Acoustic and electromagnetic transmission problems: wavenumber-explicit bounds and resonance-free regions

Andrea Moiola

Joint work with E.A. Spence (Bath)

Part I

Helmholtz equation

Helmholtz equation

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.

Helmholtz equation

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$. Time-harmonic regime: assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Helmholtz equation

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$. Time-harmonic regime: assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Typical Helmholtz scattering problem: plane wave $u^{I n c}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{x} \cdot \mathrm{~d}}$ hitting a sound-soft (i.e. Dirichlet) obstacle

Total field for scattering by sound-soft (Dirichlet) disc with Mie series on $(-1,1)^{2}, k=30$, incoming angle 0.524 , radius 0.25

Wavelength: $\lambda=\frac{2 \pi}{k}$, distance between two crests of a plane wave.

Helmholtz transmission problem

Single penetrable homogeneous obstacle Ω_{i} :

$$
\begin{gathered}
\begin{array}{c}
\text { Sommerfeld } \\
\text { radiation condition } \\
\partial_{r} u_{o}-\mathrm{i} k u_{o}=o\left(\sqrt{r^{1-d}}\right)
\end{array}
\end{gathered}\left\langle\begin{array}{l}
\Omega_{i} \\
\Omega_{i} \subset \mathbb{R}^{d}
\end{array}\right\} \begin{aligned}
& u_{0}=u_{i}+g_{D} \\
& \partial_{n} u_{o}=A_{N} \partial_{n} u_{i}+g_{N}
\end{aligned}
$$

Helmholtz transmission problem

Single penetrable homogeneous obstacle Ω_{i} :

Data: $f_{i} \in L^{2}\left(\Omega_{i}\right), \quad f_{o} \in L_{\text {comp }}^{2}\left(\Omega_{o}\right), \quad g_{D} \in H^{1}\left(\partial \Omega_{i}\right), \quad g_{N} \in L^{2}\left(\partial \Omega_{i}\right)$, wavenumber $k>0$, refractive index ${ }^{2} n_{i}>0, A_{N}>0$, scatterer $\Omega_{i} \subset \mathbb{R}^{d}$ (Lipschitz bounded).
What is A_{N} ? E.g. in TE modes $\varepsilon \mu=\left\{\begin{array}{l}1 \text { in } \Omega_{o}, \\ n_{i} \text { in } \Omega_{i},\end{array} \quad u=H_{z}: \quad A_{N}=\frac{\varepsilon_{o}}{\varepsilon_{i}}\right.$. In TM modes, $u=E_{Z}: A_{N}=\frac{\mu_{o}}{\mu_{i}} . \quad\left\{\begin{array}{l}\text { in acoustics } A_{N}=\frac{\rho_{o}}{\rho_{i}} .\end{array}\right.$

Helmholtz transmission problem

Single penetrable homogeneous obstacle Ω_{i} :

Data: $f_{i} \in L^{2}\left(\Omega_{i}\right), \quad f_{o} \in L_{\text {comp }}^{2}\left(\Omega_{o}\right), \quad g_{D} \in H^{1}\left(\partial \Omega_{i}\right), \quad g_{N} \in L^{2}\left(\partial \Omega_{i}\right)$, wavenumber $k>0$, refractive index ${ }^{2} n_{i}>0, A_{N}>0$, scatterer $\Omega_{i} \subset \mathbb{R}^{d}$ (Lipschitz bounded).
What is A_{N} ? E.g. in TE modes $\varepsilon \mu=\left\{\begin{array}{l}1 \text { in } \Omega_{o}, \\ n_{i} \text { in } \Omega_{i},\end{array} \quad u=H_{z}: \quad A_{N}=\frac{\varepsilon_{o}}{\varepsilon_{i}}\right.$. In TM modes, $u=E_{Z}: A_{N}=\frac{\mu_{o}}{\mu_{i}} . \quad$ n acoustics $A_{N}=\frac{\rho_{o}}{\rho_{i}}$.

Solution exists and is unique for Ω_{i} Lipschitz and $k \in \mathbb{C} \backslash\{0\}, \Im k \geq 0$ Torres, Welland 1999.

Wave scattering

The example we have in mind is scattering of incoming wave $u^{I n c}$:
$f_{i}=k^{2}\left(1-n_{i}\right) u^{I n c}$,

$$
f_{o}=0,
$$

$$
g_{D}=0
$$

$$
g_{N}=\left(A_{N}-1\right) \partial_{\mathbf{n}} u^{I n c}
$$

Incoming field
$u^{I n c}=\mathrm{e}^{\mathrm{i} k \boldsymbol{x} \cdot \mathbf{d}}$ (datum)

Scattered field
$u=\left(u_{i}, u_{o}\right)$

Total field

$n_{i}=\frac{1}{4}, \quad A_{N}=1, \quad \mathbf{d}=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right), \quad k=20, \quad \lambda=0.314, \quad 3 \times 3 \mathrm{box}$, figures represent real parts of fields.
$\rightarrow U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$

Goal and motivation

From Fredholm theory we have

$$
\left\|\binom{u_{i}}{u_{o}}\right\|_{\Omega_{i / o}} \leq \mathcal{C}_{1}\left\|\binom{f_{i}}{f_{o}}\right\|_{\Omega_{i / o}}+\mathcal{C}_{2}\left\|\binom{g_{D}}{g_{N}}\right\|_{\partial \Omega_{i}}
$$

Goal: find out how \mathcal{C}_{1} and \mathcal{C}_{2} depend on k, n_{i}, A_{N}, and Ω_{i} and deduce results about resonances.

Goal and motivation

From Fredholm theory we have

$$
\left\|\binom{u_{i}}{u_{o}}\right\|_{\Omega_{i / o}} \leq \mathcal{C}_{1}\left\|\binom{f_{i}}{f_{o}}\right\|_{\Omega_{i / o}}+\mathcal{C}_{2}\left\|\binom{g_{D}}{g_{N}}\right\|_{\partial \Omega_{i}}
$$

Goal: find out how \mathcal{C}_{1} and \mathcal{C}_{2} depend on k, n_{i}, A_{N}, and Ω_{i} and deduce results about resonances.

Motivation: NA of Helmholtz problems with variable wavenumber:

- Barucq, Chaumont-Frelet, Gout (2016)
- Ohlberger, Verfürth (2016)
- Brown, Gallistl, Peterseim (2017)
- Sauter, Torres (2017)
- Graham, Pembery, Spence (2019)
- Graham, Sauter (2018)
and with random parameters (from $U Q$ perspective):
- FENG, LIN, Lorton (2015)
- Hiptmair, Scarabosio, Schillings, Schwab (2018)
- Pembery, Spence (2018)...

Who cares?

Lafontaine, Spence, Wunsch, arXiv 2019:

The following is a non-exhaustive list of papers on the frequency-explicit convergence analysis of numerical methods for solving the Helmholtz equation where a central role is played by either the non-trapping resolvent estimate (1.5), or its analogue (with the same k-dependence) for the commonly-used approximation of the exterior problem where the exterior domain \mathcal{O}_{+}is truncated and an impedance boundary condition is imposed:

- conforming FEMs (including continuous interior-penalty methods) [72, Proposition 2.1], [74, Proposition 8.1.4], [56, Lemma 2.1], [77, Lemma 3.5], [78, Assumptions 4.8 and 4.18], [45, §2.1], [110, Theorem 3.1], [113, §3.1], [44, $\S 3.2 .1]$, [40, Remark 3.2], [41, Remark 3.1], [29, Assumption 1], [30, Definition 2], [55, Theorem 3.2], [50, Lemma 6.7], [14, Equation 4],
- least squares methods [33, Assumption A1], [10, Remark 1.2], [64, Assumption 1 and equation after Equation 5.37],
- DG methods based on piece-wise polynomials [46, Theorem 2.2], [47, Theorem 2.1], [39, Assumption 3], [48, §3], [62, Assumption A (Equation 4.5)], [76, Equation 4.4], [35, Remark 3.2], [32, Equation 2.4], [84, Equation 4.3], [112, Remark 3.1], [94, Theorem 2.2],
- plane-wave/Trefftz-DG methods [3, Theorem 1], [59, Equation 3.5], [60, Theorem 2.2], [2, Lemma 4.1], [61, Proposition 2.1],
- multiscale finite-element methods [51, Equation 2.3], [13, §1.2], [88, Assumption 5.3], [8, Theorem 1], [87, Assumption 3.8], [31, Assumption 1],
- integral-equation methods [71, Equation 3.24], [75, Equation 4.4], [24, Chapter 5], [53, Theorem 3.2], [111, Remark 7.5], [43, Theorem 2], [49, Theorem 3.2], [52, Assumption 3.2],

In addition, the following papers focus on proving bounds on the solution of Helmholtz boundary-value problems (with these bounds often called "stability estimates") motivated by applications in numerical analysis: [36], [57], [26], [11], [7], [70], [98], [28], [6], [9], [27], [93], [54], [55] [83], [50], Of these papers, all but [70], [6], [27], [11] are in nontrapping situations, [70], [6], [27] are in parabolic trapping scenarios, and [11] proves the exponential growth (1.7) under elliptic trapping.

Who cares?

Lafontaine, Spence, Wunsch, arXiv 2019:

The following is a non-exhaustive list of papers on the frequency-explicit convergence analysis of numerical methods for solving the Helmholtz equation where a central role is played by either the non-trapping resolvent estimate (1.5), or its analogue (with the same k-dependence) for the commonly-used approximation of the exterior problem where the exterior domain \mathcal{O}_{+}is truncated and an impedance boundary condition is imposed:

- conforming FEMs (including continuous interior-penalty methods) [72, Proposition 2.1], [74, Proposition 8.1.4], [56, Lemma 2.1], [77, Lemma 3.5], [78, Assumptions 4.8 and 4.18], [45, §2.1], [110, Theorem 3.1], [113, §3.1], [44, $\S 3.2 .1]$, [40, Remark 3.2], [41, Remark 3.1], [29, Assumption 1], [30, Definition 2], [55, Theorem 3.2], [50, Lemma 6.7], [14, Equation 4],
- least squares methods [33, Assumption A1], [10, Remark 1.2], [64, Assumption 1 and equation after Equation 5.37],
- DG methods based on piece-wise polynomials [46, Theorem 2.2], [47, Theorem 2.1], [39, Assumption 3], [48, §3], [62, Assumption A (Equation 4.5)], [76, Equation 4.4], [35, Remark 3.2], [32, Equation 2.4], [84, Equation 4.3], [112, Remark 3.1], [94, Theorem 2.2],
- plane-wave/Trefftz-DG methods [3, Theorem 1], [59, Equation 3.5], [60, Theorem 2.2], [2, Lemma 4.1], [61, Proposition 2.1],
- multiscale finite-element methods [51, Equation 2.3], [13, §1.2], [88, Assumption 5.3], [8, Theorem 1], [87, Assumption 3.8], [31, Assumption 1],
- integral-equation methods [71, Equation 3.24], [75, Equation 4.4], [24, Chapter 5], [53, Theorem 3.2], [111, Remark 7.5], [43, Theorem 2], [49, Theorem 3.2], [52, Assumption 3.2],

In addition, the following papers focus on proving bounds on the solution of Helmholtz boundary-value problems (with these bounds often called "stability estimates") motivated by applications in numerical analysis: [36], [57], [26], [11], [7], [70], [98], [28], [6], [9], [27], [93], [54], [55] [83], [50], Of these papers, all but [70], [6], [27], [11] are in nontrapping situations, [70], [6], [27] are in parabolic trapping scenarios, and [11] proves the exponential growth (1.7) under elliptic trapping.

Allow to control:

- Quasi-optimality \& pollution effect
- Gmres iteration \#
- Matrix compression
- hp-FEM\&BEM (Melenk-Sauter)
-...

"Cut-off resolvent": $R_{\chi}(k)$

Assume $g_{D}=g_{N}=0$ (no jumps/boundary data).
Solution operator: $\quad R(k)=R\left(k, n_{i}, A_{N}, \Omega_{i}\right):\binom{f_{i}}{f_{o}} \mapsto\binom{u_{i}}{u_{o}}$.

"Cut-off resolvent": $R_{\chi}(k)$

Assume $g_{D}=g_{N}=0$ (no jumps/boundary data).
Solution operator: $\quad R(k)=R\left(k, n_{i}, A_{N}, \Omega_{i}\right):\binom{f_{i}}{f_{o}} \mapsto\binom{u_{i}}{u_{o}}$.
Let $\chi_{1}, \chi_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ s.t. $\chi_{j} \equiv 1$ in a neighbourhood of Ω_{i}. Then

$$
\begin{array}{rlll}
R_{\chi}(k):=\chi_{1} R(k) \chi_{2} \quad: \quad L^{2}\left(\Omega_{i}\right) \oplus L^{2}\left(\Omega_{o}\right) & \rightarrow & H^{1}\left(\Omega_{i}\right) \oplus H^{1}\left(\Omega_{o}\right) \\
\left(f_{i},\right. & \left.f_{o}\right) & \mapsto & \left(u_{i},\right. \\
\left.u_{0} \chi_{1}\right) .
\end{array}
$$

"Cut-off resolvent": $R_{\chi}(k)$

Assume $g_{D}=g_{N}=0$ (no jumps/boundary data).
Solution operator: $\quad R(k)=R\left(k, n_{i}, A_{N}, \Omega_{i}\right):\binom{f_{i}}{f_{o}} \mapsto\binom{u_{i}}{u_{o}}$.
Let $\chi_{1}, \chi_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ s.t. $\chi_{j} \equiv 1$ in a neighbourhood of Ω_{i}. Then

$$
\begin{array}{rlll}
R_{\chi}(k):=\chi_{1} R(k) \chi_{2} \quad: \quad L^{2}\left(\Omega_{i}\right) \oplus L^{2}\left(\Omega_{o}\right) & \rightarrow & H^{1}\left(\Omega_{i}\right) \oplus H^{1}\left(\Omega_{o}\right) \\
\left(f_{i},\right. & \left.f_{o}\right) & \mapsto & \left(u_{i},\right. \\
\left.u_{o} \chi_{1}\right) .
\end{array}
$$

Well-known that $R_{\chi}(k)$ is holomorphic on $\Im k>0$.
Resonances: poles of meromorphic continuation of $R_{\chi}(k)$ to $\Im k<0$.

"Cut-off resolvent": $R_{\chi}(k)$

Assume $g_{D}=g_{N}=0$ (no jumps/boundary data).
Solution operator: $\quad R(k)=R\left(k, n_{i}, A_{N}, \Omega_{i}\right):\binom{f_{i}}{f_{o}} \mapsto\binom{u_{i}}{u_{o}}$.
Let $\chi_{1}, \chi_{2} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ s.t. $\chi_{j} \equiv 1$ in a neighbourhood of Ω_{i}. Then

$$
\begin{array}{rlll}
R_{\chi}(k):=\chi_{1} R(k) \chi_{2} \quad: \quad L^{2}\left(\Omega_{i}\right) \oplus L^{2}\left(\Omega_{o}\right) & \rightarrow & H^{1}\left(\Omega_{i}\right) \oplus H^{1}\left(\Omega_{o}\right) \\
\left(f_{i},\right. & \left.f_{o}\right) & \mapsto & \left(u_{i},\right. \\
\left.u_{o} \chi_{1}\right) .
\end{array}
$$

Well-known that $R_{\chi}(k)$ is holomorphic on $\Im k>0$.
Resonances: poles of meromorphic continuation of $R_{\chi}(k)$ to $\Im k<0$.

We want to bound the norm of $R_{\chi}(k), k \in \mathbb{R}$.
Consider separately cases $n_{i}<1$ and $n_{i}>1$: very different!

Resolvent bounds for $n_{i}<1$

First consider case $n_{i}<1$.

Resolvent bounds for $n_{i}<1$

First consider case $n_{i}<1$.

$$
\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{C_{0}}{k}, \quad\left\|R_{\chi}(\boldsymbol{k})\right\|_{L^{2} \rightarrow H^{1}} \leq C_{1}
$$

Resolvent bounds for $n_{i}<1$

First consider case $n_{i}<1$.

$$
\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{C_{0}}{k}, \quad\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow H^{1}} \leq C_{1}
$$

CARDOSO, Popov, Vodev 1999:

- using microlocal analysis
- Ω_{i} smooth (C^{∞}), convex, curvature> 0
- C_{0}, C_{1} not explicit in n_{i}, A_{N}
- $k>k_{0}$ for some $k_{0}>0$
- $n_{i}<1, A_{N}>0$ TE/TM: $: \varepsilon_{i, \mu_{i} \leq}^{\varepsilon_{o} \mu_{0}}$
(Related results in Perthame, Vega 1999.)

Resolvent bounds for $n_{i}<1$

First consider case $n_{i}<1$.

$$
\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow L^{2}} \leq \frac{C_{0}}{k}, \quad\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow H^{1}} \leq C_{1}
$$

Resolvent bounds:

CARDOSO, Popov, Vodev 1999:

- using microlocal analysis
- Ω_{i} smooth (C^{∞}), convex, curvature >0
- C_{0}, C_{1} not explicit in n_{i}, A_{N}
- $k>k_{0}$ for some $k_{0}>0$

M., Spence:

- elementary proof
- Ω_{i} Lipschitz, star-shaped
($\mathbf{x} \cdot \mathbf{n} \geq 0$)
- C_{0}, C_{1} explicit in n_{i}, A_{N} and geometry
- any $k>0$
- $n_{i} \leq \frac{1}{A_{N}} \leq 1$
(Related results in Perthame, Vega 1999.)
Using Vodev 1999, under either set of assumptions, we have strip of holomorphicity underneath real axis:

$R_{\chi}(k)$ is holomorphic in $\left\{k \in \mathbb{C}: \Re k>k_{0}, \Im k>-\delta\right\} \quad(\delta>0)$

(One of) our bounds

$\Omega_{i} \subset \mathbb{R}^{d}$ is star-shaped, $g_{N}=g_{D}=0, k>0$, and

$$
0<n_{i} \leq \frac{1}{A_{N}} \leq 1
$$

Given $R>0$ such that $\operatorname{supp} f_{o} \subset B_{R}$, let $D_{R}:=B_{R} \backslash \overline{\Omega_{i}}$.

(One of) our bounds

$\Omega_{i} \subset \mathbb{R}^{d}$ is star-shaped, $g_{N}=g_{D}=0, k>0$, and

$$
0<n_{i} \leq \frac{1}{A_{N}} \leq 1
$$

Given $R>0$ such that $\operatorname{supp} f_{o} \subset B_{R}$, let $D_{R}:=B_{R} \backslash \overline{\Omega_{i}}$.

$$
\begin{aligned}
&\left\|\nabla u_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}+ k^{2} n_{i}\left\|u_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}+\frac{1}{A_{N}}\left(\left\|\nabla u_{0}\right\|_{L^{2}\left(D_{R}\right)}^{2}+k^{2}\left\|u_{0}\right\|_{L^{2}\left(D_{R}\right)}^{2}\right) \\
& \leq\left[4 \operatorname{diam}\left(\Omega_{i}\right)^{2}+\frac{1}{n_{i}}\left(2 R+\frac{d-1}{k}\right)^{2}\right]\left\|f_{i}\right\|_{L^{2}\left(\Omega_{i}\right)}^{2} \\
&+\frac{1}{A_{N}}\left[4 R^{2}+\left(2 R+\frac{d-1}{k}\right)^{2}\right]\left\|f_{o}\right\|_{L^{2}\left(D_{R}\right)}^{2} .
\end{aligned}
$$

Fully explicit, shape-robust estimate.
(Extended to $g_{D}, g_{N} \neq 0$ under strict inequalities and star-shapedness.)

How our bound was obtained

Multiply the PDE by the "test functions" (multipliers, $\mathcal{M u}$)

$$
\begin{aligned}
\mathbf{x} \cdot \nabla u-\mathrm{i} k R u+\frac{d-1}{2} u & \text { in } \Omega_{i}, \\
\frac{1}{A_{N}}\left(\mathbf{x} \cdot \nabla u-\mathrm{i} k R u+\frac{d-1}{2} u\right) & \text { in } D_{R}, \\
\frac{1}{A_{N}}\left(\mathbf{x} \cdot \nabla u-\mathrm{i} k|\mathbf{x}| u+\frac{d-1}{2} u\right) & \text { in } \mathbb{R}^{d} \backslash D_{R},
\end{aligned}
$$

integrate by parts and sum 3 contributions.

How our bound was obtained

Multiply the PDE by the "test functions" (multipliers, $\mathcal{M u}$)

$$
\begin{aligned}
\mathbf{x} \cdot \nabla u-\mathrm{i} k R u+\frac{d-1}{2} u & \text { in } \Omega_{i}, \\
\frac{1}{A_{N}}\left(\mathbf{x} \cdot \nabla u-\mathrm{i} k R u+\frac{d-1}{2} u\right) & \text { in } D_{R}, \\
\frac{1}{A_{N}}\left(\mathbf{x} \cdot \nabla u-\mathrm{i} k|\mathbf{x}| u+\frac{d-1}{2} u\right) & \text { in } \mathbb{R}^{d} \backslash D_{R},
\end{aligned}
$$

integrate by parts and sum 3 contributions.
E.g. on Ω_{i} we obtain

$$
\begin{aligned}
& \int_{\Omega_{i}}\left|\nabla u_{i}\right|^{2}+n_{i} k^{2}\left|u_{i}\right|^{2} \\
& =-2 \Re \int_{\Omega_{i}} f_{i} \overline{\mathcal{M} u_{i}}+\int_{\partial \Omega_{i}}(\mathbf{x} \cdot \mathbf{n})\left(\left|\partial_{\mathbf{n}} u_{i}\right|^{2}-\left|\nabla_{\mathrm{T}} u_{i}\right|^{2}+k^{2} n_{i}\left|u_{i}\right|^{2}\right) \\
& \\
& \quad+2 \Re\left\{\left(\mathbf{x} \cdot \overline{\nabla_{\mathrm{T}} u_{i}}+\mathrm{i} k R \overline{u_{i}}+\frac{d-1}{2} \overline{u_{i}}\right) \partial_{\mathbf{n}} u_{i}\right\} .
\end{aligned}
$$

Manipulation of terms on $\partial \Omega_{i} \& \partial B_{R}$ from 2 sides gives negative value.
First for smooth fields, then proceed by density.
These types of test functions introduced by Morawetz in 1960s/1970s.

Proof for smooth u_{i}, u_{0}

$$
\begin{aligned}
& \int_{\Omega_{i}}\left(\left|\nabla u_{i}\right|^{2}+k^{2} n_{i}\left|u_{i}\right|^{2}\right)+\frac{1}{A_{N}} \int_{D_{R}}\left(\left|\nabla u_{o}\right|^{2}+k^{2}\left|u_{o}\right|^{2}\right) \\
& \stackrel{\text { IBP! }}{=}-2 \Re \int_{\Omega_{i}}\left(\mathbf{x} \cdot \nabla \bar{u}_{i}-\mathrm{i} k R \bar{u}_{i}+\frac{d-1}{2} \bar{u}_{i}\right) f_{i}-\frac{2}{A_{N}} \Re \int_{D_{R}}\left(\mathbf{x} \cdot \nabla \bar{u}_{o}-\mathrm{i} k R \bar{u}_{o}+\frac{d-1}{2} \bar{u}_{o}\right) f_{o} \\
& +\int_{\Gamma}(\mathbf{x} \cdot \mathbf{n})\left(\left|\partial_{\mathbf{n}} u_{i}\right|^{2}-\left|\nabla_{T} u_{i}\right|^{2}+k^{2} n_{i}\left|u_{i}\right|^{2}\right)+2 \Re\left\{\left(\mathbf{x} \cdot \overline{\nabla_{T} u_{i}}+\mathrm{i} k R \overline{u_{i}}+\frac{d-1}{2} \overline{u_{i}}\right) \partial_{\mathbf{n}} u_{i}\right\} \\
& -\frac{1}{A_{N}} \int_{\Gamma}(\mathbf{x} \cdot \mathbf{n})\left(\left|\partial_{\mathbf{n}} u_{o}\right|^{2}-\left|\nabla_{T} u_{o}\right|^{2}+k^{2}\left|u_{o}\right|^{2}\right)+2 \Re\left\{\left(\mathbf{x} \cdot \overline{\nabla_{T} u_{o}}+\mathrm{i} k R \overline{u_{o}}+\frac{d-1}{2} \overline{u_{o}}\right) \partial_{\mathbf{n}} u_{o}\right\} \\
& +\underbrace{\frac{1}{A_{N}} \int_{\partial B_{R}}\left(R\left(\left|\partial_{r} u_{o}\right|^{2}-\left|\nabla_{T} u_{o}\right|^{2}+k^{2}\left|u_{o}\right|^{2}\right)-2 k R \Im\left\{\bar{u}_{o} \partial_{r} u_{o}\right\}+(d-1) \Re\left\{\bar{u}_{o} \partial_{r} u_{o}\right\}\right)} \\
& =0 \text {, from SRC and Morawetz-Ludwig IBP identity } \\
& \leq\left\|f_{i}\right\|_{\Omega_{i}}\left(2 \operatorname{diam}\left(\Omega_{i}\right)\left\|\nabla u_{i}\right\|_{\Omega_{i}}+(2 k R+d-1)\left\|u_{i}\right\|_{\Omega_{i}}\right) \quad \leftarrow \text { Cauchy-Schwarz } \\
& +\frac{\left\|f_{o}\right\|_{D_{R}}}{A_{N}}\left(2 R\left\|\nabla u_{o}\right\|_{D_{R}}+(2 k R+d-1)\left\|u_{o}\right\|_{\Omega_{o}}\right) \\
& +\int_{\Gamma} \underbrace{\mathbf{x} \cdot \mathbf{n}}_{\geq 0, \text {-shape }}(\underbrace{\left|\partial_{\mathbf{n}} u_{i}\right|^{2}-\frac{1}{A_{N}}\left|\partial_{\mathbf{n}} u_{o}\right|^{2}}_{\leq 0 \text {, from jump rel.s and } A_{N} \geq 1} \underbrace{-\left|\nabla_{T} u_{i}\right|^{2}+\frac{1}{A_{N}}\left|\nabla_{T} u_{o}\right|^{2}}_{\leq 0 \text {, from jump rel.s and } A_{N} \geq 1}+\underbrace{k^{2} n_{i}\left|u_{i}\right|^{2}-\frac{1}{A_{N}} k^{2}\left|u_{0}\right|^{2}}_{\leq 0 \text {, from jump rel.s and } n_{i} \leq \frac{1}{A_{N}}}) \\
& +2 \Re \int_{\Gamma} \underbrace{\left(\mathbf{x} \cdot \overline{\nabla_{T} u_{i}}+\mathrm{i} k R \overline{u_{i}}+\frac{d-1}{2} \overline{u_{i}}\right) \partial_{\mathbf{n}} u_{i}-\frac{1}{A_{N}}\left(\mathbf{x} \cdot \overline{\nabla_{T} u_{o}}+\mathrm{i} k R \overline{u_{o}}+\frac{d-1}{2} \overline{u_{o}}\right) \partial_{\mathbf{n}} u_{o}}_{=0, \text { from jump rel.s } u_{o}=u_{i} \& \partial_{\mathbf{n}} u_{0}=A_{N} \partial_{\mathbf{n}} u_{i}}
\end{aligned}
$$

$\leq \frac{\text { left-hand side }}{2}+\left[2 \operatorname{diam}\left(\Omega_{i}\right)^{2}+\frac{1}{2 n_{i}}\left(2 R+\frac{d-1}{k}\right)^{2}\right]\left\|f_{i}\right\|_{\Omega_{i}}^{2}+\frac{1}{A_{N}}\left[2 R^{2}+\frac{1}{2}\left(2 R+\frac{d-1}{k}\right)^{2}\right]\left\|f_{o}\right\|_{D_{R}}^{2}$.

The case $n_{i}>1$

Now one wants to look at case $n_{i}>1$, but proofs doesn'† extend.

The case $n_{i}>1$

Now one wants to look at case $n_{i}>1$, but proofs doesn' \dagger extend.
Can test stability numerically: choose $\Omega_{i}=B_{1} \subset \mathbb{R}^{2}$, equispaced $k s$, f^{I} from plane wave scattering, compute norm of solution $\left(u_{i}, u_{o}\right)$.

The case $n_{i}>1$

Now one wants to look at case $n_{i}>1$, but proofs doesn'† extend.
Can test stability numerically: choose $\Omega_{i}=B_{1} \subset \mathbb{R}^{2}$, equispaced $k s$, f^{I} from plane wave scattering, compute norm of solution $\left(u_{i}, u_{o}\right)$.

Try many cases and they seem to suggest stability hold. However...

The case $n_{i}>1$

Now one wants to look at case $n_{i}>1$, but proofs doesn'† extend.
Can test stability numerically: choose $\Omega_{i}=B_{1} \subset \mathbb{R}^{2}$, equispaced $k s$, f^{I} from plane wave scattering, compute norm of solution $\left(u_{i}, u_{0}\right)$.

Try many cases and they seem to suggest stability hold. However...if we choose some special $k s\|u\|_{L^{2}\left(B_{R}\right)} \&\|u\|_{H^{1}\left(B_{R}\right)}$ blow up!
$n_{i}<1 \quad$ Vs $\quad n_{i}>1 \quad\left(\lambda_{o}=\frac{2 \pi}{k}, \quad \lambda_{i}=\frac{2 \pi}{k \sqrt{n_{i}}}, \quad n_{i}=\frac{\lambda_{o}^{2}}{\lambda_{i}^{2}}\right)$

$$
n_{i}<1 \Rightarrow \lambda_{i}>\lambda_{o}
$$

inside Ω_{i} wavelength is longer

E.g. air bubble in water.

$$
\left(n_{i}=1 / 3\right)
$$

Snell's law:

All rays eventually leave Ω_{i} : stability for all $k>0$.

$$
n_{i}>1 \Rightarrow \lambda_{i}<\lambda_{o}
$$

inside Ω_{i} wavelength is shorter E.g. glass in air: lenses.

$$
\left(n_{i}=3\right)
$$

Snell's law:

Total internal reflection, creeping waves, ray trapping: quasi-resonances.

"Quasi-modes" for $n_{i}>1$

- POPOV, VODEV 1999:
Ω_{i} smooth, convex, strictly positive curvature, $n_{i}>1, A_{N}>0$,
\exists complex sequence $\left(k_{j}\right)_{j=1}^{\infty}$, with $\left|k_{j}\right| \rightarrow \infty, \Re k_{j} \geq 1$, and
$0>\Im k_{j}=\mathcal{O}\left(\left|k_{j}\right|^{-\infty}\right)$ s.t.

$$
\left\|R_{\chi}\left(k_{j}\right)\right\|_{L^{2} \rightarrow L^{2}} \quad \begin{gathered}
\text { blows up } \\
\text { super-algebraically }
\end{gathered} \quad \stackrel{\mathbb{C} \uparrow}{\square}
$$

We show that $\left\{\Re k_{j}\right\}$ gives the same blow up:
"quasi-modes" with real wavenumber.
These are the peaks in the previous plot.

"Quasi-modes" for $n_{i}>1$

- POPOV, VODEV 1999:
Ω_{i} smooth, convex, strictly positive curvature, $n_{i}>1, A_{N}>0$,
\exists complex sequence $\left(k_{j}\right)_{j=1}^{\infty}$, with $\left|k_{j}\right| \rightarrow \infty, \Re k_{j} \geq 1$, and $0>\Im k_{j}=\mathcal{O}\left(\left|k_{j}\right|^{-\infty}\right)$ s.t.

$$
\left\|R_{\chi}\left(k_{j}\right)\right\|_{L^{2} \rightarrow L^{2}} \quad \begin{gathered}
\text { blows up } \\
\text { super-algebraically }
\end{gathered} \quad \stackrel{\mathbb{C} \uparrow}{\square}
$$

We show that $\left\{\Re k_{j}\right\}$ gives the same blow up:
"quasi-modes" with real wavenumber.
These are the peaks in the previous plot.

- Bellassoued 2003:
(blow up is at most exponential in k)
Ω_{i} smooth, $n_{i}>0, A_{N}>0, \exists C_{1}, C_{2}, k_{0}>0$, s.t.

$$
\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow L^{2}} \leq C_{1} \exp \left(C_{2} k\right) \quad \text { for all } k \geq k_{0}
$$

Quasi-resonances and perturbations

$\Omega_{i}=$ unit disc in $\mathbb{R}^{2}, n_{i}=100$.

$k_{1}=1.77945199481921 \approx \Re k_{14,1}, k_{2}=2.75679178324354 \approx \Re k_{10,5}$

Quasi-resonances and perturbations

$\Omega_{i}=$ unit disc in $\mathbb{R}^{2}, n_{i}=100$. Resonances killed by tiny perturbations:

$k_{1}=1.77945199481921 \approx \Re k_{14,1}, k_{2}=2.75679178324354 \approx \Re k_{10,5}$ $k_{3}=1.779451994815$,
$k_{4}=2.757$

Quasi-resonances and perturbations

$\Omega_{i}=$ unit disc in $\mathbb{R}^{2}, n_{i}=100$. Resonances killed by tiny perturbations:

$k_{1}=1.77945199481921 \approx \Re k_{14,1}, k_{2}=2.75679178324354 \approx \Re k_{10,5}$
$k_{3}=1.779451994815, \quad k_{4}=2.757$
Lafontaine, Spence, Wunsch 2019:
$\forall \delta>0 \exists J \subset \mathbb{R},|J|<\delta \quad$ s.t. $\quad\left\|R_{\chi}(k)\right\|_{L^{2} \rightarrow L^{2}} \leq C k^{\frac{5}{2} d+\epsilon} \quad \forall k \in\left[k_{0}, \infty\right) \backslash J$.

Non star-shaped scatterers $\left(n_{i}<1\right)$

For $n_{i}<1$, need of star-shaped scatterer Ω_{i} is now clear: general Ω_{i} can contain cavities, trap waves, support quasi-modes.

Non star-shaped scatterers $\left(n_{i}<1\right)$

For $n_{i}<1$, need of star-shaped scatterer Ω_{i} is now clear: general Ω_{i} can contain cavities, trap waves, support quasi-modes.

We expect that k-uniform bounds hold for more general obstacles: non-trapping domains.
Morawetz techniques are not useful in this case.

What if n_{i} takes more than two values?

For piecewise-constant n_{i}, i.e. several materials, similar bounds hold if n_{i} increases radially:

What if n_{i} takes more than two values?

For piecewise-constant n_{i}, i.e. several materials, similar bounds hold if n_{i} increases radially:

$$
n_{1}<n_{2}<1
$$

More general case: $n \in C^{0,1}$
If $2 n(\mathbf{x})+\mathbf{x} \cdot \nabla n(\mathbf{x}) \geq \star>0$, \Rightarrow the solution of $\Delta u+n k^{2} u=f \quad$ satisfies $\quad\|u\|_{H_{k}^{1}\left(B_{R}\right)} \leq \frac{C}{\star}\|f\|_{L^{2}\left(B_{R}\right)}$.

What if n_{i} takes more than two values?

For piecewise-constant n_{i}, i.e. several materials, similar bounds hold if n_{i} increases radially:

$$
n_{1}<n_{2}<1
$$

More general case: $n \in C^{0,1}$
If $2 n(\mathbf{x})+\mathbf{x} \cdot \nabla n(\mathbf{x}) \geq \star>0$, \Rightarrow the solution of $\Delta u+n k^{2} u=f \quad$ satisfies $\quad\|u\|_{H_{k}^{1}\left(B_{R}\right)} \leq \frac{C}{\star}\|f\|_{L^{2}\left(B_{R}\right)}$.

Extensions:

- $\operatorname{div}(A \nabla u)+n k^{2} u=f$
- $n \in L^{\infty}\left(\mathbb{R}^{d}\right)$ radially non-decreasing, $A \in L^{\infty}\left(\mathbb{R}^{d} ; S P D\right)$ radially non-increasing
- Star-shaped Dirichlet scatterer
- Truncated domain and impedance BCs

Helmholtz equation: summary

(M3AS 2019) Moiola, Spence, Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions.

- $n_{i}<1$: explicit bounds on $\|u\|_{H^{1}\left(B_{R}\right)}$ from Morawetz multipliers, resolvent bounded uniformly in k, holomorphicity strip
- $n_{i}>1$: exponential growth of stability constant through $\left(\boldsymbol{k}_{j}\right)_{j=1}^{\infty}$ for smooth\&convex, growth very sensitive to k

Helmholtz equation: summary

(M3AS 2019) Moiola, Spence, Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions.

- $n_{i}<1$: explicit bounds on $\|u\|_{H^{1}\left(B_{R}\right)}$ from Morawetz multipliers, resolvent bounded uniformly in k, holomorphicity strip
- $n_{i}>1$: exponential growth of stability constant through $\left(k_{j}\right)_{j=1}^{\infty}$ for smooth\&convex, growth very sensitive to k

Open question for $n_{i}>1$:

Does non-smooth Ω_{i} support quasi-modes?
What's blow up in k ?
Think: Ω_{i} polygon/polyhedron.
PDE guess: Yes, what's bad for smooth is worse for rough. Wave guess: No, corners diffract energy and stop creeping waves. Interesting numerical project!

Part II

Maxwell equations

Maxwell "transmission" problem

Given:

- $k>0$
- J, K $\in H\left(\right.$ div $\left.^{0}, \mathbb{R}^{3}\right)$, compactly supported
- $\epsilon_{0}, \mu_{0}>0$
- $\epsilon, \mu \in L^{\infty}\left(\mathbb{R}^{3}\right.$, SPD $)$ such that
$\Omega_{i}:=\operatorname{int}\left(\operatorname{supp}\left(\epsilon-\epsilon_{0} \mathbf{\underline { I }}\right) \cup \operatorname{supp}\left(\mu-\mu_{0} \mathbf{I}\right)\right)$ is bounded and Lipschitz
Find $\mathbf{E}, \mathbf{H} \in H_{\text {loc }}\left(\operatorname{curl}, \mathbb{R}^{3}\right)$ such that
i $k \in \mathbf{E}+\nabla \times \mathbf{H}=\mathbf{J} \quad$ in \mathbb{R}^{3},
$-\mathrm{i} \boldsymbol{k} \mu \mathbf{H}+\nabla \times \mathbf{E}=\mathbf{K} \quad$ in \mathbb{R}^{3},
(\mathbf{E}, \mathbf{H}) satisfy Silver-Müller radiation condition.
ϵ, μ

$$
\begin{gathered}
\epsilon=\epsilon_{0} \\
\mu=\mu_{0}
\end{gathered}
$$

Maxwell "transmission" problem

Given:

- $k>0$
- J, K $\in H\left(\right.$ div $\left.^{0}, \mathbb{R}^{3}\right)$, compactly supported
- $\epsilon_{0}, \mu_{0}>0$
- $\epsilon, \mu \in L^{\infty}\left(\mathbb{R}^{3}\right.$, SPD $)$ such that
$\Omega_{i}:=\operatorname{int}\left(\operatorname{supp}\left(\epsilon-\epsilon_{0} \mathbf{I}\right) \cup \operatorname{supp}\left(\mu-\mu_{0} \mathbf{I}\right)\right)$ is bounded and Lipschitz
Find $\mathbf{E}, \mathbf{H} \in H_{\text {loc }}\left(\operatorname{curl}, \mathbb{R}^{3}\right)$ such that
i $k \in \mathbf{E}+\nabla \times \mathbf{H}=\mathbf{J} \quad$ in \mathbb{R}^{3},
$-\mathrm{i} k \mu \mathbf{H}+\nabla \times \mathbf{E}=\mathbf{K} \quad$ in \mathbb{R}^{3},
(\mathbf{E}, \mathbf{H}) satisfy Silver-Müller radiation condition.
ϵ, μ

$$
\begin{gathered}
\epsilon=\epsilon_{0} \\
\mu=\mu_{0}
\end{gathered}
$$

The Morawetz multipliers for this problem are

$$
\begin{aligned}
(\epsilon \overline{\mathbf{E}} \times \mathbf{x}+R \sqrt{\epsilon \mu \overline{\mathbf{H}})} & \& & (\mu \overline{\mathbf{H}} \times \mathbf{x}-R \sqrt{\epsilon \mu \overline{\mathbf{E}}}) & \text { in } B_{R} \supset \Omega_{i}, \\
\left(\epsilon_{0} \overline{\mathbf{E}} \times \mathbf{x}+r \sqrt{\left.\epsilon_{0} \mu_{0} \overline{\mathbf{H}}\right)}\right. & \& & \left(\mu_{0} \overline{\mathbf{H}} \times \mathbf{x}-r \sqrt{\epsilon_{0} \mu_{0}} \overline{\mathbf{E}}\right) & \text { in } \mathbb{R}^{3} \backslash B_{R} .
\end{aligned}
$$

Single homogeneous scatterer

The analogous of the Helmholtz problem seen earlier is

$$
\epsilon=\left\{\begin{array}{ll}
\epsilon_{i} & \text { in } \Omega_{i} \\
\epsilon_{0} & \text { in } \Omega_{0}
\end{array}, \quad \mu=\left\{\begin{array}{ll}
\mu_{i} & \text { in } \Omega_{i} \\
\mu_{0} & \text { in } \Omega_{o}
\end{array} \quad 0<\epsilon_{i}, \epsilon_{0}, \mu_{i}, \mu_{0}\right. \text { constant. }\right.
$$

Single homogeneous scatterer

The analogous of the Helmholtz problem seen earlier is

$$
\epsilon=\left\{\begin{array}{ll}
\epsilon_{i} & \text { in } \Omega_{i} \\
\epsilon_{0} & \text { in } \Omega_{o}
\end{array}, \quad \mu=\left\{\begin{array}{ll}
\mu_{i} & \text { in } \Omega_{i} \\
\mu_{0} & \text { in } \Omega_{o}
\end{array} \quad 0<\epsilon_{i}, \epsilon_{0}, \mu_{i}, \mu_{0}\right. \text { constant. }\right.
$$

If $\epsilon_{i} \leq \epsilon_{0}, \mu_{i} \leq \mu_{0}, \Omega_{i}$ star-shaped, $\Omega_{i} \cup \operatorname{supp} \mathbf{J} \cup \operatorname{supp} \mathbf{K} \subset B_{R}$, then

$$
\epsilon_{i}\|\mathbf{E}\|_{B_{R}}^{2}+\mu_{i}\|\mathbf{H}\|_{B_{R}}^{2} \leq 4 R^{2}\left(\frac{\epsilon_{0}}{\epsilon_{i}}+\frac{\mu_{0}}{\mu_{i}}\right)\left(\epsilon_{0}\|\mathbf{K}\|_{B_{R}}^{2}+\mu_{0}\|\boldsymbol{J}\|_{B_{R}}^{2}\right) .
$$

Equivalent to wavenumber-independent $H\left(\operatorname{curl} ; B_{R}\right)$ bound for \mathbf{E}.

Single homogeneous scatterer

The analogous of the Helmholtz problem seen earlier is

$$
\epsilon=\left\{\begin{array}{ll}
\epsilon_{i} & \text { in } \Omega_{i} \\
\epsilon_{0} & \text { in } \Omega_{0}
\end{array}, \quad \mu=\left\{\begin{array}{ll}
\mu_{i} & \text { in } \Omega_{i} \\
\mu_{0} & \text { in } \Omega_{o}
\end{array} \quad 0<\epsilon_{i}, \epsilon_{0}, \mu_{i}, \mu_{0}\right. \text { constant. }\right.
$$

If $\epsilon_{i} \leq \epsilon_{0}, \mu_{i} \leq \mu_{0}, \Omega_{i}$ star-shaped, $\Omega_{i} \cup \operatorname{supp} \mathbf{J} \cup \operatorname{supp} \mathbf{K} \subset B_{R}$, then

$$
\epsilon_{i}\|\mathbf{E}\|_{B_{R}}^{2}+\mu_{i}\|\mathbf{H}\|_{B_{R}}^{2} \leq 4 R^{2}\left(\frac{\epsilon_{0}}{\epsilon_{i}}+\frac{\mu_{0}}{\mu_{i}}\right)\left(\epsilon_{0}\|\mathbf{K}\|_{B_{R}}^{2}+\mu_{0}\|\boldsymbol{J}\|_{B_{R}}^{2}\right) .
$$

Equivalent to wavenumber-independent $H\left(\operatorname{curl} ; B_{R}\right)$ bound for \mathbf{E}.

- If ϵ_{i} is (constant) SPD matrix, same holds if max $\operatorname{eig}\left(\epsilon_{i}\right) \leq \epsilon_{0}$ and with ϵ_{i} substituted by min eig $\left(\epsilon_{i}\right)$ in the bound. Same for μ_{i}.
- Similar results when \mathbb{R}^{3} is truncated with impedance BCs.

What about more general ϵ, μ ?

Assume:

- Ω_{i} star-shaped, $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right.$, SPD $)$

What about more general ϵ, μ ?

Assume:

- Ω_{i} star-shaped, $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right.$, SPD $)$
- $\left\|\epsilon_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \epsilon_{0},\left\|\mu_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \mu_{0}$, i.e. jumps are "upwards" on $\partial \Omega_{i}$

What about more general ϵ, μ ?

Assume:

- Ω_{i} star-shaped, $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right.$, SPD $)$
- $\left\|\epsilon_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \epsilon_{0},\left\|\mu_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \mu_{0}$, i.e. jumps are "upwards" on $\partial \Omega_{i}$
- $\epsilon_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\epsilon+(\mathbf{x} \cdot \nabla) \epsilon)>0, \mu_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\mu+(\mathbf{x} \cdot \nabla) \mu)>0$ "weak monotonicity" in radial direction, avoid trapping of rays

What about more general ϵ, μ ?

Assume:

- Ω_{i} star-shaped, $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}, S P D\right)$
- $\left\|\epsilon_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \epsilon_{0},\left\|\mu_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \mu_{0}$, i.e. jumps are "upwards" on $\partial \Omega_{i}$
- $\epsilon_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\epsilon+(\mathbf{x} \cdot \nabla) \epsilon)>0, \mu_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\mu+(\mathbf{x} \cdot \nabla) \mu)>0$ "weak monotonicity" in radial direction, avoid trapping of rays
- "extra regularity" $\left(\mathbf{E}, \mathbf{H} \in H^{1}\left(\Omega_{i} \cup \Omega_{o}\right)^{3}\right.$ or $\left.\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right)\right)$

What about more general ϵ, μ ?

Assume:

- Ω_{i} star-shaped, $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}, S P D\right)$
- $\left\|\epsilon_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \epsilon_{0},\left\|\mu_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \mu_{0}$, i.e. jumps are "upwards" on $\partial \Omega_{i}$
- $\epsilon_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\epsilon+(\mathbf{x} \cdot \nabla) \epsilon)>0, \mu_{*}:=\operatorname{ess} \inf _{\mathbf{x} \in \Omega_{i}}(\mu+(\mathbf{x} \cdot \nabla) \mu)>0$ "weak monotonicity" in radial direction, avoid trapping of rays
- "extra regularity" $\left(\mathbf{E}, \mathbf{H} \in H^{1}\left(\Omega_{i} \cup \Omega_{o}\right)^{3}\right.$ or $\left.\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right)\right)$

Then we have explicit, wavenumber-indep., bound:

$$
\begin{aligned}
& \epsilon_{*}\|\mathbf{E}\|_{B_{R}}^{2}+\mu_{*}\|\mathbf{H}\|_{B_{R}}^{2} \\
& \leq 4 R^{2}\left(\frac{\|\epsilon\|_{L^{\infty}\left(B_{R}\right)}^{2}}{\epsilon_{*}}+\frac{\epsilon_{0} \mu_{0}}{\mu_{*}}\right)\|\mathbf{K}\|_{B_{R}}^{2}+4 R^{2}\left(\frac{\|\mu\|_{L^{\infty}\left(B_{R}\right)}^{2}}{\mu_{*}}+\frac{\epsilon_{0} \mu_{0}}{\epsilon_{*}}\right)\|\boldsymbol{J}\|_{B_{R}}^{2} .
\end{aligned}
$$

What about more general ϵ, μ ?

Assume:

- Ω_{i} star-shaped, $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right.$, SPD $)$
- $\left\|\epsilon_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \epsilon_{0},\left\|\mu_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \mu_{0}$, i.e. jumps are "upwards" on $\partial \Omega_{i}$
- $\epsilon_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\epsilon+(\mathbf{x} \cdot \nabla) \epsilon)>0, \mu_{*}:=\operatorname{ess} \inf _{\mathbf{x} \in \Omega_{i}}(\mu+(\mathbf{x} \cdot \nabla) \mu)>0$ "weak monotonicity" in radial direction, avoid trapping of rays
- "extra regularity" ($\mathbf{E}, \mathbf{H} \in H^{1}\left(\Omega_{i} \cup \Omega_{o}\right)^{3}$ or $\left.\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i}\right)\right)$

Then we have explicit, wavenumber-indep. , bound:

$$
\begin{aligned}
& \epsilon_{*}\|\mathbf{E}\|_{B_{R}}^{2}+\mu_{*}\|\mathbf{H}\|_{B_{R}}^{2} \\
& \leq 4 R^{2}\left(\frac{\|\epsilon\|_{L^{\infty}\left(B_{R}\right)}^{2}}{\epsilon_{*}}+\frac{\epsilon_{0} \mu_{0}}{\mu_{*}}\right)\|\mathbf{K}\|_{B_{R}}^{2}+4 R^{2}\left(\frac{\|\mu\|_{L^{\infty}\left(B_{R}\right)}^{2}}{\mu_{*}}+\frac{\epsilon_{0} \mu_{0}}{\epsilon_{*}}\right)\|\boldsymbol{J}\|_{B_{R}}^{2} .
\end{aligned}
$$

To get rid of "extra regularity" assumption, need density of $C^{\infty}(\bar{D})^{3}$ in $\left\{\mathbf{v} \in H(\operatorname{curl} ; D): \nabla \cdot[\alpha \mathbf{v}] \in L^{2}(D), \alpha \mathbf{v} \cdot \hat{\mathbf{n}} \in L^{2}(\partial D), \mathbf{v}_{T} \in L_{T}^{2}(\partial D)\right\}, \alpha \in\{\epsilon, \mu\}$ For $\epsilon=\mu=$ identity: density proved in Costabel, Dauge 1998.

Summary

Helmholtz equation in \mathbb{R}^{d}, homogeneous inclusion:

- $n_{i}<1$: explicit bounds on $\|u\|_{H^{1}\left(B_{R}\right)}$ from Morawetz multipliers, resolvent bounded uniformly in k, holomorphicity strip
- $n_{i}>1$: exponential growth of stability constant through $\left(k_{j}\right)_{j=1}^{\infty}$, growth very sensitive to k

Maxwell equations in \mathbb{R}^{3}, inhomogeneous inclusion:

- explicit bounds on $\|\mathbf{E}\|_{H\left(\operatorname{curl}, B_{R}\right)}$ if ϵ, μ "radially growing"

Summary

Helmholtz equation in \mathbb{R}^{d}, homogeneous inclusion:

- $n_{i}<1$: explicit bounds on $\|u\|_{H^{1}\left(B_{R}\right)}$ from Morawetz multipliers, resolvent bounded uniformly in k, holomorphicity strip
- $n_{i}>1$: exponential growth of stability constant through $\left(k_{j}\right)_{j=1}^{\infty}$, growth very sensitive to k

Maxwell equations in \mathbb{R}^{3}, inhomogeneous inclusion:

- explicit bounds on $\|\mathbf{E}\|_{H\left(\operatorname{curl}, B_{R}\right)}$ if ϵ, μ "radially growing"

Thank you!

