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Acoustic waves in free space governed by wave eq. 5z — AU = 0.



Helmholtz equation

Acoustic waves in free space governed by wave eq. %Qtlj — AU =0.

Time-harmonic regime: assume U(x, t) = R{u(x)e~ 'k} and look for u.

u satisfies Helmholtz equation Au + k?>u = 0, with wavenumber i > 0.



Helmholtz equation

Acoustic waves in free space governed by wave eq. U _ AU = 0.

ot?

Time-harmonic regime: assume U(x, t) =R{u(x)e~*} and look for u.

u satisfies Helmholtz equation Au + k?u = 0, with wavenumber i > 0.

Typical Helmholtz scattering problem:

plane wave u"¢(x) = el’*4 hitting a sound-soft (i.e. Dirichlet) obstacle

Total field for scattering by sound-soft (Dirichlet) disc with Mie series on (-1,1)4, k = 30, incoming angle 0.524, radius 0.25
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Wavelength: A = 2% distance between two crests of a plane wave.



Helmholtz fransmission problem

Single penetrable homogeneous obstacle Q;:

Sommerfeld
radiation condition

Q. U = UW; +9gp
Ortio—iko=0(v/r1-4) ¢

Q Rd anuo = ANanui + gn
i C
i

Aui TP k2niui :ﬁ

Qo:]Rd\ﬁi
Au, + Ku, = f,



Helmholtz fransmission problem

Single penetrable homogeneous obstacle Q;:

Sommerfeld
radiation condition

Q. U = UW; +9gp
Ortio—iko=0(v/r1-4) ¢

Q Rd anuo = ANanui + gn
i C
i
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Qo:]Rd\ﬁi
Au, + Ku, = f,

Data: fi € L*(),  fo € Lomp(Q0).  gp € H (0), gy € L2(0),
wavenumber Ik > 0, refractiveindexZ n; >0, Ay > 0,
scatterer ; ¢ R? (Lipschitz bounded).

in O ~
What is Ay? E.g. in TE modes e = {1 N 3L, u = Hy,: Ay = 2.

n; in Q;, ,
InT™M modes, u = E,: Ay = ., ! v In acoustics Ay = 2.



Helmholtz fransmission problem
Single penetrable homogeneous obstacle Q;:

Sommerfeld
radiation condition

Orup—ikup=0(vr1-9)

JUW =U+dp
‘ anuo :ANanui+gN

Q; C R4
Aui + k2niui :ﬁ

Qo:]Rd\ﬁi
Au, + Ku, = f,

Data: fi € L*(),  fo € Lomp(Q0).  gp € H (0), gy € L2(0),
wavenumber Ik > 0, refractiveindexZ n; >0, Ay > 0,
scatterer ; ¢ R? (Lipschitz bounded).

in ¢
What is Ay? E.g. in TE modes ¢/ = {1 NS, _Hy  Ay=

n; in Q;, ) c
InT™M modes, u = E,: Ay = ., ' ' In acoustics Ay = 2.

Solution exists and is unique for §; Lipschitzand ik € C\ {0}, Sk >0
TORRES, WELLAND 1999.
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Wave scafttering

The example we have in mind is scattering of incoming wave u™:

_fi = kz(l — ni)uI”C, j;) =0, dp = 0, agn = (AN — 1)8,111,1”0.
Incoming field Scattered field Total field
ulne = eikxd (datym) u = (W, Uo) u + ulne

=1, Ay=1, d=(3,-L), k=20, A=0.314, 3 x 3box,

figures represent real parts of fields.
— U(x, t) = R{u(x)e '}


http://matematica.unipv.it/moiola/FractalBEM/AnimationTransmission.html

Goal and motivation

From Fredholm theory we have

Gl =l )], e l(5)

Goal: find out how C; and C, depend on k, n;, Ay, and Q;
and deduce results about resonances.

<O
Qi/o

Pieh



Goal and motivation

From Fredholm theory we have

Gl =l )], e l(5)

Goal: find out how C; and C, depend on k, n;, Ay, and Q;
and deduce results about resonances.

<C
Qi/o
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Motivation: NA of Helmholiz problems with variable wavenumber:
BARUCQ, CHAUMONT-FRELET, GOUT (2016)

» OHLBERGER, VERFURTH (2016)

» BROWN, GALLISTL, PETERSEIM (2017)
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SAUTER, TORRES (2017)
GRAHAM, PEMBERY, SPENCE (2019)
» GRAHAM, SAUTER (2018)
and with random parameters (from UQ perspective):
» FENG, LIN, LORTON (2015)
» HIPTMAIR, SCARABOSIO, SCHILLINGS, SCHWAB (2018)
» PEMBERY, SPENCE (2018). ..



Who cares?

LAFONTAINE, SPENCE, WUNSCH, arXiv 2019:
The following is a non-exhaustive list of papers on the

e B R e for solving the Helmholtz equation where a cen-
tral role is played by either the non-trapping resolvent estimate (1.5), or its analogue
(with the same k-dependence) for the commonly-used approximation of the exterior
problem where the exterior domain (O is truncated and an impedance boundary
condition is imposed:

conforming FEMs (including continuous interior-penalty methods) [72,
Proposition 2.1], [74, Proposition 8.1.4], [56, Lemma 2.1]. (77, Lemma 3.5]
[78, Assumptions 4.8 and 4.18], (45, §2.1], [110, Theorem 3.1], [113, §3.1], [44,
§3.2.1], [40, Remark 3.2], [41, Remark 3.1], [29, Assumption 1], [30, Definition
2], [55, Theorem 3.2], [50, Lemma 6.7], [14, Equation 4],

least squares methods [33, Assumption Al], [10, Remark 1.2], [64, Assumption
1 and equation after Equation 5.37],

DG methods based on piece-wise polynomials [46, Theorem 2.2], [47, Theorem
2.1], [39, Assumption 3], [48, §3], [62, Assumption A (Equation 4.5)], [76,
Equation 4.4], [35, Remark 3.2], [32, Equation 2.4], [84, Equation 4.3], [112,
Remark 3.1], (94, Theorem 2.2],

plane-wave /Trefftz-DG methods [3, Theorem 1], (59, Equation 3.5], [60, The-
orem 2.2], 2, Lemma 4.1], [61, Proposition 2.1],

multiscale finite-element methods [51, Equation 2.3], [13, §1.2], [88, Assump-
tion 5.3, (8, Theorem 1], [87, Assumption 3.8], [31, Assumption 1],
integral-equation methods [71, Equation 3.2 5, Equation 4.
ter 5], [53, Theorem 3.2, [111, Remark 7.5, [43, Theorem 2],
3.2], [52, Assumption 3.2],

In addition, the following papers focus on proving bounds on the solution of Helmholtz
boundary-value problems (with these bounds often called “stability estimates”) mo-
tivated by applications in numerical analysis: [36], [57], [26], [11], [7], [70]. (98], [28],
[6], [9], [27], [93]. [54], [55] [83], [50], Of these papers, all but [70], [6]. [27], [11] are
in nontrapping situations, [70], 6], [27] are in parabolic trapping scenarios, and [11]
proves the exponential growth (1.7) under elliptic trapping.

9, Theorem
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tral role is played by either the non-trapping resolvent estimate (1.5), or its analogue
(with the same k-dependence) for the commonly-used approximation of the exterior
problem where the exterior domain (O is truncated and an impedance boundary
condition is imposed:

e conforming FEMs (including contimious interior-penalty methods) (72,
Proposition 2.1], [74, Proposition 8.1.4], [56, Lemma 2.1], [77, Lemma 3.5],
[78, Assumptions 4.8 and 4.18], [45, §2.1], [110, Theorem 3.1], (113, §3.1], [44
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least squares methods [33, Assumption Al], [10, Remark 1.2], [64, Assumption
1 and equation after Equation 5.37],

DG methods based on piece-wise polynomials [46, Theorem 2.2], [47, Theorem
2.1], [39, Assumption 3], [48, §3], [62, Assumption A (Equation 4.5)], [76,
Equation 4.4], [35, Remark 3.2], [32, Equation 2.4], [84, Equation 4.3], [112,
Remark 3.1], (94, Theorem 2.2],

plane-wave /Trefftz-DG methods [3, Theorem 1], (59, Equation 3.5], [60, The-
orem 2.2], 2, Lemma 4.1], [61, Proposition 2.1],

multiscale finite-element methods [51, Equation 2.3], [13, §1.2], [88, Assump-
tion 5.3, (8, Theorem 1], [87, Assumption 3.8], [31, Assumption 1],
integral-equation methods [71, Equation 3.24], [75, Equation 4.4], [24, Chap-
ter 5], [53, Theorem 3.2], [111, Remark 7.5], [43, Theorem 2|, [49, Theorem
3.2], [52, Assumption 3.2],

In addition, the following papers focus on proving bounds on the solution of Helmholtz
boundary-value problems (with these bounds often called “stability estimates”) mo-
tivated by applications in numerical analysis: [36], [57], [26], [11], [7], [70]. (98], [28],
[6] (9], [27]. (93], [54], [55] [83], [50], Of these papers, all but [70], [6], [27] [11] are
in nontrapping situations, [70], [6], [27] are in parabolic trapping scenarios, and [11]
proves the exponential growth (1.7) under elliptic trapping.

Allow to control:

» Quasi-optimality
& pollution effect
» Gmres iteration #

» Matrix
compression

» hp-FEM&BEM
(Melenk-Sauter)

> ...



Assume gp = gy = 0 (o jumps/boundary data).

Solution operator: R(k) = R(k, n;, Ay, €): (JJ:‘ ) — ( LLZ ) .



"Cut-off resolvent”: R, (k)

Assume gp = gy = 0 (o jumps/boundary data).

Solution operator: R(k) = R(k, ny, Ay, Q): (JJE ) — ( Z‘; > )

Let x1, x2 € CF(RY) s.t. x; = 1 in a neighbourhood of ;. Then

Ry (k)= xiR(k)x2 : L*(Q)&L*Q) — H'(Q)a®H" (Q)
(s So) = (W, Uoxa)



“Cut-off resolvent”: R, (k)

Assume gp = gy = 0 (o jumps/boundary data).

Solution operator: R(k) = R(k, n;, Ay, Q;): (Jf; ) . ( u; > ‘

Uo
Let x1, x2 € CF(RY) s.t. x; = 1 in a neighbourhood of ;. Then
R.(k):=xiR(k)x2 @ L*(Q)@L* Q) — H'(Q)®H ()
(fiv J%) = (ui7 uOXl)

Well-known that R, (k) is holomorphic on Sk > 0.
Resonances: poles of meromorphic continuation of R, (k) to Sk < 0.



“Cut-off resolvent”: R, (k)

Assume gp = gy = 0 (o jumps/boundary data).

Solution operator: R(k) = R(k, n;, Ay, Q;): ( Ji ) . ( u; > ‘

Jo Uo
Let x1, x2 € CF(RY) s.t. x; = 1 in a neighbourhood of ;. Then
R.(k):=xiR(k)x2 @ L*(Q)@L* Q) — H'(Q)®H ()

(fiv J%) — (ui7 uOXl)
Well-known that R, (k) is holomorphic on Sk > 0.

Resonances: poles of meromorphic continuation of R, (k) to Sk < 0.

We want to bound the norm of R, (k), k € R.
Consider separately cases n; < 1 and n; > 1: very different!



First consider case n; < 1.



First consider case n; < 1. Resolvent bounds:



Resolvent bounds for n; < 1

First consider case n; < 1.

C
||RX(k)||L2—>L2 < ?07

CARDOSO, PopPov, VODEV 1999:

» using microlocal analysis

> ; smooth (C*), D
convex, curvature> 0

» Cy, C; not explicit in n;, Ay

» k> kg forsome kg > 0
» n;<1,Ay >0 TE/TM:=

/M;
Ei

Resolvent bounds:

IR (F) |2 < Ca

M., SPENCE:

» clementary proof

» Q; Lipschitz, star-shaped
x-n>0) *

» Co, C; explicitin n;, Ay
and geometry

» any k>0

> <4< 1 TE/TM: ©

i (/1

(Relo’red results in PERTHAME, VEGA 1999.)



Resolvent bounds for n; < 1

First consider case n; < 1.

Co
||Rx(k)||L2—>L < ?

CARDOSO, POPOV, VODEV 1999:
» using microlocal analysis

> ; smooth (C*), D
convex, curvature> 0

» Cy, C; not explicit in n;, Ay

» k> kg forsome kg > 0
» n;<1,Ay >0 TE/TM:= //‘

Resolvent bounds:

IR (F) |2 < Ca

M., SPENCE:

» clementary proof

» Q; Lipschitz, star-shaped
x-n>0) *

» Co, C; explicitin n;, Ay
and geometry

» any k>0

> <4< 1 TE/TM: ©

Hi </l

(Relo’red results in PERTHAME, VEGA 1999.)

Using VODEV 1999, under either set of assumptions, {J_)
we have strip of holomorphicity underneath real axis: C

R, (k) is holomorphic in {k € C: Rk > ko, Sk > =6} (6 > 0)



Q; ¢ R4 is star-shaped, gy = gp = 0, k > 0, and

1
< — < 1.
O<nl_AN_

Given R > 0 such that supp f, C Br. let Dg := Bg\ Q.



(One of) our bounds

Q; ¢ R4 is star-shaped, gy = gp = 0, k > 0, and &é

0 <1<1 Q
<ni7A—Nf .

Given R > 0 such that supp f, C Br, let Dg:= Bg\ Q.

IV ekl + e el + 7 (IVtolEx 00 + 2 elacon)
_ 1 d—1
< [4d1&m(9i) = (2R+ ) ] ||f||L2(Q
1

1[5 d—1\° 5
+ AN[4R + <2R+ k) } olaoy -

Fully explicit, shape-robust estimate.
(Extended to gp, gy # 0 under strict inequalities and star-shapedness.)

Q



How our bound was obtained
Multiply the PDE by the “test functions” (multipliers, Mu)

2
-1

in D
2 u) R

x-Vu— ikRu +

u in Qi,

1 . d
A—N(X-Vu—lkRu—i—

1 , d-1 g
A—N(X~Vu—1k|x|u+ 5 u) in R*\ Dg,

infegrate by parts and sum 3 contributions.



How our bound was obtained
Multiply the PDE by the “test functions” (multipliers, Mu)

x-Vu— ikRu + 5

u in Qi,

1 . d-—1 .
A—N(X-Vu—lkRu—i— 5 u) in Dg,

1 , d-1 g
A—N(X~Vu—1k|x|u+ 5 u) in R*\ Dg,

infegrate by parts and sum 3 conftributions. E.g. on ©; we obtain

/ \Vui|2 + n[kz\ui\z
Jo;
= 72?71‘/ Ji Mu; + / (x-m) <\(‘)nul-\2 — |Vrwl|® + ani\ui\2>
J oy J ooy

—1 )
E) (‘)nui} .

Manipulation of terms on 09; & 9Bg from 2 sides gives negative value.
First for smooth fields, then proceed by density.

+2§R{<x-?ru,-+ikRE-+ d

These types of test functions infroduced by Morawetz in 1960s/1970s.

10



Proof for smooth w;, u,

. L
/(\Vui\2+k2ni\ui\2)+A—/ (Viol? + K2 |uof?)
Q;

-1
@72%/ x. v — kR + 21 ff R/ -Vﬁo—ikRﬁo+d2 ﬁo)fo
Q

R d-1
+ /(x-n) (\anui\z — |Vru* + kz”i\ui\2> + 2%{<X'VTui + ikRt; + TE’) Onui}
o

1 N d-—1__
- [ (el Vel + e ?) +2§R{<X< Vrtly + kR + Tuﬂ) anuo}
|

1

+ A—/ (ROOtof? = [Vrttof? + K2|uof?) — 2kRS (Tt} + (d ~ 1R{T0,uo} )
N J 9BR

=0, from SRC and Morawetz-Ludwig IBP identity
< fillg, (2 diam(9) | Vullg, + (2kR + d — 1) HuiHQl) + Cauchy-Schwarz
follp,
+ TR (2R | Viollp, + (2kR + d — 1) |||, )
1 1 1
+) == QAT 2y Oatol” V1t 4+ 2 [Vrtof + I - I )
>0,%-shape

<0, from jump rel.s and Ay>1 <0, from jump rel.sand Ay>1 <0, from jump rel.s and ;< Ai

‘ N d-—1 1 - d-1
+2§R/ x - Vruy; + ikRy; U | Onli — — | X - VrUy + 1kRU, + ——TUo | Only
r 2 Ay 2

=0, from jump rel.s up=1; & Inuo=ANOnly

d

lefthandside | {2diam(9i)2 5 (2R+ d%) ] LAI2, + —[2R2 2(2R+ 7) } 512,

- 2




Now one wants to look at case n; > 1, but proofs doesn’t extend.



The case n; > 1

Now one wants to look at case n; > 1, but proofs doesn’t extend.

Can test stability numerically: choose Q; = B; C R2, equispaced ks,
ST from plane wave scattering, compute norm of solution (w;, u).



The case n; > 1

Now one wants to look at case n; > 1, but proofs doesn’t extend.

Can test stability numerically: choose Q; = B; C R2, equispaced ks,

ST from plane wave scattering, compute norm of solution (w;, u).

“Hmn“

Wil 3 / e

107
0 1 2 3 4 5 6 7 8 9 10
k

Try many cases and they seem to suggest stability hold.
However...



The case n; > 1

Now one wants to look at case n; > 1, but proofs doesn’t extend.

Can test stability numerically: choose Q; = B; C R2, equispaced ks,
ST from plane wave scattering, compute norm of solution (w;, u).

10! 10°

/ |lsourcel| 25,
3

lullzz: .y / llsoureell 2z,
2

HHHII: 4(B2)

107 10?
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8
k r

Try many cases and they seem to suggest stability hold.
However...if we choose some special ks [[ul[ g, & [[ul] 1 5, PlOW up!



n<1l vs ny>1

n<l=X\>M\
inside Q; wavelength is longer

E.g. air bubble in water.

(ny=1/3)

Snell’s law:

3
N
N

All rays eventually leave Q;:
stability for all ik > 0.

2
()\022%7)\1__ 27 ni:)\)

Ao
o]
A

= "ym

n>1=X\<X\
inside Q; wavelength is shorter

E.g. glass in air: lenses.

(i =3)

Snell’s law:

r\

A

Total internal reflection,
creeping waves, ray trapping:
quasi-resonances.




"Quasi-modes” for n; > 1

» Poprov, VODEV 1999:

Q; smooth, convey, strictly positive curvature, n; > 1, Ay > 0,

J complex sequence (Ig)<, ., with [lg| — oo, Rl > 1, and
0 > Qg = O(|kj| =) s.t.

blows up
IR ()l 212 super-algebraically .

We show that {Rk;} gives the same blow up:
“quasi-modes” with real wavenumber.

These are the peaks in the previous ploft.



"Quasi-modes” for n; > 1

» Poprov, VODEV 1999:

Q; smooth, convey, strictly positive curvature, n; > 1, Ay > 0,

J complex sequence (Ig)<, ., with [lg| — oo, Rl > 1, and
0 > Qg = O(|kj| =) s.t.

blows up C k
IR ()l 212 super-algebraically .

We show that {Rk;} gives the same blow up:
“quasi-modes” with real wavenumber.

These are the peaks in the previous ploft.

» BELLASSOUED 2003: (blow up is at most exponential in k)
Q; smooth, n; > 0, Ay > 0,3C1, Co, kg > 0, 5.1,

IRy (K|l 2_, 12 < C1exp(Cok)  forall ke > kg



Quasi-resonances and perturbations
Q;=unit disc in R2, n; = 100.

g = 1.77945199481921 ~ Rh14,1, ko = 2.75679178324354 ~ Rkio5



Quasi-resonances and perturbations

Q=unit disc in R2, n; = 100. Resonances killed by tiny perturbations:

2

.
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|
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‘
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n "

kg = 1.77945199481921 ~ Rh14,1. kg = 2.75679178324354 ~ Rkio5
ks = 1.779451994815, ks =2.757




Quasi-resonances and perturbations

Q=unit disc in R2, n; = 100. Resonances killed by tiny perturbations:

z

.
) .
‘
\{

‘
.
n «

kg = 1.77945199481921 ~ Rh14,1. kg = 2.75679178324354 ~ Rkio5
ks = 1.779451994815, Iy, =2.757

LAFON;AINE, SPENCE, WUNSCH 2019:
V6 >03JCR, |J <8 st [[R(k)|2_2 < Chk24 Vi e [ko,o0) \ J.
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Non star-shaped scatterers (n; < 1)

For n; < 1, need of star-shaped scatterer Q; is now clear:
general ; can contain cavities, trap waves, support quasi-modes.



Non star-shaped scatterers (n; < 1)

For n; < 1, need of star-shaped scatterer Q; is now clear:

general ; can contain cavities, trap waves, support quasi-modes.

We expect that k-uniform bounds hold for more
general obstacles: non-frapping domains.

Morawetz techniques are not useful in this case.



What if n; fakes more than two values?

For piecewise-constant n;,

i.e. several materials, )
similar bounds hold if )

n; increases radially:

n<n<l1



What if n; fakes more than two values?

For piecewise-constant n;, Ny
i.e. several materials,
similar bounds hold if ng
n; increases radially:

\__/\__/ n<n<l1
More general case: n ¢ C°! GRAHAM, PEMBERY, SPENCE 2019
If 2n(x)+x-Vn(x)>% >0, 1—n compactly supported

= the solution of Au + nicu = f  saisfies  [[ullyy gy < € 1 li2ae-



What if n; fakes more than two values?

i H /—\ \ —
For pleceW|se—copsTonT n, [ Vg / e

i.e. several materials, \ — /

similar bounds hold if S J )

n; increases radially:

A/ 7 m<ng<1
More general case: n ¢ C°! GRAHAM, PEMBERY, SPENCE 2019
If 2n(x)+x-Vn(x)>% >0, 1—n compactly supported

= the solution of Au + nicu = f  saisfies  [[ullyy gy < € 1 li2ae-

Extensions:
» div(AVu) + nk?u = f
» n € L>(R%) radially non-decreasing,
A € L>*(R%; SPD) radially non-increasing

» Star-shaped Dirichlet scatterer
» Truncated domain and impedance BCs



Helmholtz equation: summary

(M3AS 2019) MOIOLA, SPENCE, Acoustic tfransmission problems:
wavenumber-explicit bounds and resonance-free regions.

> n; < 1: explicit bounds on [[ul|g g, from Morawetz multipliers,
resolvent bounded uniformly in k, holomorphicity strip

» n; > 1. exponential growth of stability constant through (kj);’;l
for smooth&convex, growth very sensitive to k



Helmholtz equation: summary

(M3AS 2019) MOIOLA, SPENCE, Acoustic tfransmission problems:
wavenumber-explicit bounds and resonance-free regions.

> n; < 1: explicit bounds on [[ul|g g, from Morawetz multipliers,
resolvent bounded uniformly in k, holomorphicity strip

» 1n; > 1: exponential growth of stability constant through (i),
for smooth&convex, growth very sensitive 1o Ik

Open question for n; > 1:
Does non-smooth Q; support quasi-modes? What’s blow up in k?
Think: ©; polygon/polyhedron.

PDE guess: Yes, what’s bad for ssmooth is worse for rough.
Wave guess:  No, corners diffract energy and stop creeping waves.

Interesting numerical project!



Part I



Maxwell “tfransmission” problem

Given:
> k>0
» JKe H(divO,R3), compactly supported
» co,/0>0
» ¢, 11 € L=®(R3, SPD) such that
Q= int(supp(e — eol) Usupp(u — /L()!)) is bounded and Lipschitz

Find E, H € Hyoc(curl, R®) such that

ikkE+VxH=J in R3,
—ikgH+V xE=K  inR? €= o
(E, H) satisfy Silver-MUller radiation condition. K= pHo

€



Maxwell “tfransmission” problem

Given:
> k>0
» JKe H(divO,R3), compactly supported
» co,/0>0
» ¢, 11 € L=®(R3, SPD) such that
Q= int(supp(e — eol) Usupp(u — /L()!)) is bounded and Lipschitz

Find E, H € Hyoc(curl, R®) such that

ikE+VxH=J inR3 B
—ikyH+VxE=K  inR3 €= o
(E, H) satisfy Silver-MUller radiation condition. K= pHo

The Morawetz multipliers for this problem are

(Exx+Ry/epH) & (pHxx— R\/euE) inBg D Q,
(EOE XX+T EOILL()i) & (,u,oﬁ XX—T 60/1,07) in RS \ Bk.



Single homogeneous scatterer

The analogous of the Helmholtz problem seen earlier is

i in i In
= T o L P €0, i, 1o constant.
€0 INQ, Ko 1IN Qo
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Single homogeneous scatterer

The analogous of the Helmholtz problem seen earlier is

i in i In
= T o L P €0, i, 1o constant.
€0 INQ, Ko 1IN Qo

If ‘ ei < €o ‘ ‘ i < o ‘ ‘ Q; star-shaped ‘ Q; Usuppd UsuppK C Bg, then

2 2 €0 Mo 2 2
€ |Ellp, +pie|H|p, < 4R (— + f> (eo K|z, + 10 (I3, )-

€i Hi

Equivalent to wavenumber-independent H(curl; Bg) bound for E.
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The analogous of the Helmholtz problem seen earlier is

i in i In
= T o L P €0, i, 1o constant.
€0 INQ, Ko 1IN Qo

If ‘ ei < €o ‘ ‘ i < o ‘ ‘ Q; star-shaped ‘ Q; Usuppd UsuppK C Bg, then

2 2 €0 Mo 2 2
€ |Ellp, +pie|H|p, < 4R (— + f> (eo K|z, + 10 (I3, )-

€i Hi

Equivalent to wavenumber-independent H(curl; Bg) bound for E.

» If ¢; is (constant) SPD matrix, same holds if max eig(e;) < eg and
with ¢; substituted by min eig(¢;) in the bound. Same for p;.

» Similar results when R3 is fruncated with impedance BCs.
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Assume:
» Q; starshaped, e, € WH>(Q;, SPD)
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Assume:
» Q; starshaped, e, € WH>(Q;, SPD)
> ||ei||Lco(an) < €o, ||ui||Lw(8Qi) < pp. 1.€.jumps are “upwards” on 99;
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What about more general e, 4?

Assume:
» Q;starshaped, e, u e WH>(Q;, SPD)
> el o0, = €os [l e p0,) < Ho. i jumps are “upwards” on 9
> ¢, = essinfxeq, (e +(x- V)e) > 0, py :=essinfgeq, (,u +(x- V)u) >0
“weak monotonicity” in radial direction, avoid trapping of rays
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What about more general e, 4?

Assume:
» Q;starshaped, e, u e WH>(Q;, SPD)
> el o0, = €os [l e p0,) < Ho. i jumps are “upwards” on 9
> e :=essinfxeq, (e + (X-V)e) > 0, py :=essinfreq, (1 + (X-V)u) >0
“weak monotonicity” in radial direction, avoid trapping of rays
» “extraregularity” (E,H € H'(Q;UQ,)3 or e, u€ WHe ()
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What about more general e, 4?

Assume:
» Q;starshaped, e, u e WH>(Q;, SPD)
> il o0, = €0 [Hill < a0, < 1o, 1.€.jumps are “upwards” on 9
> e :=essinfxeq, (e + (X-V)e) > 0, py :=essinfreq, (1 + (X-V)u) >0
“weak monotonicity” in radial direction, avoid trapping of rays
» “extraregularity” (E,H € H'(Q;UQ,)3 or e, u€ WHe ()

Then we have explicit, wavenumber-indep., bound:

2 2
Ex ”EHBR + p HHHBR

el _ il iy <
< 4R (FTEE | D0 gy gpe (SO | SOk 2

* * * *
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What about more general e, 4?

Assume:
» Q;starshaped, e, u e WH>(Q;, SPD)
> e L= (00, < Mo, 1.€.jumps are "upwards” on 9

L (00 < €05 [l
> e :=essinfxeq, (e + (X-V)e) > 0, py :=essinfreq, (1 + (X-V)u) >0
“weak monotonicity” in radial direction, avoid trapping of rays

» “extraregularity” (E,H € H'(Q;UQ,)3 or e, u€ WHe ()

Then we have explicit, wavenumber-indep., bound:

2 2
Ex ”EHBR + p HHHBR

el _ il iy <
< 4R (FTEE | D0 gy gpe (SO | SOk 2

* * * *

To get rid of “extra regularity” assumption, need density of C>(D)? in
{v € H(curl; D) : V-[av] € L%(D), av-fi € L2(9D), vy € L%(aD)}, ae{e )
For e = p =identity: density proved in COSTABEL, DAUGE 1998.
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Summary

Helmholtz equation in R4, homogeneous inclusion:

> n; < 1: explicit bounds on [|ul| g, from Morawetz multipliers,
resolvent bounded uniformly in k, holomorphicity strip

» 1n; > 1: exponential growth of stability constant through (i), .
growth very sensitive 1o Ik

Maxwell equations in R3, inhomogeneous inclusion:
» explicit bounds on |[E||y .y 5, If € 1 “radially growing”
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Summary

Helmholtz equation in R4, homogeneous inclusion:

> n; < 1: explicit bounds on [|ul| g, from Morawetz multipliers,
resolvent bounded uniformly in k, holomorphicity strip

» 1n; > 1: exponential growth of stability constant through (i), .
growth very sensitive 1o Ik

Maxwell equations in R3, inhomogeneous inclusion:
» explicit bounds on |[E||y .y 5, If € 1 “radially growing”

Thank youl!
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