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Part I

Helmholtz equation



Helmholtz equation

Acoustic waves in free space governed by wave eq. ∂
2U
∂t2 −∆U = 0.

Time-harmonic regime: assume U (x, t)=<{u(x)e−ikt} and look for u.

u satisfies Helmholtz equation ∆u + k2u = 0, with wavenumber k > 0.

Typical Helmholtz scattering problem:
plane wave uInc(x) = eikx·d hitting a sound-soft (i.e. Dirichlet) obstacle

Wavelength: λ = 2π
k , distance between two crests of a plane wave.
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Helmholtz transmission problem
Single penetrable homogeneous obstacle Ωi :

Ωi ⊂ Rd

∆ui + k2niui = fi

Sommerfeld
radiation condition
∂r uo−ikuo=o(

√
r1−d)

Ωo = Rd \ Ωi

∆uo + k2uo = fo

∂Ωi

{
uo = ui + gD

∂nuo = AN∂nui + gN

Data: fi ∈ L2(Ωi), fo ∈ L2
comp(Ωo), gD ∈ H1(∂Ωi), gN ∈ L2(∂Ωi),

wavenumber k > 0, refractive index2 ni > 0, AN > 0,
scatterer Ωi ⊂ Rd (Lipschitz bounded).

What is AN ? E.g. in TE modes εµ =

{
1 in Ωo,
ni in Ωi ,

u = Hz: AN = εo
εi

.
In TM modes, u = Ez: AN = µo

µi
. In acoustics AN = ρo

ρi
.

Solution exists and is unique for Ωi Lipschitz and k ∈ C \ {0}, =k ≥ 0
TORRES, WELLAND 1999.
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Wave scattering

The example we have in mind is scattering of incoming wave uInc:
fi = k2(1− ni)uInc, fo = 0, gD = 0, gN = (AN − 1)∂nuInc.

Incoming field
uInc = eikx·d (datum)

Scattered field
u = (ui ,uo)

Total field
u + uInc

ni = 1
4 , AN = 1, d = (1

2 ,−
√

3
2 ), k = 20, λ = 0.314, 3× 3 box,

figures represent real parts of fields.
→ U (x, t) = <{u(x)e−ikt}
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http://matematica.unipv.it/moiola/FractalBEM/AnimationTransmission.html


Goal and motivation
From Fredholm theory we have∥∥∥∥( ui

uo

)∥∥∥∥
Ωi/o

≤ C1
∥∥∥∥( fi

fo

)∥∥∥∥
Ωi/o

+ C2
∥∥∥∥( gD

gN

)∥∥∥∥
∂Ωi

Goal: find out how C1 and C2 depend on k, ni , AN , and Ωi
and deduce results about resonances.

Motivation: NA of Helmholtz problems with variable wavenumber:
I BARUCQ, CHAUMONT-FRELET, GOUT (2016)
I OHLBERGER, VERFÜRTH (2016)
I BROWN, GALLISTL, PETERSEIM (2017)
I SAUTER, TORRES (2017)
I GRAHAM, PEMBERY, SPENCE (2019)
I GRAHAM, SAUTER (2018)

and with random parameters (from UQ perspective):
I FENG, LIN, LORTON (2015)
I HIPTMAIR, SCARABOSIO, SCHILLINGS, SCHWAB (2018)
I PEMBERY, SPENCE (2018). . .
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Who cares?
LAFONTAINE, SPENCE, WUNSCH, arXiv 2019:

Allow to control:

I Quasi-optimality
& pollution effect
I Gmres iteration #
I Matrix
compression
I hp-FEM&BEM
(Melenk–Sauter)
I . . .
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“Cut-off resolvent”: Rχ(k)

Assume gD = gN = 0 (no jumps/boundary data).

Solution operator: R(k) = R(k,ni ,AN ,Ωi):
(

fi
fo

)
7→
(

ui
uo

)
.

Let χ1, χ2 ∈ C∞0 (Rd) s.t. χj ≡ 1 in a neighbourhood of Ωi . Then

Rχ(k) := χ1R(k)χ2 : L2(Ωi)⊕ L2(Ωo) → H1(Ωi)⊕H1(Ωo)

(fi , fo) 7→ (ui , uoχ1).

Well-known that Rχ(k) is holomorphic on =k > 0.

Resonances: poles of meromorphic continuation of Rχ(k) to =k < 0.

We want to bound the norm of Rχ(k), k ∈ R.
Consider separately cases ni < 1 and ni > 1: very different!

7



“Cut-off resolvent”: Rχ(k)

Assume gD = gN = 0 (no jumps/boundary data).

Solution operator: R(k) = R(k,ni ,AN ,Ωi):
(

fi
fo

)
7→
(

ui
uo

)
.

Let χ1, χ2 ∈ C∞0 (Rd) s.t. χj ≡ 1 in a neighbourhood of Ωi . Then

Rχ(k) := χ1R(k)χ2 : L2(Ωi)⊕ L2(Ωo) → H1(Ωi)⊕H1(Ωo)

(fi , fo) 7→ (ui , uoχ1).

Well-known that Rχ(k) is holomorphic on =k > 0.

Resonances: poles of meromorphic continuation of Rχ(k) to =k < 0.

We want to bound the norm of Rχ(k), k ∈ R.
Consider separately cases ni < 1 and ni > 1: very different!

7



“Cut-off resolvent”: Rχ(k)

Assume gD = gN = 0 (no jumps/boundary data).

Solution operator: R(k) = R(k,ni ,AN ,Ωi):
(

fi
fo

)
7→
(

ui
uo

)
.

Let χ1, χ2 ∈ C∞0 (Rd) s.t. χj ≡ 1 in a neighbourhood of Ωi . Then

Rχ(k) := χ1R(k)χ2 : L2(Ωi)⊕ L2(Ωo) → H1(Ωi)⊕H1(Ωo)

(fi , fo) 7→ (ui , uoχ1).

Well-known that Rχ(k) is holomorphic on =k > 0.

Resonances: poles of meromorphic continuation of Rχ(k) to =k < 0.

We want to bound the norm of Rχ(k), k ∈ R.
Consider separately cases ni < 1 and ni > 1: very different!

7



“Cut-off resolvent”: Rχ(k)

Assume gD = gN = 0 (no jumps/boundary data).

Solution operator: R(k) = R(k,ni ,AN ,Ωi):
(

fi
fo

)
7→
(

ui
uo

)
.

Let χ1, χ2 ∈ C∞0 (Rd) s.t. χj ≡ 1 in a neighbourhood of Ωi . Then

Rχ(k) := χ1R(k)χ2 : L2(Ωi)⊕ L2(Ωo) → H1(Ωi)⊕H1(Ωo)

(fi , fo) 7→ (ui , uoχ1).

Well-known that Rχ(k) is holomorphic on =k > 0.

Resonances: poles of meromorphic continuation of Rχ(k) to =k < 0.

We want to bound the norm of Rχ(k), k ∈ R.
Consider separately cases ni < 1 and ni > 1: very different!

7



Resolvent bounds for ni < 1
First consider case ni < 1. Resolvent bounds:

‖Rχ(k)‖L2→L2 ≤
C0

k
, ‖Rχ(k)‖L2→H1 ≤ C1

CARDOSO, POPOV, VODEV 1999:
I using microlocal analysis
I Ωi smooth (C∞),

convex, curvature> 0

I C0,C1 not explicit in ni , AN

I k > k0 for some k0 > 0

I ni < 1, AN > 0 TE/TM:εiµi≤
εoµo

M., SPENCE:
I elementary proof
I Ωi Lipschitz, star-shaped

(x · n ≥ 0)
I C0,C1 explicit in ni , AN

and geometry
I any k > 0

I ni ≤ 1
AN
≤ 1 TE/TM: εi≤εo

µi≤µo

(Related results in PERTHAME, VEGA 1999.)

Using VODEV 1999, under either set of assumptions,
we have strip of holomorphicity underneath real axis: C

k

Rχ(k) is holomorphic in {k ∈ C : <k > k0, =k > −δ} (δ > 0)
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(One of) our bounds

Ωi ⊂ Rd is star-shaped, gN = gD = 0, k > 0, and

0 < ni ≤
1

AN
≤ 1.

Ωi

DR

Given R > 0 such that supp fo ⊂ BR, let DR := BR \ Ωi .

‖∇ui‖2L2(Ωi)
+ k2ni ‖ui‖2L2(Ωi)

+
1

AN

(
‖∇uo‖2L2(DR) + k2 ‖uo‖2L2(DR)

)
≤
[
4 diam(Ωi)

2 +
1
ni

(
2R +

d − 1
k

)2 ]
‖fi‖2L2(Ωi)

+
1

AN

[
4R2 +

(
2R +

d − 1
k

)2 ]
‖fo‖2L2(DR) .

Fully explicit, shape-robust estimate.
(Extended to gD,gN 6= 0 under strict inequalities and star-shapedness.)
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How our bound was obtained
Multiply the PDE by the “test functions” (multipliers,Mu)

x · ∇u − ikRu +
d − 1

2
u in Ωi ,

1
AN

(
x · ∇u − ikRu +

d − 1
2

u
)

in DR,

1
AN

(
x · ∇u − ik|x|u +

d − 1
2

u
)

in Rd \ DR,

integrate by parts and sum 3 contributions. E.g. on Ωi we obtain∫
Ωi

|∇ui |2 + nik2|ui |2

= −2<
∫

Ωi

fi Mui +

∫
∂Ωi

(x · n)
(
|∂nui |2 − |∇T ui |2 + k2ni |ui |2

)
+ 2<

{(
x · ∇T ui + ikRui +

d − 1
2

ui

)
∂nui

}
.

Manipulation of terms on ∂Ωi & ∂BR from 2 sides gives negative value.
First for smooth fields, then proceed by density.

These types of test functions introduced by Morawetz in 1960s/1970s.
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Proof for smooth ui , uo∫
Ωi

(|∇ui |2 + k2ni |ui |2) +
1

AN

∫
DR

(|∇uo|2 + k2|uo|2)

IBP!
= − 2<

∫
Ωi

(
x · ∇u i − ikRu i +

d − 1
2

u i

)
fi −

2
AN
<
∫

DR

(
x · ∇uo − ikRuo +

d − 1
2

uo

)
fo

+

∫
Γ

(x · n)
(
|∂nui |2 − |∇T ui |2 + k2ni |ui |2

)
+ 2<

{(
x · ∇T ui + ikRui +

d − 1
2

ui

)
∂nui

}
− 1

AN

∫
Γ

(x · n)
(
|∂nuo|2 − |∇T uo|2 + k2|uo|2

)
+ 2<

{(
x · ∇T uo + ikRuo +

d − 1
2

uo

)
∂nuo

}
+

1
AN

∫
∂BR

(
R
(
|∂ruo|2 − |∇T uo|2 + k2|uo|2

)
− 2kR={uo∂ruo}+ (d − 1)<{uo∂ruo}

)
︸ ︷︷ ︸

=0, from SRC and Morawetz–Ludwig IBP identity

≤‖fi‖Ωi

(
2 diam(Ωi) ‖∇ui‖Ωi

+ (2kR + d − 1) ‖ui‖Ωi

)
← Cauchy–Schwarz

+
‖fo‖DR

AN

(
2R ‖∇uo‖DR

+ (2kR + d − 1) ‖uo‖Ωo

)
+

∫
Γ

x · n︸︷︷︸
≥0,F-shape

(
|∂nui |2 −

1
AN
|∂nuo|2︸ ︷︷ ︸

≤0, from jump rel.s and AN≥1

−|∇T ui |2 +
1

AN
|∇T uo|2︸ ︷︷ ︸

≤0, from jump rel.s and AN≥1

+ k2ni |ui |2 −
1

AN
k2|uo|2︸ ︷︷ ︸

≤0, from jump rel.s and ni≤ 1
AN

)

+ 2<
∫

Γ

(
x · ∇T ui + ikRui +

d − 1
2

ui

)
∂nui −

1
AN

(
x · ∇T uo + ikRuo +

d − 1
2

uo

)
∂nuo︸ ︷︷ ︸

=0, from jump rel.s uo=ui & ∂nu0=AN∂nui

≤ left-hand side
2

+

[
2 diam(Ωi)

2 +
1

2ni

(
2R +

d − 1
k

)2
]
‖fi‖2Ωi

+
1

AN

[
2R2 +

1
2

(
2R +

d − 1
k

)2
]
‖fo‖2DR

.
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The case ni > 1

Now one wants to look at case ni > 1, but proofs doesn’t extend.

Can test stability numerically: choose Ωi = B1 ⊂ R2, equispaced ks,
f I from plane wave scattering, compute norm of solution (ui ,uo).

Try many cases and they seem to suggest stability hold.
However...

if we choose some special ks ‖u‖L2(BR) & ‖u‖H1(BR) blow up!
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ni < 1 vs ni > 1 (λo = 2π
k , λi =

2π
k
√

ni
, ni =

λ2
o
λ2

i
)

ni < 1⇒ λi > λo
inside Ωi wavelength is longer

E.g. air bubble in water.

(ni = 1/3)

Snell’s law:

All rays eventually leave Ωi :
stability for all k > 0.

ni > 1⇒ λi < λo
inside Ωi wavelength is shorter

E.g. glass in air: lenses.

(ni = 3)

Snell’s law:

Total internal reflection,
creeping waves, ray trapping:

quasi-resonances.
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“Quasi-modes” for ni > 1

I POPOV, VODEV 1999:

Ωi smooth, convex, strictly positive curvature, ni > 1, AN > 0,

∃ complex sequence (kj)
∞
j=1, with |kj| → ∞,<kj ≥ 1, and

0 > =kj = O(|kj|−∞) s.t.

‖Rχ(kj)‖L2→L2
blows up

super-algebraically
C k

We show that {<kj} gives the same blow up:
“quasi-modes” with real wavenumber.

These are the peaks in the previous plot.

I BELLASSOUED 2003: (blow up is at most exponential in k)

Ωi smooth, ni > 0, AN > 0, ∃C1,C2,k0 > 0, s.t.

‖Rχ(k)‖L2→L2 ≤ C1 exp(C2k) for all k ≥ k0

14
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‖Rχ(kj)‖L2→L2
blows up

super-algebraically
C k

We show that {<kj} gives the same blow up:
“quasi-modes” with real wavenumber.

These are the peaks in the previous plot.

I BELLASSOUED 2003: (blow up is at most exponential in k)

Ωi smooth, ni > 0, AN > 0, ∃C1,C2,k0 > 0, s.t.

‖Rχ(k)‖L2→L2 ≤ C1 exp(C2k) for all k ≥ k0
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Quasi-resonances and perturbations
Ωi=unit disc in R2, ni = 100.

Resonances killed by tiny perturbations:

k1 = 1.77945199481921 ≈ <k14,1, k2 = 2.75679178324354 ≈ <k10,5

k3 = 1.779451994815, k4 = 2.757

LAFONTAINE, SPENCE, WUNSCH 2019:
∀δ > 0 ∃J ⊂ R, |J | < δ s.t. ‖Rχ(k)‖L2→L2 ≤ Ck

5
2 d+ε ∀k ∈ [k0,∞) \ J .
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Non star-shaped scatterers (ni < 1)

For ni < 1, need of star-shaped scatterer Ωi is now clear:
general Ωi can contain cavities, trap waves, support quasi-modes.

Ωi

ni < 1

Ωi

ni < 1

We expect that k-uniform bounds hold for more
general obstacles: non-trapping domains.

Morawetz techniques are not useful in this case.

Ωi
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What if ni takes more than two values?

For piecewise-constant ni ,
i.e. several materials,
similar bounds hold if
ni increases radially:

n1

n2

n1n2

n1 < n2 < 1

More general case: n ∈ C0,1 GRAHAM, PEMBERY, SPENCE 2019
If 2n(x) + x · ∇n(x) ≥F > 0, 1−n compactly supported
⇒ the solution of ∆u + nk2u = f satisfies ‖u‖H1

k (BR) ≤
C
F ‖f ‖L2(BR).

Extensions:
I div(A∇u) + nk2u = f
I n ∈ L∞(Rd) radially non-decreasing,

A ∈ L∞(Rd ; SPD) radially non-increasing
I Star-shaped Dirichlet scatterer
I Truncated domain and impedance BCs
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Helmholtz equation: summary

(M3AS 2019) MOIOLA, SPENCE, Acoustic transmission problems:
wavenumber-explicit bounds and resonance-free regions.

I ni < 1: explicit bounds on ‖u‖H1(BR) from Morawetz multipliers,
resolvent bounded uniformly in k, holomorphicity strip

I ni > 1: exponential growth of stability constant through (kj)
∞
j=1

for smooth&convex, growth very sensitive to k

Open question for ni > 1:

Does non-smooth Ωi support quasi-modes? What’s blow up in k?

Think: Ωi polygon/polyhedron.

PDE guess: Yes, what’s bad for smooth is worse for rough.
Wave guess: No, corners diffract energy and stop creeping waves.

Interesting numerical project!
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Part II

Maxwell equations



Maxwell “transmission” problem
Given:
I k > 0
I J,K ∈ H(div0,R3), compactly supported
I ε0, µ0 > 0
I ε, µ ∈ L∞(R3,SPD) such that

Ωi := int
(

supp(ε− ε0I) ∪ supp(µ− µ0I)
)

is bounded and Lipschitz

Find E,H ∈ Hloc(curl,R3) such that

ikεE +∇×H = J in R3,

−ikµH +∇× E = K in R3,

(E,H) satisfy Silver–Müller radiation condition.

ε, µ

ε = ε0
µ = µ0

The Morawetz multipliers for this problem are

(εE× x + R
√
εµH) & (µH× x− R

√
εµE) in BR ⊃ Ωi ,

(ε0E× x + r
√
ε0µ0H) & (µ0H× x− r

√
ε0µ0E) in R3 \ BR.
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Single homogeneous scatterer

The analogous of the Helmholtz problem seen earlier is

ε =

{
εi in Ωi

ε0 in Ωo
, µ =

{
µi in Ωi

µ0 in Ωo
0 < εi , ε0, µi , µ0 constant.

If εi ≤ ε0 , µi ≤ µ0 , Ωi star-shaped , Ωi ∪ supp J ∪ supp K ⊂ BR, then

εi ‖E‖2BR
+ µi ‖H‖2BR

≤ 4R2
(
ε0
εi

+
µ0

µi

)(
ε0 ‖K‖2BR

+ µ0 ‖J‖2BR

)
.

Equivalent to wavenumber-independent H(curl; BR) bound for E.

I If εi is (constant) SPD matrix, same holds if max eig(εi) ≤ ε0 and
with εi substituted by min eig(εi) in the bound. Same for µi .

I Similar results when R3 is truncated with impedance BCs.
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What about more general ε, µ?

Assume:
I Ωi star-shaped, ε, µ ∈W 1,∞(Ωi ,SPD)

I ‖εi‖L∞(∂Ωi)
≤ ε0, ‖µi‖L∞(∂Ωi)

≤ µ0, i.e. jumps are “upwards” on ∂Ωi

I ε∗ := ess infx∈Ωi

(
ε+ (x · ∇)ε

)
> 0, µ∗ := ess infx∈Ωi

(
µ+ (x · ∇)µ

)
> 0

“weak monotonicity” in radial direction, avoid trapping of rays
I “extra regularity” (E,H ∈ H1(Ωi ∪ Ωo)3 or ε, µ ∈W 1,∞(Ωi))

Then we have explicit, wavenumber-indep., bound:

ε∗ ‖E‖2BR
+ µ∗ ‖H‖2BR

≤ 4R2
(‖ε‖2L∞(BR)

ε∗
+
ε0µ0

µ∗

)
‖K‖2BR

+ 4R2
(‖µ‖2L∞(BR)

µ∗
+
ε0µ0

ε∗

)
‖J‖2BR

.

To get rid of “extra regularity” assumption, need density of C∞(D)3 in{
v ∈ H(curl; D) : ∇·[αv] ∈ L2(D), αv·n̂ ∈ L2(∂D),vT ∈ L2

T (∂D)
}
, α∈{ε, µ}

For ε = µ =identity: density proved in COSTABEL, DAUGE 1998.
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Summary

Helmholtz equation in Rd , homogeneous inclusion:
I ni < 1: explicit bounds on ‖u‖H1(BR) from Morawetz multipliers,

resolvent bounded uniformly in k, holomorphicity strip
I ni > 1: exponential growth of stability constant through (kj)

∞
j=1,

growth very sensitive to k

Maxwell equations in R3, inhomogeneous inclusion:
I explicit bounds on ‖E‖H(curl,BR) if ε, µ “radially growing”

Thank you!
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