickened prefractals converge,
1 DOF / prefractal component is enough.

Actually BEM converges with even less than 1 DOF/component:
mj components/element on Γj for 1 ≤ mj < 4( log 4

log 1/α−1) j.
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Cantor dust: field plots

Prefractal level j = 6, Nj = 46 = 4 096 DOFs, k = 50, α = 1/3.

J L2 norms of far-field,
α ∈ (0.025,0.475),
prefractal levels j = 0, . . . ,6.

Solution norms for α = 1
3 I

wavenumber k ∈ [0.1,100].
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Cantor dust, solution norms

Norm of© Neumann jumps (BIE solution), � near-field, ∗ far-field:

Norms of the solution on the prefractals converge:
I to positive constant values for α = 1/3 (left),
I to 0 for α = 1/10 (right).
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Sierpinski triangle

· · ·

H−1/2
Γj

M−−→ H−1/2
Γ , prefractal solutions φj converge to φ.

BEM on thickened prefractals converges if hj = o((3
4 − ε)

j).

Prefractal level j = 8, Nj = 38 = 6 561 DOFs, k = 40:

14



Sierpinski triangle, solution norms

Right plot
near- & far-field:

� =
‖SΓjφj − SΓ8φ8‖L2(BOX)

‖SΓ8φ8‖L2(BOX)

, ∗ =
‖uj,∞ − u8,∞‖L2(S2)

‖u8,∞‖L2(S2)

.

Prefractal level 3 is where density maxima are located and all
wavelength-size prefractal features are resolved: big error reduction!
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Koch snowflake

We can approximate Γ from inside and outside with polygons Γ±j :

Γ−1 ⊂ Γ−2 ⊂ Γ−3
open

⊂ · · · ⊂
⋃
j∈N

Γ−j = Γ ⊂ Γ =
⋂
j∈N

Γ+
j ⊂ · · · ⊂ Γ+

3 ⊂ Γ+
2 ⊂ Γ+

1
closed

.

For a scattering BVP, since Γ is “thick”, H̃±1/2(Γ) = H±1/2
Γ

and both sequences u±j converge to the same limit.
(CAETANO + H + M, 2018)
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Real part of fields on inner and outer prefractals

k = 61, d = (0, 1√
2
, 1√

2
)>, 3576 to 10344 DOFs.

Now I compare φh,−
j against φh,+

j−1 and φh,+
j .

17



Inner and outer snowflake approximations

‖φh,−
jin − φ

h,+
jout
‖H−1/2(R2)

‖φh,+
jout
‖H−1/2(R2)
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Other shapes

/ Sierpinski carpet.

4 “Square snowflake”,
limit of non-monotonic prefractals.
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Apertures

Field through bounded apertures in unbounded Neumann screens
computed via Babinet’s principle.

n = 1, Cantor set α = 1/3, prefractal level 12:
field through 0-measure holes!

Koch snowflake-shaped aperture 4

20



Bibliography

I SNCW, DPH, Wavenumber-explicit continuity and coercivity
estimates in acoustic scattering by planar screens, IEOT, 2015.

I SNCW, DPH, AM, Interpolation of Hilbert and Sobolev spaces:
quantitative estimates and counterexamples, Mathematika, 2015.

I DPH, AM, On the maximal Sobolev regularity of distributions
supported by subsets of Euclidean space, An. and Appl., 2017.

I SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of Rn

with application to BIEs on fractal screens, IEOT, 2017.
I DPH, AM, A note on properties of the restriction operator on

Sobolev spaces, JAA 2017.
I SNCW, DPH, Well-posed PDE and integral equation formulations

for scattering by fractal screens, SIAM J. Math. Anal., 2018.
I A. Caetano, DPH, AM, Density results for Sobolev, Besov and

Triebel-Lizorkin spaces on rough sets arXiv 2019.
I SNCW, DPH, AM, J. Besson Boundary element methods for

acoustic scattering by fractal screens coming soon!
. . .

21



Open questions

I Regularity theory for the fractal solution
I Rates of convergence
I Approximation on fractals
I Fast BEM
I What about curved screens?

More general rough scatterers?
I What about the Maxwell case?

Other PDEs? (Laplace, reaction–diffusion already covered.)
I . . .

Chandler-Wilde, Hewett, M., Besson, Boundary element methods for
acoustic scattering by fractal screens, preprint coming soon!

Thank you!
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Sobolev spaces on rough subsets of Rn−1

We need fractional (Bessel) Sobolev spaces on Γ ⊂ Rn−1. For s ∈ R let

Hs(Rn−1)=
{

u ∈ S∗(Rn−1) : ‖u‖2Hs(Rn−1) :=

∫
Rn−1

(1+|ξ|2)s|û(ξ)|2 dξ <∞
}

For Γ ⊂ Rn−1 open and F ⊂ Rn−1 closed define [MCLEAN]

Hs(Γ) := {u|Γ : u ∈ Hs(Rn−1)} restriction

H̃s(Γ) := C∞0 (Γ)
Hs(Rn−1)

closure

Hs
F := {u ∈ Hs(Rn−1) : supp u ⊂ F} support

When Γ is Lipschitz it holds that
I H̃s(Γ) = (H−s(Γ))∗ with equal norms
I s ∈ N⇒ ‖u‖2Hs(Γ)∼

∑
|α|≤s

∫
Γ
|∂αu|2

I H̃s(Γ) = Hs
Γ

(∼= Hs
00(Γ), s ≥ 0)

I H±1/2
∂Γ = {0}

I {Hs(Γ)}s∈R and {H̃s(Γ)}s∈R
are interpolation scales.

For general open Γ

I X

I × LIPSCHITZ

I × IS

I × LUXURY!

I ×
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BVPs for open and compact screens

BVP Dop(Γ) for open screens
Let Γ ⊂ Γ∞ be bounded & open.
Given g ∈ H1/2(Γ)

(for instance, g = −(γ±u i)|Γ),
find u ∈ C2 (D) ∩W 1,loc(D)
satisfying

∆u + k2u = 0 in D,

(γ±u)|Γ = g,
Sommerfeld RC.

γ± = traces : W 1(Rn
±)→ H1/2(Γ∞)

BVP Dco(Γ) for compact scr.
Let Γ ⊂ Γ∞ be compact.
Given g ∈ H̃1/2(Γc)⊥

(e.g., g = −PΓu i),
find u ∈ C2 (D) ∩W 1,loc(D)
satisfying

∆u + k2u = 0 in D,

PΓγ
±u = g,

Sommerfeld RC.

Orthogonal projection
PΓ : H1/2(Γ∞)→ H̃1/2(Γc)⊥.

If Ω bdd open, H̃−1/2(Ω) = H−1/2
Ω

, then Dop(Ω)&Dco(Ω) are equivalent.
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Well-posedness & boundary integral equations

Theorem [CW, H, M 2019]

If H̃−1/2(Γ) = H−1/2
Γ

then problem
Dop(Γ) has a unique solution u.

Theorem [CW, H, M 2019]
Problem Dco(Γ)

has a unique solution u.

u satisfies the representation formula u(x) = −SΓφ(x),x ∈ D,
where φ = [∂nu] := ∂+

n u − ∂−n u is the unique solution of BIE SΓφ = −g.

SΓ = single-layer potential,
SΓ = single layer operator: cont. & coercive in H−1/2(Rn−1) norm.

SΓψ(x) :=

∫
Γ

Φ(x,y)ψ(x)ds(y)

SΓ : H̃−1/2(Γ)→ C2(D)∩W 1,loc(Rn)

SΓψ = (γ±SΓψ)|Γ
SΓ : H̃−1/2(Γ)→ H1/2(Γ)

SΓ : H−1/2
Γ → C2(D) ∩W 1,loc(Rn)

SΓ = PΓγ
±SΓ

SΓ : H−1/2
Γ → H̃1/2(Γc)⊥

Φ is the Helmholtz fundamental solution (Φ(x,y) = eik|x−y|

4π|x−y| for n = 3)
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When is H̃−1/2(Γ) = H−1/2
Γ

?
The previous theorems extend classical results for Lipschitz domains
(STEPHAN & WENDLAND 1984, STEPHAN 1987).

Sufficient conditions for H̃−1/2(Γ) = H−1/2
Γ

are that |∂Γ| = 0 and either

I Γ is C0 (e.g. Lipschitz);
I Γ is C0 except at a set of countably many points P ⊂ ∂Γ such

that P has only finitely many limit points;
I Γ is “thick”, in the sense of Triebel.

(H̃−1/2(Γ) = H−1/2
Γ

⇐⇒ C∞0 (Γ)
dense
⊂ {v ∈ H−1/2(Rn−1) : supp v ⊂ Γ})

Cases with H̃−1/2(Γ) 6= H−1/2
Γ

constructed using characterisation:

If s ∈ R, int(Γ) is C0 then H̃s(Γ) = Hs
Γ
⇐⇒ H−s

int(Γ)\Γ = {0}.
27
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Open questions

I Regularity theory for the fractal solution
I Rates of convergence
I Approximation on fractals
I Fast BEM
I What about curved screens?

More general rough scatterers?
I What about the Maxwell case?

Other PDEs? (Laplace, reaction–diffusion already covered.)
I . . .

Chandler-Wilde, Hewett, M., Besson, Boundary element methods for
acoustic scattering by fractal screens, preprint coming soon!

Thank you!
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